
Computing and Informatics, Vol. 43, 2024, 583–610, doi: 10.31577/cai 2024 3 583

PARALLEL NEAR-DUPLICATE DOCUMENT
DETECTION USING GENERAL-PURPOSE GPU

Dimitar Peshevski, Vladimir Zdraveski

Faculty of Computer Science and Engineering
Ss. Cyril and Methodius University
Rugjer Boshkovikj 16
1020, Skopje, North Macedonia
e-mail: dimitar.peshevski@students.finki.ukim.mk,

vladimir.zdraveski@finki.ukim.mk

Sashko Ristov

Department of Computer Science
University of Innsbruck
Technikerstraße 21a
A - 6020, Innsbruck, Austria
e-mail: sashko.ristov@uibk.ac.at

Abstract. In today’s data-rich world, one of the most significant challenges is
efficiently identifying near-duplicate data, especially when integrating data from
various sources. Identifying near-duplicate documents applies to any content and
has been widely used to enhance the efficiency of search engines, identify plagia-
rism or spam, and so on. Even smaller or specialized search engines can benefit
from knowledge about near-duplicate documents. Shingling and MinHash are two
state-of-the-art approaches to detecting near-duplicate documents. However, there
are not many attempts to improve the performance of this locality-sensitive hash-
ing technique. In this research paper, we propose a parallel implementation of the
MinHash algorithm for near-duplicate document detection utilizing the immense
parallelism offered by general-purpose GPUs. Experimental results show that the
GPU-based parallel solution is far more cost-effective than the CPU-based sequen-
tial and parallel solutions.

https://doi.org/10.31577/cai_2024_3_583

584 D. Peshevski, V. Zdraveski, S. Ristov

Keywords: Near-duplicate, document, Shingling, similarity, locality-sensitive
hashing, MinHash, fingerprint, parallelism, GPU, CUDA

Mathematics Subject Classification 2010: 68W10

1 INTRODUCTION

Duplicate document identification and removal are beneficial for a variety of reasons.
Apart from others, document identification and removal brings benefits

1. for search engines [1] and web crawlers [2] to minimize their processing time,

2. to detect and fight against plagiarism and spam contents [3, 4], and

3. to filter out repeated news items from diverse information channels.

Although deduplication is mainly applied for text content, many techniques are
used to deduplicate other multimedia documents, such as image detection [5], virus
scanning [6], datasets deduplication [7], and handwriting recognition. In this paper,
we focus on the detection of near-duplicate text documents.

There are numerous attempts to reduce the complexity of determining dupli-
cates from a given document dataset. One such successful attempt is the MinHash
algorithm which is a locality-sensitive hashing algorithm. It reduces the complex-
ity by representing the document as a fingerprint signature with a limited length,
called a MinHash signature [8]. In this way, instead of comparing the contents of
each document with the contents of the other documents, it is solely necessary to
compare their fingerprints, which, in principle, are small in size.

But that does not change the fact that the processing takes time O(n log(n)),
where n is the size of the document collection [1]. Doing this processing sequentially
for a dataset consisting of thousands of documents will take an extremely long time.
That is why we considered parallelization of the near-duplicate document detection
process and making use of the general-purpose graphics processing unit (GPGPU).

The general concept of this research paper is to parallelize the document com-
parison and finding the near-duplicates. The goal is to achieve this by each thread
block1 of the graphics processor being responsible for one document at a time, com-
paring it to all the others, and identifying its near-duplicates. Experimental results
show that the GPU-based parallel solution is far more cost-effective than the CPU-
based sequential and parallel solutions. We evaluated our algorithm with various
numbers of documents and achieved a speedup of up to 30× compared to the CPU-
based sequential solution and a speedup of up to 4× compared to the CPU-based
parallel solution using 10 000 documents.

1 A thread block is a programming abstraction representing a group of threads that
can be executed sequentially or concurrently.

Parallel Near-Duplicate Detection Using GPGPU 585

2 DOCUMENT STRUCTURE

The rest of this paper is structured as follows. We outline the related work we
have discovered in the literature in Section 3. In Section 4, we explore CPU and
GPU architectures, offering insights into their parallelization techniques, distinc-
tions in clock speeds, and the number of processing units. This section also draws
specific references to the architectures used in our research. Section 5 describes
the MinHash algorithm, along with a summary of the solution architecture. Sec-
tion 6 provides an outline of the experiments conducted and the associated results.
Finally, in Section 7, we conclude our work and outline our next steps for the fu-
ture.

3 RELATED WORK

This section presents the related work split into two parts, the motivation for dedu-
plication, state-of-the-art algorithms for deduplication, and approaches to parallelize
the deduplication.

3.1 Motivation for Deduplication

These days, digital content is widespread and simply redistributable, either legally or
illegally, making the world plagued by redundant and plagiarised data of every kind.
For those reasons, automated robust methods for duplicate detection of documents
and textual data are getting more attention recently. In [1], the author presents
an effective technique for filtering near-duplicate content that has been used within
the context of the AltaVista search engine. The basic approach provided in [1] for
computing resemblance between documents involves two aspects:

1. the resemblance is defined as a Jaccard similarity coefficient, and

2. the relative size of the intersections is calculated via a random sampling process
that can be done individually for each document.

Identifying the content automatically plays a significant role in detecting and
fighting plagiarism and spam content in today’s digital world connected through the
Web. In the matter of duplicate document detection, document fingerprinting pro-
vides an alternate and efficient solution for managing and identifying near-duplicate
content. Ho and Kim [3] propose a method using a trie-tree data structure to
store a set of 64-bit strings, each of which is the fingerprint of a web document.
After which, they use a meet-in-the-middle approach to detect near-duplicate doc-
uments. Also, document fingerprinting combined with sentence feature extraction
and clustering has promising experimental results that demonstrate its validity and
effectiveness [9].

On the other hand, detecting near-duplicate documents is fundamental to the
content ecosystem of information flows. In [10], Montanari and Puglisi provide

586 D. Peshevski, V. Zdraveski, S. Ristov

a new method for finding near-duplicate documents based on q-grams derived from
the text. The proposed algorithm was evaluated in a multifeed news content man-
agement system to filter out repeated news items from diverse information chan-
nels.

Also, the presence of near-duplicates affects the performance of the search en-
gines critically, because of their need to be managed and potentially removed from
query answers to provide users with uncluttered search results. The authors of [4]
look into the use of SimHash and shingle-based approaches for detecting near du-
plicates in CiteSeerX . CiteSeerX is a real-world digital library of academic papers
that collects documents automatically through focused crawling. Similar versions of
a document may exist on various sites on the Web, and the goal is for these multiple
versions to be included in the collection automatically as a result of the automatic
crawling and ingesting.

Web crawling is an integral piece of infrastructure for search engines and its
performance depends on the elimination of near-duplicate web documents. Manku et
al. [2] demonstrate that SimHash is practically useful for identifying near-duplicates
in web documents from a multibillion-page repository. They come to the conclusion
that the problem’s scaling limits the solution to small-sized fingerprints. Fortunately,
the SimHash approach with 64-bit fingerprints appears to work well in practice for an
8B web page repository. It is worth mentioning that they also developed a technique
for solving the Hamming distance problem.

3.2 Algorithms for Deduplication

As we see, there are many reasons why a lot of near-duplicate document detection
algorithms are proposed nowadays. Among the most efficient such algorithms and
solutions are effective and fast near-duplicate detection via signature-based compres-
sion metrics [11], duplicate text detection based on Longest Common Subsequence
(LCS) algorithm [12], efficient near-duplicate document detection using consistently
weighted sampling filter [13], adaptive near-duplicate detection via similarity learn-
ing [14], detecting near-duplicate documents using sentence-level features and su-
pervised learning [15], etc.

In [11], Zhang et al. present SigNCD, a new near-duplicate approach that com-
bines the signature extraction procedure with normalized compression distance to
cope with immense collections of documents with a wide range of lengths. The solu-
tion demonstrated in [12] is an improvement of Broder’s Shingling and MinHash ap-
proaches in detecting near-duplicate documents [1]. Specifically, it is a method that
combines Shingling and LCS algorithm called SWLR (Shingling with Location Rela-
tionship). To quickly and accurately compute the similarity in large-scale datasets,
Yuan et al. [13] build a threshold filter based on CWS and offer a quicker weighted
hash similarity measurement algorithm. The authors of [14] describe a novel near-
duplicate document identification algorithm that may be easily adjusted for a spe-
cific domain. Their method treats each document as a real-valued sparse k-gram
vector, with weights learned to optimize for a certain similarity function, such as

Parallel Near-Duplicate Detection Using GPGPU 587

cosine similarity or the Jaccard coefficient. This improved similarity measure can
accurately find near-duplicate documents. Similarly, Lin et al. [15] describe a novel
method for finding near-duplicates in a huge document collection. Their method has
three important components: feature selection, similarity measure, and discriminant
derivation.

The most common approach, i.e. solution for near-duplicate document detec-
tion is a min-wise independent permutations locality-sensitive hashing scheme [8]
also known as MinHash which is one of the most popular techniques for finding
approximate nearest neighbor searches in high-dimensional spaces. Implementation
of this algorithm proved to be an efficient way to detect duplicates between a cor-
pus of news articles [16]. Furthermore, a study proposed Sectional MinHash (S-
MinHash) [17], specifically designed for the detection of near-duplicate documents,
which enhances the MinHash data structure with information about the location of
the attributes in the document. Also, an extended version of the S-MinHash method
for near-duplicate detection was proposed recently [18].

Near-duplicate detection does not apply only to text documents. Also, it finds
extensive application when it comes to multimedia. The paper [5] gives an overview
of the computer vision techniques used for near-duplicate image detection. Its ap-
plicability spans even across data exploration, data integration, and data quality.
In [7], the authors propose a technique for detecting quasi-duplicate datasets which
is based on feature extraction and machine learning. In this paper, we focus on the
MinHash algorithm.

3.3 Approaches to Parallelize Deduplication

Document processing is an evergreen topic in parallelization and has been the subject
of extensive research and development over the years. Security is one area where
parallelism has been very successful, with signature-based virus scanning [6] being
a notable example. Similarly, parallelization has shown promise in speeding up and
enhancing the accuracy of handwriting recognition systems using parallel neural
network techniques [19]. Finally, general-purpose GPUs are being used to accelerate
data compression [20], resulting in shorter processing times and faster data transfer
and storage.

Although the problem of finding near-duplicates stretches across many different
domains, and even though many algorithms tackle this problem, there are still not
enough parallel or distributed solutions that would speed up these algorithms. In
this paper, we focus on parallelizing MinHash algorithm using GPUs.

4 BACKGROUND

Modern computing is underpinned by the architectures of Central Processing Units
(CPUs) and Graphics Processing Units (GPUs), each uniquely adapted to address
various computational demands.

588 D. Peshevski, V. Zdraveski, S. Ristov

In this section, we describe general characteristics specifics for the infrastruc-
tures and platforms that are used in this paper and details for the specific types of
infrastructure.

4.1 Infrastructure

4.1.1 CPUs

CPUs, at the heart of most computing systems, are designed for various applications,
optimizing both reliability and adaptability. While their design is primarily focused
on sequential processing, it is worth noting that CPUs can also be employed for
parallel tasks when necessary using multithreading. For our research, we employ
two different CPUs on two distinct platforms.

On Google Colaboratory, we utilize the Intel Xeon CPU, a member of Intel’s
Xeon processor family, characterized by its Broadwell microarchitecture. Operating
at a frequency of 2.20GHz, this CPU boasts a substantial cache size of 56.32MB,
encompassing L1, L2, and L3 caches. Its core attributes incorporate a solitary
physical core supported by hyper-threading, facilitating the execution of two logical
threads.

On our local bare-metal, we utilize the Intel Core i7-8700 CPU, which operates
at a base clock speed of 3.20GHz. This CPU features six physical cores and supports
hyper-threading, allowing each core to handle two threads simultaneously, enabling
efficient multitasking and parallel processing. Built on Intel’s Coffee Lake microar-
chitecture, with its cache hierarchy encompassing L1, L2, and L3 caches, the Intel
Core i7-8700 enhances data access speed and computational efficiency. This CPU is
commonly found in desktop computers and workstations, making it ideal for vari-
ous applications, including content creation, video editing, and general computing,
where its balance of clock speed and core count delivers robust performance.

4.1.2 GPUs

In contrast, GPUs exhibit an architecture explicitly engineered for parallel compu-
tation, making them exceptionally proficient in tasks necessitating high throughput.
Particularly, we use two different GPUs for our research, each employed on its re-
spective platform.

The first is the NVIDIA Tesla T4 GPU, part of the Tesla series, which features
the Turing architecture. This GPU boasts 16GB GDDR6 memory designed for rapid
and efficient data access and is utilized on Google Colaboratory. At the core of the
Tesla T4’s architecture, lie 40 Streaming Multiprocessors (SMs), each containing 64
CUDA cores. This results in a total of 2 560 CUDA cores, which excel at executing
tasks concurrently across a multitude of threads. Despite the lower clock speed
of around 1.6GHz compared to CPUs, the sheer number of CUDA cores and the
innovative architecture enable the GPU to achieve significantly higher computational
throughput.

Parallel Near-Duplicate Detection Using GPGPU 589

Additionally, we use the NVIDIA GTX 1060 GPU on our local bare-metal, built
on the Pascal architecture. Equipped with 6GB of GDDR5 video memory and 1280
CUDA cores, this GPU operates at a base clock speed of 1.5GHz and is well-suited
for GPU-accelerated tasks such as scientific simulations, machine learning, and 3D
rendering.

4.1.3 CPUs vs. GPUs

Distinguishing between the Intel Xeon CPU and the NVIDIA Tesla T4 GPU, both
manifest disparities in clock speed and processing units. The Intel Xeon CPU,
operating at 2.20GHz, excels in orchestrating complex computations, data man-
agement, and task coordination. In contrast, the NVIDIA Tesla T4, despite its
lower clock speed of around 1.6GHz, is equipped with 16GB GDDR6 memory and
an abundance of CUDA cores, designed explicitly for parallel tasks such as graph-
ics rendering, machine learning, and scientific simulations. While clock speed is
a crucial metric, the number of processing units and their parallel execution capa-
bilities are equally pivotal in determining the computational ability of these two
entities.

Comparing the Intel Core i7-8700 CPU and the NVIDIA GTX 1060 GPU, we
see distinct strengths. The Intel Core i7-8700, with its 3.20GHz base clock speed
and six cores with hyper-threading, excels in multitasking and complex calcula-
tions, making it ideal for content creation, video editing, and general computing.
In contrast, the GTX 1060 GPU, designed for graphics and parallel processing,
offers 6GB of GDDR5 video memory and around 1 280 CUDA cores, excelling in
tasks like scientific simulations, machine learning, and 3D rendering. While its clock
speed is lower than the Intel Core i7-8700 CPU, its parallel capabilities stand out
in applications requiring massive parallelism. In summary, the CPU thrives in di-
verse computing tasks, while the GPU is optimized for parallel workloads and to
various domains, including scientific research, artificial intelligence, and graphical
simulations.

4.2 Platforms

4.2.1 Google Colaboratory

For our research, we use the platform offered by Google Colaboratory which consists
of an Intel Xeon CPU with two virtual CPUs (vCPUs) and 13GB of RAM. In
addition to CPU and RAM, Google Colaboratory also offers access to NVIDIA
Tesla T4 GPU.

4.2.2 The Local Bare-Metal

Our research also employs a local bare-metal with an Intel Core i7-8700 CPU running
at 3.20GHz and an NVIDIA GeForce GTX 1060 GPU with 6GB of memory, along
with 16GB of system memory.

590 D. Peshevski, V. Zdraveski, S. Ristov

5 SOLUTION ARCHITECTURE

In this section, we provide an overview of the solution architecture used for near-
duplicate document detection. Particularly, in Section 5.1, we provide a detailed
overview of the MinHash algorithm and how it is used to determine the near-
duplicates among a document dataset. The most attention is devoted to the mod-
eling of the documents and the estimation of their similarity. In Section 5.2, we
describe how the graphics processing unit is utilized for our purposes and what are
the advantages of using it in that way. In Section 5.3, we present the programming
language we used, and we give the details about the solution infrastructure. Lastly,
in Section 5.4, we provide a link to our public repository where we published the
code in order for our results to be repeatable and reproducible.

For this research paper, a near-duplicate document detection system was devel-
oped based on the locality-sensitive hashing algorithm MinHash making use of the
massive parallelism the general-purpose graphics processing units (GPGPUs) are
offering nowadays. The general idea, illustrated in Figure 1, is that with the help of
a similarity estimate, the system searches for similar documents among a dataset,
which computes how close the documents are to each other.

Figure 1. Solution architecture diagram

The similarity assessment between documents is done by first transforming each
document into a fingerprint that characterizes it. Then each fingerprint is compared
with the fingerprints of the other documents. If the similarity estimate is greater
than a given threshold, those documents are considered near-duplicates. Graphi-
cally, the comparison process is shown in Figure 2.

Parallel Near-Duplicate Detection Using GPGPU 591

Figure 2. Process of similarity estimating between documents

5.1 MinHash Algorithm

MinHash is a locality-sensitive hashing technique suitable for approximate similarity
searches of sparse sets. Here, a document is modeled as a sparse set of shingles.
MinHash then allows performing a nearest-neighbor search among all such sparse
sets within a document dataset.

When it comes to transforming a document into a set of shingles, the most
common approach is to construct a set of all shingles appearing in the document
dataset and then represent each document as a one-hot encoded vector regarding
the shingles appearing in it. An alternative approach is to represent each document

592 D. Peshevski, V. Zdraveski, S. Ristov

as a set of shingles appearing in it and then hash each value. This way, the hash
value can be treated as an index of the corresponding shingle in the set of all shingles
appearing in the documents, achieving a compact document representation that can
further simplify calculations. In this research paper, we are using the CRC-32 hash
function as we assume that the count of all different shingles in a document dataset
cannot exceed 232 = 4294 967 296.

After the process of transforming each document into a set of hashed shingles,
the next step is creating a MinHash signature. The collections of sets are permuted,
hashed, and stored in a matrix known as the signature matrix. Let h1, h2, . . . , hn

be different MinHash functions (i.e. different permutations). Then the signature for
a set S is:

[h1(S), h2(S), . . . , hn(S)]. (1)

Generally, the MinHash signatures have a fixed length. In the case of this research
paper, 64 for each document in the dataset.

Here, we are facing the first issue regarding the MinHash algorithm. When the
data dimensionality is too big, it becomes impractical (or too expensive) to use (and
store) a permutation matrix for the random permutations required by the MinHash
algorithm. One major limitation of GPUs is that they have fairly limited memory.
Thus, we resort to simple hash functions. So, the solution is to use a random hash
function (for row number) to simulate a permutation. Each hashing function hi,
i = 1, 2, . . . , n, has the following form:

hi(k) = ((a · k + b)% p)%m, (2)

where k is the index of the kth shingle in the set, a and b are randomly chosen
integers, m is the count of shingles in the vocabulary and p is a prime number
slightly bigger than m.

Various similarity measures exist to assess the resemblance between two docu-
ments. Commonly, the similarity between two documents is calculated considering
the Jaccard similarity coefficient, which normalizes the number of identical objects
by the number of distinct objects in the two sets. Let X and Y denote two doc-
uments, and SX and SY their corresponding sets of shingles. Then, the Jaccard
similarity coefficient is calculated regarding the equation:

J(SX , SY) =
|SX ∩ SY |
|SX ∪ SY |

. (3)

However, the Jaccard similarity coefficient can be easily estimated using the signa-
ture matrix with the advantage that we calculate it on fewer data, leading to better
performance.

The final step is finding the near-duplicates among a document dataset. If two
documents have a count of equal elements within their MinHash signatures greater
than a given threshold, then they can be regarded as near-duplicates.

Parallel Near-Duplicate Detection Using GPGPU 593

5.2 Utilizing the Advantages of GPUs

GPUs greatly outperform CPUs in terms of computing performance and memory
bandwidth. However, because GPUs were built for graphics processing, the pro-
gramming model (which incorporates massively parallel Single-Instruction-Multiple-
Data (SIMD) processing and limited bus speeds for data transfers to/from main
memory) is not ideal for arbitrary data processing applications.

The approach outlined in this research paper makes the most of this model by
envisaging three main phases:

1. Sending compact representation of the documents and their corresponding in-
dices to the GPU memory. The transformation to a compact representation is
done upon a variant of the Compressed Row Storage (CRS) format.

2. Each thread block is responsible for one document. The hash values and accom-
panying minimum are then computed by threads in the corresponding block by
applying all n hash functions to the data in the GPU and keeping the relevant
minimum for each hash function and set.

3. Then once again each document is assigned to a particular block which com-
pares that document’s signature with the signatures of all succeeding documents
finding all documents with a similarity estimate greater than a given threshold.
And, then writes the results back to the main memory.

The benefits of this batch-style processing are numerous. Because the compu-
tation within the GPU itself scans through successive blocks of data in the GPU-
internal memory (as opposed to random memory access patterns), we can take full
use of coalesced access and the immense parallelism inherent in the GPU architec-
ture by executing the same computation (with a different hash function) for each
set entry n times.

But there are also downsides that need to be overcome. Writing the result from
a similarity comparison performed in the GPU raises a few challenges. Since the size
of the result is initially unknown, it is also not possible to know how much memory
should be allocated from the GPU memory to hold the result. In addition, there
may be conflicts between blocks when writing on the device’s memory. For this
reason, the GPU processes the documents twice. The first time it only determines
the count of near-duplicates of each document. After that, it allocates the needed
memory space for the result, and the second time each block writes the indices of
the near-duplicates to the corresponding place in the allocated memory.

The five phases of the near-duplicate detection process mentioned before are
illustrated in Figure 3. The outline of the process is summarized in Figure 4 with
a flow chart. The document set is loaded first. Then, each document is assigned
to a separate thread block, which performs the necessary processing to return the
near-duplicates of the corresponding document as a result.

594 D. Peshevski, V. Zdraveski, S. Ristov

Figure 3. Phases of the near-duplicate detection process

Parallel Near-Duplicate Detection Using GPGPU 595

Figure 4. Flow chart of the near-duplicate detection process

596 D. Peshevski, V. Zdraveski, S. Ristov

5.3 Programming Language and Solution Infrastructure

For the approach presented in this paper, the programming language Python was
used because it is powerful, flexible, and easy to use. When it comes to utilizing
the GPU for the parallelization of tasks, Numba was used as it supports CUDA
GPU programming by directly compiling a restricted subset of Python code into
CUDA kernels and device functions following the CUDA execution model making it
possible to leverage massively parallel GPU computing to achieve faster results and
accuracy. With Numba, one can write kernels directly with (a subset of) Python,
and Numba will compile the code on the fly and run it. Numba was also utilized
for the parallel implementation on the CPU because of its support for multithread-
ing.

Numba’s optimization process is a noteworthy aspect that deserves mention.
Specifically, when a function is invoked for the first time using Numba, it employs the
LLVM compiler infrastructure to translate the Python code into efficient machine
code. This translation process significantly enhances the execution speed of the
code. In fact, the performance of code compiled by Numba can often rival that of
programs written in C, C++, or Fortran. This optimization process by Numba is a
dynamic and just-in-time (JIT) compilation technique. It means that rather than
interpreting Python code line by line, Numba compiles the code into machine-level
instructions on the fly, allowing for faster execution.

More precisely, we use Numba for GPU programming in such a way that a sepa-
rate kernel is built for each of the last three phases outlined in Figure 3. We launch
and run each of the kernels one after the other. Meanwhile, after launching each of
the kernels we synchronize to ensure that the kernel finishes its work, and then we
measure the time taken for each phase.

The solution was evaluated with different sizes of document dataset and we
concluded that the speedup grows along with increasing the size of the document
dataset. The details of the experiments performed and the results obtained from
them are given in the next section.

5.4 Implementation

In order to make our results reproducible, we published our code in a publicly
available GitHub repository. The code for all three implementations: 1. CPU-based
sequential implementation, 2. CPU-based parallel implementation, and 3. GPU-
based parallel implementation, is available at the following link: https://github.
com/peshevskidimitar/ParallelNearDuplicateDocumentDetection.

6 RESULTS

In this section, we present the results of the evaluation. We first describe the ex-
perimental setup in Section 6.1 in order to be repeatable and reproducible. Then,

https://github.com/peshevskidimitar/ParallelNearDuplicateDocumentDetection
https://github.com/peshevskidimitar/ParallelNearDuplicateDocumentDetection

Parallel Near-Duplicate Detection Using GPGPU 597

we discuss the achieved results and their implications in Section 6.2 and Section 6.3
according to the respective platform.

6.1 Experiments

6.1.1 Experiment Infrastructure

The first platform utilized for our experiments is Google Colaboratory, featuring
an Intel Xeon CPU running at 2.20GHz and an NVIDIA Tesla T4 GPU equipped
with 16GB of GDDR6 memory. Detailed specifications and characteristics of this
platform can be found in Section 4.

Our second platform employs a local bare-metal, equipped with an Intel Core
i7-8700 CPU and an NVIDIA GeForce GTX 1060 GPU. Further information about
this platform can also be found in Section 4.

6.1.2 Experiment Execution

The time measurements were divided into 5 phases according to the execution of
the algorithm illustrated in Figure 3. Only phases 3 through 5 were parallelized
utilizing the advantages of GPU.

The final measurements are determined through the calculation of the mean
from a total of 101 individual runs for each respective phase. For each phase, we
present both the mean (referred to as AVG) and the relative standard deviation
(abbreviated as RSD).

The solution presented in this research paper was tested on multiple subsets of
a document dataset of size 1 000, 2 500, 5 000, 7 500, and 10 000 documents. The
average document length in the given dataset was 1 589.53 characters.

6.2 Experimental Results on Google Colaboratory

Our experimental results indicate that parallelization reduces the time required to
compute near-duplicates from a dataset of text documents.

In Table 1, the mean of each phase execution time for the CPU-based sequential
solution is given in detail by phases, and in the last row, the total time required for
the whole process of near-duplicate document detection is calculated. In Table 2,
we provide the relative standard deviation of each phase execution time for the
CPU-based sequential solution. Analogously to the measurements for the CPU-
based sequential solution, we present the measurements for the CPU-based parallel
solution in Tables 3 and 4, and the measurements for the GPU-based parallel solution
in Tables 5 and 6.

As we can see from Tables 1, 3, and 5, the GPU-based parallel solution is
from 18 to 30 times faster than the CPU-based sequential solution and from 3 to
4 times faster than the CPU-based parallel solution. In both (CPU-based and GPU-
based) parallel implementations, there is overhead in phase 2 because of the need for

598 D. Peshevski, V. Zdraveski, S. Ristov

1000 2 500 5 000 7 500 10 000

1. phase 32.87 65.18 139.55 211.20 277.74

2. phase 654.12 1 607.31 3 199.91 4 871.18 6 320.39

3. phase 11 313.42 27 779.84 54 723.24 83 410.12 109 835.53

4. phase 912.59 5 312.78 22 763.59 49 968.58 90 482.11

5. phase 45.27 219.65 1 074.63 2 452.95 4 242.08

Total 12 958.27 34 984.76 81 900.92 140 914.03 211 157.85

Table 1. Mean (in milliseconds) of each phase execution time for the CPU-based sequential
implementation on Google Colaboratory

1 000 2 500 5 000 7 500 10 000

1. phase 26.32 23.07 26.26 25.64 25.78

2. phase 26.75 23.41 23.92 17.39 14.54

3. phase 3.73 2.09 3.96 1.79 1.87

4. phase 22.13 14.58 4.14 2.33 4.01

5. phase 7.13 11.01 13.89 13.06 13.52

Table 2. Relative standard deviation (in percentages) of each phase execution time for
the CPU-based sequential implementation on Google Colaboratory

a more compact representation of the documents for transferring them to the GPU
memory and making most of the multithreading on the CPU. On average, it occupies
0.11% of the total time required for the execution of the CPU-based parallel solution
and 0.37% of the total time required for the execution of the GPU-based parallel
solution, so we can conclude that the overhead is negligible. The improvement with
the GPU-based parallel solution is even better illustrated by Figure 5, where all
implementations are compared.

The performance improvement is most evident from the ratio of the time required
for the CPU-based sequential and parallel solution to the time needed for the GPU-
based parallel solution presented in Table 7 and Table 8 for each document subset
size. For 10 000 documents, the GPU-based parallel solution is 30 times faster than
the CPU-based sequential solution and 4 times faster than the CPU-based parallel
solution. The same data from Table 7 and Table 8 are plotted in Figure 6 and

1000 2 500 5 000 7 500 10 000

1. phase 32.87 65.18 139.55 211.20 277.74

2. phase 658.79 1 611.51 3 207.50 4 889.22 6 347.85

3. phase 1 575.43 4 046.80 8 365.61 13 766.12 18 792.61

4. phase 35.50 200.75 873.39 1 899.43 3 413.83

5. phase 1.17 3.12 13.24 39.79 52.18

Total 2 303.76 5 927.36 12 599.29 20 805.76 28 884.21

Table 3. Mean (in milliseconds) of each phase execution time for the CPU-based parallel
implementation on Google Colaboratory

Parallel Near-Duplicate Detection Using GPGPU 599

1000 2 500 5 000 7 500 10 000

1. phase 26.32 23.07 26.26 25.64 25.78

2. phase 25.39 22.13 21.95 17.46 14.72

3. phase 18.50 19.08 11.43 5.14 3.74

4. phase 31.13 25.33 27.72 23.09 18.04

5. phase 5.98 10.90 4.38 29.98 6.48

Table 4. Relative standard deviation (in percentages) of each phase execution time for
the CPU-based parallel implementation on Google Colaboratory

1 000 2 500 5 000 7 500 10 000

1. phase 32.87 65.18 139.55 211.20 277.74

2. phase 658.79 1 611.51 3 207.50 4 889.22 6 347.85

3. phase 9.15 16.22 30.11 45.81 62.20

4. phase 5.36 18.22 71.30 123.97 317.93

5. phase 1.26 1.39 1.74 2.01 2.61

Total 707.43 1 712.52 3 450.20 5 272.21 7 008.33

Table 5. Mean (in milliseconds) of each phase execution time for the GPU-based parallel
implementation on Google Colaboratory

Figure 7, where it becomes clear that the larger the dataset, the more efficient the
GPU-based parallel solution is.

We expect the speedup to increase for larger cardinalities of the document set,
but up to a certain point where it reaches its limit and starts decreasing. Specifically,
we expect a linear speedup for a collection ranging from 10 000 to 100 000 documents
when the speedup reaches its limit. Our predictions are primarily based on the
practices already demonstrated for modeling the speedup for scalable systems [21],
the fact that we utilized a GPU with an array of 40 streaming multiprocessors for the
parallel solution and that we already obtained a speedup of 30 times for a collection
of 10 000 documents.

It is worth mentioning that even though GPUs are designed primarily for work-
ing with numerical data and mathematical operations rather than processing textual
data, we managed to achieve a speedup of 30 times for a dataset consisting of 10 000
documents.

1000 2 500 5 000 7 500 10 000

1. phase 26.32 23.07 26.26 25.64 25.78

2. phase 25.39 22.13 21.95 17.46 14.72

3. phase 23.61 23.74 18.83 13.25 10.59

4. phase 11.57 10.21 4.68 5.64 4.57

5. phase 29.37 26.62 25.86 25.37 22.99

Table 6. Relative standard deviation (in percentages) of each phase execution time for
the GPU-based parallel implementation

600 D. Peshevski, V. Zdraveski, S. Ristov

2000 4000 6000 8000 10000
Count of processed documents

0

50

100

150

200
Ti
m
e
ta
ke
n
(in

 se
co
nd

s)

Comparison of all implementations
Sequential CPU implementation
Parallel CPU implementation
Parallel GPU implementation

Figure 5. Comparison of all implementations on Google Colaboratory

1 000 2 500 5 000 7 500 10 000

Speedup 18.32 20.43 23.74 26.73 30.13

Table 7. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based sequential implementation on Google Colaboratory

6.3 Experimental Results on the Local Bare-Metal

Similarly to the preceding section, where we showcased results from Google Co-
laboratory, in this section we provide the results obtained from our local bare-
metal.

Table 9 displays the mean of the execution times for each phase of the CPU-
based sequential solution, along with the total time for the entire near-duplicate
document detection process in the last row. Moving to Table 10 it presents the
relative standard deviation of the execution times for each phase for the CPU-
based sequential solution. Similarly, Tables 11 and 12 present the measurements for
the CPU-based parallel solution, while Tables 13 and 14 present the measurements

1000 2 500 5 000 7 500 10 000

Speedup 3.26 3.46 3.65 3.95 4.12

Table 8. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based parallel implementation on Google Colaboratory

Parallel Near-Duplicate Detection Using GPGPU 601

2000 4000 6000 8000 10000
Count of processed documents

18

20

22

24

26

28

30
Sp

ee
du

p
sCPU vs. pGPU

Figure 6. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based sequential implementation on Google Colaboratory

2000 4000 6000 8000 10000
Count of processed documents

3.4

3.6

3.8

4.0

Sp
ee

du
p

pCPU vs. pGPU

Figure 7. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based parallel implementation on Google Colaboratory

602 D. Peshevski, V. Zdraveski, S. Ristov

for the GPU-based parallel solution, mirroring the structure and format used for
Tables 9 and 10.

1000 2 500 5 000 7 500 10 000

1. phase 18.31 47.25 94.16 142.91 192.44

2. phase 520.19 1 316.32 2 627.26 3 889.01 5 193.00

3. phase 7 853.52 19 437.31 39 067.19 58 908.81 78 238.03

4. phase 604.31 3 800.90 17 215.09 35 477.77 63 472.59

5. phase 22.47 144.13 609.38 1 358.66 2 566.11

Total 9 018.80 24 745.91 59 613.08 99 777.16 149 662.17

Table 9. Mean (in milliseconds) of each phase execution time for the CPU-based sequential
implementation on the local bare-metal

1 000 2 500 5 000 7 500 10 000

1. phase 3.82 6.50 2.25 4.60 1.48

2. phase 1.79 2.58 2.00 1.55 1.36

3. phase 2.98 0.73 0.45 0.24 0.22

4. phase 1.86 2.11 1.12 0.79 0.67

5. phase 10.10 2.18 2.21 1.96 6.33

Table 10. Relative standard deviation (in percentages) of each phase execution time for
the CPU-based sequential implementation on the local bare-metal

1 000 2 500 5 000 7 500 10 000

1. phase 18.31 47.25 94.16 142.91 192.44

2. phase 531.01 1 330.79 2 663.22 3 940.20 5 286.77

3. phase 200.81 500.84 991.47 1 494.46 1 997.40

4. phase 1.94 10.87 41.38 91.30 161.81

5. phase 0.18 0.89 3.71 8.43 14.99

Total 752.25 1 890.64 3 793.94 5 677.30 7 653.41

Table 11. Mean (in milliseconds) of each phase execution time for the CPU-based parallel
implementation on the local bare-metal

Observing the data presented in Tables 9, 11, and 13, it is evident that the GPU-
based parallel solution outperforms the CPU-based sequential solution by a factor
of 12 to 20 and is 1.3 times faster than the CPU-based parallel solution. As pre-
viously mentioned, both parallel implementations exhibit overhead during phase 2
due to the requirement for a more efficient document representation, facilitating
their transfer to GPU memory and optimizing CPU multithreading. On average,
this overhead consumes only 1.10% of the total execution time for the CPU-based
parallel solution and 1.38% for the GPU-based parallel solution, reaffirming its

Parallel Near-Duplicate Detection Using GPGPU 603

1000 2 500 5 000 7 500 10 000

1. phase 3.82 6.50 2.25 4.60 1.48

2. phase 4.09 1.42 1.33 1.22 1.17

3. phase 4.20 4.59 2.76 3.30 3.01

4. phase 8.76 7.91 8.02 6.42 5.45

5. phase 11.11 12.36 5.39 5.10 3.54

Table 12. Relative standard deviation (in percentages) of each phase execution time for
the CPU-based parallel implementation on the local bare-metal

1 000 2 500 5 000 7 500 10 000

1. phase 18.31 47.25 94.16 142.91 192.44

2. phase 531.01 1 330.79 2 663.22 3 940.20 5 286.77

3. phase 18.69 43.48 84.48 125.48 166.21

4. phase 3.58 17.35 67.92 153.36 257.88

5. phase 0.65 0.97 1.46 2.45 3.77

Total 572.24 1 439.84 2 911.24 4 364.40 5 907.07

Table 13. Mean (in milliseconds) of each phase execution time for the GPU-based parallel
implementation on the local bare-metal

negligible impact. The enhanced performance achieved with the GPU-based paral-
lel solution becomes even more evident when examining Figure 8, which provides
a comparison of all implementations.

We can also observe the performance improvement by comparing the time re-
quired for the CPU-based sequential and parallel solutions to the time taken by
the GPU-based parallel solution, as displayed in Tables 15 and 16 for various doc-
ument subset sizes. The same data from Tables 15 and 16 are plotted in Figures 9
and 10.

In this scenario, the speedup of the GPU-based parallel solution compared to
the CPU-based sequential solution steadily increases, while it remains relatively
constant compared to the CPU-based parallel solution. We anticipate that as the
dataset size grows, the speedup achieved by the CPU-based parallel implementation
compared to the CPU-based sequential implementation will eventually reach a satu-
ration point. Furthermore, we believe that the speedup for the GPU-based parallel

1000 2 500 5 000 7 500 10 000

1. phase 3.82 6.50 2.25 4.60 1.48

2. phase 4.09 1.42 1.33 1.22 1.17

3. phase 6.90 4.23 2.94 1.71 0.94

4. phase 11.17 4.38 4.20 3.05 2.46

5. phase 16.92 11.34 13.01 19.18 9.02

Table 14. Relative standard deviation (in percentages) of each phase execution time for
the GPU-based parallel implementation on the local bare-metal

604 D. Peshevski, V. Zdraveski, S. Ristov

2000 4000 6000 8000 10000
Count of processed documents

0

20

40

60

80

100

120

140
Ti
m
e
ta
ke

n
(in

 se
co

nd
s)

Comparison of all implementations
Sequential CPU implementation
Parallel CPU implementation
Parallel GPU implementation

Figure 8. Comparison of all implementations on the local bare-metal

implementation compared to the CPU-based parallel implementation will become
more apparent with larger datasets.

1000 2 500 5 000 7 500 10 000

Speedup 11.99 13.09 15.71 17.57 19.55

Table 15. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based sequential implementation on the local bare-metal

1 000 2 500 5 000 7 500 10 000

Speedup 1.31 1.31 1.30 1.30 1.30

Table 16. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based parallel implementation on the local bare-metal

6.4 Discussion

The local measurements differ when compared to those obtained on Google Col-
laboratory. Several factors contribute to this difference, with infrastructure being
a significant one. On Google Collaboratory, we have access to a single core of Intel
Xeon with two threads, whereas locally, we benefit from the processing power of six
Intel Core i7-8700 cores, each featuring two threads. This implies a clear advantage

Parallel Near-Duplicate Detection Using GPGPU 605

2000 4000 6000 8000 10000
Count of processed documents

12

13

14

15

16

17

18

19
Sp

ee
du

p
sCPU vs. pGPU

Figure 9. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based sequential implementation on the local bare-metal

2000 4000 6000 8000 10000
Count of processed documents

0

1

2

3

4

5

Sp
ee

du
p

pCPU vs. pGPU

Figure 10. Speedup achieved by the GPU-based parallel implementation compared to the
CPU-based parallel implementation on the local bare-metal

606 D. Peshevski, V. Zdraveski, S. Ristov

in terms of CPU performance when experimenting locally. However, the situation
differs when it comes to the graphics processing unit (GPU). Locally, we rely on
the NVIDIA GeForce GTX 1060, whereas Google Collaboratory offers the NVIDIA
Tesla T4 with 13GB of GPU memory. This disparity in GPU resources can also
impact the observed trends in our measurements.

The local bare-metal CPU outperforms the CPU on Google Colaboratory, lead-
ing to better results in Tables 9 and 11 compared to Tables 1 and 3. However,
there is a noteworthy contrast when it comes to GPU performance. Despite Google
Colaboratory having a faster GPU than the local bare-metal setup, Table 5 does
not show better results than Table 13. This difference can be attributed to the ini-
tial two non-parallelized phases, significantly contributing to the overall execution
time. The slower CPU on Google Colaboratory causes these phases to dominate
much more in terms of time than on the local bare-metal, ultimately impacting the
final results negatively. Additionally, we believe that the higher relative standard
deviation (RSD) of execution times for the GPU-based parallel implementation on
Google Colaboratory (Table 6) compared to the GPU-based parallel implementation
on the local bare-metal (Table 14) likely plays a substantial role in this outcome.

6.5 Threats to Validity

Google Colaboratory operates on a strategy facilitated through dynamic usage limits
and a lack of guarantee for unlimited resources. This dynamic approach results in
periodic fluctuations in several essential aspects, such as overall usage limits, idle
timeout durations, maximum virtual machine (VM) lifetimes, available GPU types,
and other relevant factors.

In such a shared-resource scenario, the performance of a job may be influenced
by the simultaneous execution of other tasks on the same hardware, as resource
allocation is dynamically managed by the platform. This could result in varia-
tions in the available computing power, memory, and GPU resources, affecting the
execution time of a given job. Consequently, there is a threat to validity when in-
terpreting execution time measurements obtained in such an environment, as they
may not accurately reflect the intrinsic performance of the code or algorithms being
tested.

In addition to Google Colaboratory, we employ our local bare-metal as another
platform for our proof-of-concept work. This approach allows us to compare results
obtained on a non-virtualized local bare-metal with those from a virtualized environ-
ment on Google Colaboratory, thereby gaining a more comprehensive understanding
of our measurements and ensuring the robustness of our findings.

7 CONCLUSION AND FUTURE WORK

In this research paper, we parallelized part of the near-duplicate document detection
process. In particular, phases 3 through 5. The parallelization of these three phases

Parallel Near-Duplicate Detection Using GPGPU 607

of the near-duplicate document detection process proved worthwhile, considering
the results of the conducted experiments. For 10 000 documents, the GPU-based
parallel solution was 30 times faster than the CPU-based sequential one and 4 times
faster than the CPU-based parallel one.

Despite this, we believe there is still additional potential for parallelizing
a greater part of the process. Specifically, there is a possibility of parallelization
of phase 2, in which documents are transformed via shingling. The transformation
process is independent for each document and this indicates an opportunity for par-
allelization. But the challenges that arise should not be neglected. The size of the
set of unique shingles that represents the document is initially unknown, so the size
of the memory space, that needs to be allocated to accommodate the document
representation cannot be known in advance. Furthermore, GPUs are designed pri-
marily for working with numerical data and mathematical operations, rather than
processing textual data. Hence, finding a technique to translate text processing to
mathematical operations on numerical data will be necessary.

In our future work, we will try to develop the algorithm on a serverless platform
as a workflow. We intend to use the new type of serverless infrastructures which has
emerged, also known as the Function-as-a-Service model. The authors of [22] assess
the FaaS model’s applicability for compute- and data-intensive scientific workflows
and discuss potential ways to repurpose serverless infrastructures for scientific work-
flow execution. Also, in [23], Ristov et al. introduce a scalable middleware service
xAFCL that can schedule and execute different functions of the same FC across
multiple FaaS systems. Considering these possibilities, we plan to build the solution
according to the FaaS model, making the most of the advantages it offers.

We also intend to build the solution on a more robust architecture that can
handle larger document datasets. So we can run experiments with datasets ranging
in size from 10 000 to 1 000 000 documents to see if we can achieve a linear speedup
with the number of streaming multiprocessors. We also want to achieve greater
scaling and so exceed the current GPU limitation in terms of the number of streaming
multiprocessors.

If we succeed in overcoming these challenges, we believe we will achieve even
more significant results. Near-duplicate document detection has numerous potential
applications in various domains. Its improvement through parallelization increases
those possibilities considering that most of today’s computers have general-purpose
GPUs.

REFERENCES

[1] Broder, A. Z.: Identifying and Filtering Near-Duplicate Documents. In: Gian-
carlo, R., Sankoff, D. (Eds.): Combinatorial Pattern Matching (CPM 2000). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1848, 2000, pp. 1–10,
doi: 10.1007/3-540-45123-4 1.

https://doi.org/10.1007/3-540-45123-4_1

608 D. Peshevski, V. Zdraveski, S. Ristov

[2] Manku, G. S.—Jain, A.—Das Sarma, A.: Detecting Near-Duplicates for Web
Crawling. Proceedings of the 16th International Conference on World Wide Web
(WWW’07), ACM, 2007, pp. 141–150, doi: 10.1145/1242572.1242592.

[3] Ho, P.T.—Kim, S.R.: Fingerprint-Based Near-Duplicate Document Detection
with Applications to SNS Spam Detection. International Journal of Distributed Sen-
sor Networks, Vol. 10, 2014, No. 5, Art. No. 612970, doi: 10.1155/2014/612970.

[4] Williams, K.—Giles, C. L.: Near Duplicate Detection in an Academic Digital
Library. Proceedings of the 2013 ACM Symposium on Document Engineering (Doc-
Eng ’13), 2013, pp. 91–94, doi: 10.1145/2494266.2494312.

[5] Thyagharajan, K.K.—Kalaiarasi, G.: A Review on Near-Duplicate Detection
of Images Using Computer Vision Techniques. Archives of Computational Methods
in Engineering, Vol. 28, 2021, No. 3, pp. 897–916, doi: 10.1007/s11831-020-09400-w.

[6] Dimitrioski, A.—Gusev, M.—Zdraveski, V.: Parallelism in Signature Based
Virus Scanning with CUDA. In: Poulkov, V. (Ed.): Future Access Enablers for Ubiq-
uitous and Intelligent Infrastructures (FABULOUS 2019). Springer, Cham, Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, Vol. 283, 2019, pp. 413–422, doi: 10.1007/978-3-030-23976-3 36.

[7] Chevallier, M.—Rogovschi, N.—Boufarès, F.—Grozavu, N.—
Clairmont, C.: Detecting Near Duplicate Dataset. In: Abraham, A., En-
gelbrecht, A., Scotti, F. et al. (Eds.): Proceedings of the 13th International
Conference on Soft Computing and Pattern Recognition (SoCPaR 2021). Springer,
Cham, Lecture Notes in Networks and Systems, Vol. 417, 2022, pp. 394–403, doi:
10.1007/978-3-030-96302-6 36.

[8] Broder, A. Z.—Charikar, M.—Frieze, A.M.—Mitzenmacher, M.: Min-
Wise Independent Permutations (Extended Abstract). Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing (STOC ’98), 1998, pp. 327–336,
doi: 10.1145/276698.276781.

[9] Kumar, J. P.—Govindarajulu, P.: Near-Duplicate Web Page Detection: An Effi-
cient Approach Using Clustering, Sentence Feature and Fingerprinting. International
Journal of Computational Intelligence Systems, Vol. 6, 2013, No. 1, pp. 1–13, doi:
10.1080/18756891.2013.752657.

[10] Montanari, D.—Puglisi, P. L.: Near Duplicate Document Detection for Large
Information Flows. In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (Eds.):
Multidisciplinary Research and Practice for Information Systems (CD-ARES 2012).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 7465, 2012,
pp. 203–217, doi: 10.1007/978-3-642-32498-7 16.

[11] Zhang, X.—Yao, Y.—Ji, Y.—Fang, B.: Effective and Fast Near Duplicate De-
tection via Signature-Based Compression Metrics. Mathematical Problems in Engi-
neering, Vol. 2016, 2016, Art. No. 3919043, doi: 10.1155/2016/3919043.

[12] Yu, J.—Li, M.—Zhang, D.: Duplicate Text Detection Based on LCS Algorithm.
Proceedings of the 2nd Information Technology and Mechatronics Engineering Con-
ference (ITOEC 2016), Atlantis Press, 2016, pp. 5–9, doi: 10.2991/itoec-16.2016.2.

[13] Yuan, X.—Wang, S.—Peng, C.—Zhang, C.: Efficient Near-Duplicate
Document Detection Using Consistent Weighted Sampling Filter. International

https://doi.org/10.1145/1242572.1242592
https://doi.org/10.1155/2014/612970
https://doi.org/10.1145/2494266.2494312
https://doi.org/10.1007/s11831-020-09400-w
https://doi.org/10.1007/978-3-030-23976-3_36
https://doi.org/10.1007/978-3-030-96302-6_36
https://doi.org/10.1145/276698.276781
https://doi.org/10.1080/18756891.2013.752657
https://doi.org/10.1007/978-3-642-32498-7_16
https://doi.org/10.1155/2016/3919043
https://doi.org/10.2991/itoec-16.2016.2

Parallel Near-Duplicate Detection Using GPGPU 609

Journal of Network Security, Vol. 21, 2019, No. 6, pp. 947–956, doi:
10.6633/IJNS.201911 21(6).08.

[14] Hajishirzi, H.—Yih, W.T.—Kolcz, A.: Adaptive Near-Duplicate Detection via
Similarity Learning. Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’10), 2010, pp. 419–426,
doi: 10.1145/1835449.1835520.

[15] Lin, Y. S.—Liao, T.Y.—Lee, S. J.: Detecting Near-Duplicate Documents Using
Sentence-Level Features and Supervised Learning. Expert Systems with Applications,
Vol. 40, 2013, No. 5, pp. 1467–1476, doi: 10.1016/j.eswa.2012.08.045.

[16] Rodier, S.—Carter, D.: Online Near-Duplicate Detection of News Articles. In:
Calzolari, N., Béchet, F., Blache, P. et al. (Eds.): Proceedings of the Twelfth
Language Resources and Evaluation Conference (LREC 2020). European Language
Resources Association, 2020, pp. 1242–1249, https://aclanthology.org/2020.

lrec-1.156.

[17] Hassanian-Esfahani, R.—Kargar, M. J.: Sectional MinHash for Near-Duplicate
Detection. Expert Systems with Applications, Vol. 99, 2018, pp. 203–212, doi:
10.1016/j.eswa.2018.01.014.

[18] Shayegan, M. J.—Faizollahi-Samarin, M.: An Extended Version of Sectional
MinHash Method for Near-Duplicate Detection. The Journal of Supercomputing,
Vol. 78, 2022, No. 13, pp. 15638–15662, doi: 10.1007/s11227-022-04447-x.

[19] Todorov, D.—Zdraveski, V.—Kostoska, M.—Gusev, M.: Parallelization
of a Neural Network Algorithm for Handwriting Recognition: Can We Increase
the Speed, Keeping the Same Accuracy. 2021 44th International Convention on In-
formation, Communication and Electronic Technology (MIPRO), 2021, pp. 932–937,
doi: 10.23919/MIPRO52101.2021.9597042.

[20] Ristovski, K.—Zdraveski, V.: Accelerating Data Compression Using General
Purpose GPUs. The 19th International Conference on Informatics and Information
Technologies – CIIT 2022, 2022, pp. 144–147, http://hdl.handle.net/20.500.

12188/25705.

[21] Ristov, S.—Gusev, M.—Velkoski, G.: Modeling the Speedup for Scalable Web
Services. In: Bogdanova, A.M., Gjorgjevikj, D. (Eds.): ICT Innovations 2014.
Springer, Cham, Advances in Intelligent Systems and Computing, Vol. 311, 2015,
pp. 177–186, doi: 10.1007/978-3-319-09879-1 18.

[22] Malawski, M.—Gajek, A.—Zima, A.—Balis, B.—Figiela, K.: Serverless Ex-
ecution of Scientific Workflows: Experiments with HyperFlow, AWS Lambda and
Google Cloud Functions. Future Generation Computer Systems, Vol. 110, 2020,
pp. 502–514, doi: 10.1016/j.future.2017.10.029.

[23] Ristov, S.—Pedratscher, S.—Fahringer, T.: xAFCL: Run Scalable Function
Choreographies Across Multiple FaaS Systems. IEEE Transactions on Services Com-
puting, Vol. 16, 2023, No. 1, pp. 711–723, doi: 10.1109/TSC.2021.3128137.

https://doi.org/10.6633/IJNS.201911_21(6).08
https://doi.org/10.1145/1835449.1835520
https://doi.org/10.1016/j.eswa.2012.08.045
https://aclanthology.org/2020.lrec-1.156
https://aclanthology.org/2020.lrec-1.156
https://doi.org/10.1016/j.eswa.2018.01.014
https://doi.org/10.1007/s11227-022-04447-x
https://doi.org/10.23919/MIPRO52101.2021.9597042
http://hdl.handle.net/20.500.12188/25705
http://hdl.handle.net/20.500.12188/25705
https://doi.org/10.1007/978-3-319-09879-1_18
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1109/TSC.2021.3128137

610 D. Peshevski, V. Zdraveski, S. Ristov

Dimitar Peshevski is a third-year bachelor’s student at the
Faculty of Computer Science and Engineering, Ss. Cyril and
Methodius University, in Skopje, North Macedonia, where he
is pursuing a degree in computer science. In his studies, he
focuses on the theoretical and algorithmic foundations of com-
puting, parallel and distributed processing, data science, artifi-
cial intelligence, and its sub-domain machine learning. His re-
search interests include algorithm design and optimization, per-
formance optimization of parallel and distributed systems, and
high-performance computing. Upon completion of his under-

graduate studies, he intends to apply to graduate school to further his knowledge of com-
puter science and progress toward a career as a researcher.

Vladimir Zdraveski graduated in 2010 in the field of com-
puter science and engineering and obtained his Master’s degree
in e-technologies and computer networks in 2012, and his Ph.D.
in computer science and engineering in 2017. Currently, he is
Associate Professor at the Faculty of Computer Science and En-
gineering, Ss. Cyril and Methodius University in Skopje. He
participated in a few international and local research projects,
published several papers, co-authored one book and two patents.
His ongoing research is focused on engaging high-performance
computing tools in different domains. His academic and indus-

trial interests are also in web technologies, parallel programming and enterprise software
development.

Sashko Ristov is Assistant Professor at the University of Inns-
bruck, Austria. His research interests include performance mod-
eling and optimization of parallel and distributed systems, ser-
verless computing, cloud engineering, and cloud federation. He
received his Ph.D. in computer science from Ss. Cyril and Me-
thodius University, Skopje, North Macedonia, where he was an
Assistant Professor (2013–2017). He received the IEEE Cloud
Summit best paper award in 2022.

