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Abstract. Speaker verification aims to verify whether an input speech corresponds
to the claimed speaker, and conventionally, this kind of system is deployed based
on single-stream scenario, wherein the feature extractor operates in full frequency
range. In this paper, we hypothesize that machine can learn enough knowledge
to do classification task when listening to partial frequency range instead of full
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frequency range, which is so called frequency selection technique, and further pro-
pose a novel framework of multi-stream Convolutional Neural Network (CNN) with
this technique for speaker verification tasks. The proposed framework accommo-
dates diverse temporal embeddings generated from multiple streams to enhance the
robustness of acoustic modeling. For the diversity of temporal embeddings, we con-
sider feature augmentation with frequency selection, which is to manually segment
the full-band of frequency into several sub-bands, and the feature extractor of each
stream can select which sub-bands to use as target frequency domain. Different from
conventional single-stream solution wherein each utterance would only be processed
for one time, in this framework, there are multiple streams processing it in parallel.
The input utterance for each stream is pre-processed by a frequency selector within
specified frequency range, and post-processed by mean normalization. The normal-
ized temporal embeddings of each stream will flow into a pooling layer to generate
fused embeddings. We conduct extensive experiments on VoxCeleb dataset, and the
experimental results demonstrate that multi-stream CNN significantly outperforms
single-stream baseline with 20.53 % of relative improvement in minimum Decision
Cost Function (minDCF) and 15.28 % of relative improvement in Equal Error Rate
(EER).

Keywords: Deep learning, speaker verification, convolutional neural network, mul-
ti-stream, frequency selection
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1 INTRODUCTION

Deep learning has achieved outstanding success in various speech-oriented tasks,
such as auto speech recognition [T], 2], speaker recognition [3], 4, B, 6] and speaker
diarization [7, §], etc. The deep learning paradigm is addressed to extract highly
abstracted representations by means of well-designed neural networks based on the
feed-in data. Most commonly, there are three scenarios to train neural network in
deep learning, which are supervised learning [9], semi-supervised learning [10] and
unsupervised learning (or, more precisely, self-supervised learning) [I1], respectively.
In addition, supervised learning with abundant labelled data is the most widely used
scenario [12], which is also the scenario used in this paper.

Speaker recognition is the field of recognizing speaker identities based on their
voices. In general, it can be clarified into either

1. speaker verification or

2. speaker identification.

Speaker verification aims to answer the question “is it from certain speaker?” with
single utterance or “are they from the same speaker?” with pairwise utterances.
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Speaker identification is used to answer the question “who is speaking?” among
a set of enrolled speakers. Speaker verification is one case of biometric authenti-
cation, where user provides their biometric characteristics in form of voiceprint as
passwords. The greatest challenge of the speaker verification task is the effective
usage of datasets obtained from the real world under noisy and unconstrained con-
ditions [I3]. In this paper, we aim to address this challenge and propose a new
framework to extract robust speaker embeddings.

1.1 Frequency Selection

Normally, the features used for training and testing are extracted in full frequency
band, and they are usually low dimensional. As features play an important role
in speaker verification system, if we use just partial frequency range instead of full
frequency range, will the system perform equally well? Following this assumption,
we first segment the full-band into several sub-bands using a frequency selector,
e.g., low frequency sub-band and high frequency sub-band, and use these features
to train several single-stream systems respectively, eager to witness the impact of
frequency domain on system performance. The feature extractor can select which
sub-bands to use as a target frequency domain to generate frame-level features, and
we call this idea as frequency selection.

1.2 Resolution and Problem Statement

We hypothesize that machine could dramatically benefit from our proposed fre-
quency selection technique. On the other hand, Convolutional Neural Network
(CNN) is one kind of widely used neural networks in image recognition. More
recently, CNN is introduced to speaker recognition and achieves competitive re-
sults [B] [6], compared with the most famous Time-Delay Neural Network (TDNN)
and its variations [T4]. Despite demonstrating encouraging outcomes, CNN for
speaker verification is remaining an open topic, which requires more efforts to achieve
breakthrough. By investigating various ways of doing so, we bridge frequency selec-
tion and CNN, and propose a new framework of multi-stream CNN.

However, this approach may prompt some questions: Why to use multi-stream
if single-stream can offer us a high enough accuracy? Can machine learn enough
knowledge to handle classification task by only listening to partial frequency range?
Demonstrated by our experimental results, these are part of questions we are going
to delve into and find out answer in this paper.

1.3 Contributions

Most of the speaker verification systems are deployed based on single-stream within
full frequency range. To the best of our knowledge, this paper is the first to investi-
gate the impact of frequency domain and to improve system performance by means
of frequency selection. Our contributions are as follows:
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1. We explore the performance of neural network by feeding in “partial” features
extracted from speech within sub-bands of frequency instead of conventionally
used full-band. And we find that machine can perform equivalently well in some
sub-bands, which are also beneficial to improve the performance of multi-stream
system.

2. We propose the idea of frequency selection, and a novel framework of multi-
stream CNN based on it for speaker verification.

3. We make our work open source, and it is available to download at https:
//github.com/ShaneRun/multistream-CNN.

1.4 Structure of This Paper

This paper is organized as follows. We review the related work in Section [2] Sec-
tion [3] describes our proposed method in detail. Section [] presents experiments for
pairwise verification, which consists of dataset, training and results. We also make
a comprehensive comparison in this section to demonstrate the efficacy and under-
stand the influence of the frequency selection. Section [p| contains discussion and
future work. Section [fl is the conclusion of our work.

2 RELATED WORK

Most of the works done so far on speaker verification are based on a single-stream
framework as illustrated in Figure [ In general, it is comprised of train process
(including validation) and test process, and can be classified into several modules,
including front-end, encoder, back-end, loss and similarity/score. The train process
is to tune network parameters of the encoder using abundant labelled data. After
training, the back-end and loss module are not used any longer, whereas the shared
block (including front-end and encoder), which is enclosed by imaginary line, will
be inherited by the test process. The test process is to make a decision on whether
or not the utterance pair is from the same speaker.

The front-end module, or rather the feature extractor, is used to extract quality
frame-level features for subsequent signal processing by converting acoustic wave-
form into a relatively lower dimensional representations, such as the well known
Mel Filter Bank Energies (MFBE) [I5] [16] and Mel Frequency Cepstral Coeffi-
cients (MFCC) [I7, I§]. The encoder is used to extract unique speaker embed-
dings in utterance-level through the deep neural network, which is known as iden-
tity vector, e.g., “i-vector” [19], “x-vector” [9], and “r-vector” [20]. The back-end
module is for the post-processing of speaker embeddings in order to enlarge inter-
class distance and reduce intra-class distance. The most popular approaches for
back-end processing contain the Gaussian back-end model [21], Probabilistic Linear
Discriminant Analysis (PLDA) [22], and neural-based model [23]. The loss mod-
ule is used only in the training phase and plays an important role because it is
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Figure 1. A schematic illustration of a speaker verification system consisting of the train
process and test process. The train process is to tune the parameters of the encoder
in order to minimize the loss using back propagation. The test process is to decide on
whether to accept or reject under the tested pair of utterances from the test set.

actually defining the goal function. In [6], extensive evaluations of the most pop-
ular loss function, including softmax loss, angular softmax loss, triplet loss and
angular prototypical loss, etc., are presented, and it is also demonstrated that
metric learning objectives outperform classification-based losses. The similarity
module generates probability or score based on the embeddings pair by adopt-
ing Euclidean distance or Cosine similarity, and then decides on the accept or re-
ject.

Over the years, multi-stream approach has attracted a lot of attentions in the
deep learning field, such as Computer Vision (CV) [24, 25 26] and Automatic Speech
Recognition (ASR) [27, 28| 29, 30, B, 32, 33| B4}, 35, 36} B7]. [24] and [25] both pro-
pose a multi-stream CNN architecture to recognize human actions and gestures.
[24] is implemented by combining novel human-related streams containing one ap-
pearance and one motion stream with the traditional streams. Whereas [25] decom-
poses the original image into several equal-sized streams and learn representations
by a CNN for each stream. Then the features learned from all streams are fused into
a unified feature map, which is subsequently fed into a neural network to recognize
gestures. In [26], a multi-stream framework, which is comprised of motion stream,
spatial stream and structural stream, is designed for unmanned aerial vehicles video
aesthetic quality assessment.

In [27], a novel effort to estimate word error rate uses a multi-stream end-to-end
architecture based on a combination of four independent streams which deal with de-
coder, acoustics, textual and phonotactics features in parallel. [28] 29, B0, 31] all em-
ploy several parallel streams by using audio-visual strategy. The reason behind these
approaches is to address the problem of speech recognition by leveraging visual infor-
mation to improve the performance of ASR. Nevertheless, [32, 33, [34, [35, 36, 37] aim
to capture diverse information from audio only for end-to-end ASR. For instance,



824 W. Yao, S. Chen, J. Cui, Y. Lou

[32] presents a framework based on joint attention with multiple audio streams
in parallel. More practically, to address the problem of massive computation and
memory requirements during training resulting from increasing number of streams,
[33] introduces a two-stage training scenario for end-to-end ASR, where the training
of the feature extractor and the attention fusion module is processed in separated
stages.

It can be perceived that multi-stream framework is successfully used in ASR
inspired by observing multiple streams in parallel. However, there is still limited
research on speaker verification tasks. To the best of our knowledge, [34] is the
most related work done so far on the speaker verification task, but in this work,
the multiple streams are generated after feature extraction based on the trained
intelligibility likelihood model. In addition, it only uses multi-stream in the test
process. On the contrary, in our work, we first form streams by selecting the original
speech signal in the frequency domain, and then design our framework to make use
of multiple speech streams in both training and test processes.

3 PROPOSED METHOD

In this section, we propose a multi-stream framework using three streams processing
in parallel for the speaker verification task. We present design details of all mod-
ules containing frequency selection, acoustic features, ResNet-34 based encoder, loss
function and similarity.

3.1 Diagram of Framework

The proposed framework of multi-stream CNN is illustrated in Figure 2l Frequency
full-band (FB) is segmented into two sub-bands after frequency selector, includ-
ing Low Frequency (LF) sub-band and High Frequency (HF) sub-band. The same
speech signal is processed by different streams in parallel, namely FB-stream, LF-
stream, and HF-stream, respectively. In our proposed framework, FB-stream serves
as a general encoder because it listens to the full frequency band, whereas LF-stream
and HF-stream encoders serve as specialized encoders because they focus on listen-
ing to LF-band and HF-band of input speech. Even though the overall performance
of LF-stream or HF-stream is inferior to FB-stream (this is also demonstrated by
our experiments in the next section), they can still contribute to the performance
of the proposed multi-stream system, mainly because they are better at extract-
ing partial characteristics, so that the fused speaker embeddings can be more ro-
bust.

The shared block of each stream has the same structure but different in pa-
rameters. After temporal embeddings are extracted by all streams, they are then
mean-normalized, and subsequently fed into a pooling layer to generate fused or
final embeddings.
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Figure 2. Proposed framework of multi-stream CNN. Shared block (FB), Shared block
(LF) and Shared block (HF) have the same network structure.

Similar to conventional acoustic modeling, each stream encodes the acoustic
features into highly abstracted temporal embeddings as formulated in Equation (|1)):

¥ = Encoder® (i), s € {1,2,3}, (1)

where superscript s € {1, 2,3} is denoted as index for each encoder of corresponding
stream s (with 1, 2 and 3, for FB-stream, LF-stream and HF-stream, respectively),
@ is the input vector of chunk which is usually extracted with fixed length (2—4 sec-
onds) randomly from speech utterances (note that each stream use the same @), &
is the output vector of encoder which is denoted as temporal embeddings in this
article.

Then the fused embeddings in terms of 2} can be formulated as:

3
TR (2)
s=1

where kt(s) is the fusion weight for each temporal embeddings, and the definition of
s is the same as in Equation .

3.2 Frequency Selection

Normally, the acoustic features are obtained with a full-band of frequency. In this
article, we want to witness the machine’s capability to do speaker verification with
different sub-bands of frequency. We use a frequency selector on top of each stream,
and by doing so, the upper and lower limits of different sub-bands can be config-
urable.
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More specifically, the boundary between LF and HF sub-band is initially set to
1000Hz. The reason behind this setting is that the fundamental frequency of the
complex speech tone which is also known as the pitch or fy, lies below 500 Hz even
though it differs from person to person, whereas this range might extend approxi-
mately to 1000 Hz in some cases [38]. The overview of our frequency segmentation
is shown in Figure

Full-band

< A
Y »

1000
0 8000 Frequency (Hz)
LF sub-band

Figure 3. Frequency segmentation

We implement frequency selection in PyTorch [39] by using a class called “tor-
chaudio.transforms.MelSpectrogram”, which is designed to create MelSpectrogram
for a raw audio signal. In practice, we can adjust minimum frequency (f,, default
value is 0) and maximum frequency (fyaz, default value is half of the sampling rate)
in our training script so that frequency selection will be employed.

3.3 Acoustic Features

The most common forms of acoustic features are Mel Filter Bank Energies (MFBE)
and Mel Frequency Cepstral Coefficients (MFCC). The procedures for computing
of MFBE and MFCC features are similar, where in both cases the speech signal is
first pre-processed by a pre-emphasis filter; then it is segmented into frames with
overlapping and all frames are applied with a window function (normally Hamming
window) in order to reduce spectrum leakage; afterwards, each frame goes through
a Fourier transform to calculate filter bank energies (or power spectrum). To obtain
MFCC, a Discrete Cosine Transform (DCT) is applied to the filter bank energies
in order to retain the resulting coefficients, whereas the other coefficients will be
discarded [40]. The reason for discarding the other coefficients is that they represent
fast changes in the filter bank coefficients and these fine details seldom contribute
to the system performance.

Despite the huge contribution of MFCC to speech-related tasks, there is some-
thing wrong with it as mentioned above: it requires an extra step called DCT to
decorrelate coefficients of filter bank energies. Since DCT is an additional linear
transform, some information in highly non-linear speech signals will be discarded
undesirably. For this reason, MFBE is becoming increasingly popular due to rapid
growth of end-to-end techniques using deep learning, because it can provide more
information than MFCC for neural networks to delve into [15], [T6], 4T].
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We use 40-dimensional MFBE [42] as acoustic features, with a Hamming window
of 25 ms width and 10 ms step both for traning and testing. We use mel scale fbanks
function in the torchaudio recipe [43]. The triangular filters are placed non-linearly
on the mel scale, as depicted in Figure @l The chunk length is extracted randomly
from each utterance, and is fixed as 2 seconds and 4 seconds for training and testing,
respectively.

1.00 ~

0.75 A

0.50 A
0.25 A \

0.00 A

Flters
Coefficient

Frequencies Frequencies

Figure 4. Mel filters configuration of Torchaudio [43]

3.4 ResNet-34 Based Encoder

ResNet, short for the Residual Network, is a form of CNN introduced in [44], and
achieves extreme success in the field of image recognition. The basic idea of ResNet
is to alleviate the problem of gradient vanish or explosion in training very deep neural
networks by using residual blocks with skip connections. The skip connections
behave as shortcut paths for gradient to flow through alternately, and allow the
higher layer to learn the identity functions directly so that it can perform not worse
than the lower layer.

For the last few years, some work has been done to introduce ResNet to the
field of speaker recognition, and achieves encouraging results [B] [6], compared with
TDNN and its variations [I4]. We assume speaker recognition is somewhat similar
to the image recognition, and therefore ResNet, which is very popular in image
recognition, might also be widely used in this field.

We use ResNet-34 [44] with 34 hidden layers as the network structure of the
encoder, as shown in Table[I] The total frames are 200 for each chunk, therefore, the
size of the input feature is 40 x 200. The network consists of 34 convolutional layers
with batch normalization and Rectified Linear Units (ReLU) activation function
applying to each of them, and these layers can be grouped into Convl, Resl, Res2,
Res3, Res4 and Flatten, respectively. The output of the encoder is 512-dimensional
speaker embeddings.
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Layer Group | Kernel Size Stride®* | Output Size
Input - - 40 x 200 x 1
Convl 3x3x16 1x1 40 x 200 x 16
[(3x3x16 ]
Resl _3><3><16_X3 1x1 40 x 200 x 16
[(3x3x32]
Res2 _3><3><32_X4 2% 2 20 x 100 x 32
[(3x3x64 ]
Res3 _3><3><64_X6 2% 2 10 x 50 x 64
[ 3 x3x128
Res4 | 3x3x128 X3 | 2x2 5 x 25 x 128
Flatten — - 5 x 2048
ASP - - 4096
Linear 512 512

aFor stride that is not 1, it is only performed on the top layer
of each residual block for down sampling, whereas the stride
inside residual block is always 1.

Table 1. Network structure of ResNet-34 based encoder. ASP: Attentive Statistics Pool-

ing.

3.5

Loss Function

The los function plays an important role in training neural networks because it
estimates the error for the current state, which is then used to update the weights of

the
for

model through gradient descent and back propagation. By doing it repeatedly
massive times, the overall loss of the model tends to be minimized which is

usually expected to be the global minimum.

Softmax Loss. The Softmax loss is one typical form of the loss for multi-class

classification tasks, and it can accept many inputs and calculate probability for
each one. The Softmax loss (in terms of L,,,) consists of a Softmax function
followed by a cross-entropy loss, which is formulated as Equation (3)):

W ac,eryl

= TN Z IOg &1, (3)

where W and b are the weight and bias vector of last layer of encoder, respec-
tively. C' is the total amount of classes (or speakers), and N is the number
of utterances of each mini-batch from different speakers with embeddings z;
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(extracted by encoder as defined in Equation (1)) and its corresponding la-
bel Yi-

Angular Prototypical Loss. Similar to the original prototypical loss, the an-
gular prototypical loss uses the same batch formation, whereas the similarity
metric S is changed from distance-based to cosine-based as shown in Equa-

tion @D:

—

Sik =w X cos(Ty, C) + b, (4)

where w and b are learnable weight and bias, ¢ is the centroid (or prototype)
as shown in Equation (5)):

] Mol
Ck = M_1 Z Lk,m s (5)

m=1

where M is the utterances number for every speaker inside mini-batch.

The angular prototypical loss is then derived as:
1 e
Lap:—NZIOgNig. (6)

Softmax + Angular Prototypical Loss. The ultimate goal of designing loss
function is to enlarge inter-class distance and meanwhile reduce inter-class dis-
tance. To this end, we propose a combined form of Softmax loss L, and Angular
Prototypical loss L, as fused loss function of our work, which is illustrated in
Equation @:

L = Lgy+ Lap. (7)

3.6 Similarity

Similarity is the scoring module used to compute the score based on the pair of
speaker embeddings. The score is used subsequently to decide on accept or reject.
Since open-set speaker recognition is essentially a metric learning problem, the Eu-
clidean distance [6] is more preferred as metric of similarity than the cosine similarity
(measures the cosine of angle between two high-dimensional vectors) [H45].

The Euclidean distance between two speaker embeddings is formulated as:

D
distance :H (l‘_}l - x_'fQ) ||2: Z (mflyd - xf27d)27 (8)
d=1

where 77, and 27}, are the fused embeddings of each speaker inside pair, D is the
dimension of embeddings which is designed to be 512 in this article.
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4 EXPERIMENTS

In this section, we present the implementation details of our proposed framework.

1. Firstly, we introduce the VoxCeleb dataset used for training, validation and
testing.

2. Secondly, we present our training details and propose a practical training strat-
egy inspired by [33].
3. Thirdly, we introduce the evaluation metrics used in our work.

4. And finally we describe our experimental results.

4.1 Dataset

Speaker verification faces many challenges in real situations related to ambient noise
and short speech frame availability. Therefore, using a dataset generated from the
real world for experiments is more meaningful. For this reason, we select VoxCeleb
dataset for training and testing in our work. The VoxCeleb dataset is obtained
from the real world, in which the speakers span a wide range of different ethnicities,
accents, professions and ages. The speech of this dataset is shot in a large number
of challenging auditory environments. Most crucially, all speech is degraded with
the real world noise, consisting of background chatter, laughter, overlapping speech,
and room acoustics, and there is a range in the quality of recording equipment
and channel noise [6]. Moreover, the utterance length of the VoxCeleb dataset is
distributed randomly from 4 seconds to 20 seconds.

The VoxCeleb dataset is released by the VGG group of Oxford University in two
stages, as VoxCelebl 7] which contains 153 516 utterances (352 hours in total) from
1251 celebrities, and VoxCeleb2 48] which contains 1 128 246 utterances (2442 hours
in total) from 6112 celebrities. Moreover, there is a challenge organized annually
based on this dataset in order to witness how well current methods can recognize
speakers from speech obtained “in the wild” since 2019 [13], 49)].

The datasets used in our work are listed in Table Bl We use “VoxCeleb2-Dev”
for training without data augmentation, and cleaned version of “VoxCelebl-Test”
(also referred to as “VoxCeleb1-O”) [46] for validation and testing, which contains
37720 testing pairs.

4.2 Training

Our work is implemented in PyTorch framework with details showed in Table[3 All
encoders are trained in a single GPU platform with 11 GB memory for maximum
100 epochs. In order to reduce class imbalance, we apply random sampling with
a maximum value of 100 utterances for each speaker in the training set. Additionally,
we use the largest batch size with 400 that fits on a GPU, and the training for one
stream takes approximately three days.
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Stage Dataset # of speakers | # of utterances
Training VoxCeleb2-Dev?® 5994 1092009
Validation | VoxCelebl-Test? 40 4874
Testing VoxCeleb1-Test 40 4874

aDevelopment set of VoxCeleb2, which has no overlap with the
identities in the VoxCelebl. PTest set of VoxCelebl, cleaned ver-
sion [46], the amounts of testing pairs is 37 720.

Table 2. Dataset for training, validation and testing

Item Value

Deep learning framework | PyTorch v1.5.1

GPU GeForce GTX 1080 T1I (single)
Optimizer Adam

Batch size 400

Maximum epochs 100

Initial learning rate 0.001

Learning rate decay 0.95 per 10 epochs

Table 3. Training details overview

As the streams increased, the conventional training approach where all encoders
are trained in parallel, is hard to implement due to massive computation and memory
requirements. In order to address this problem, we adopt a more practical training
approach inspired by [33], which consists of “Stage 1: Sequential training of each
stream” and “Stage 2: Searching for optimal fusion weight”.

Stage 1: Sequential training of each stream. In this stage, each stream will
be trained in sequential mode. Before training different streams, we only need
to regulate the frequency range which is designed in Figure Bl In this way,
training of a large network becomes much more simple: to repeat the training
of a relatively smaller network multiple times. After sequential training, the
well-trained encoders will be deployed to the multi-stream system, as shown in
Figure 2

Stage 2: Searching for optimal fusion weight. Based on the scores output
of each stream, we propose a simplified algorithm to address the problem of
searching for optimal fusion weight. As shown in Algorithm|[I} the scores output
of each stream is normalized in advance using t-Distributed Stochastic Neighbor
Embedding (t-SNE) approach [50] and then used as input for this algorithm. kt(l)
is gradually reduced with each step. For every step of k:gl), kt@) is also gradually
reduced with step, and repeat calculating minDCF until k;t(Z) is smaller than
the minimum weight K,,;,. The return value will be used to update the local
optimum, which is defined as optimal weight under given k‘,gl). Local optimum
will be used for updating global optimum for every step of kt(l) repetitively until
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kt(l) is smaller than minimum weight K,,;,. In our experiment, step and K,
are set as 0.01 and 0, respectively.

Algorithm 1 Searching for Optimal Fusion Weight
Require: t-SNE normalized scores scores of each stream s € {1, 2,3}
Ensure: optimal fusion weight {k,gl), k,EQ), k,@}
ke 4= [1,0,0)
repeat
repeat

B e (Lo K" - k)

calculate minDCF based on scotes and k_;
update local optimum

k:t@) — (kt(l) — step)

until £ S K
update global optimum
k,ﬁl) — (k,gl) — step)

until £V € Ko,

4.3 Evaluation Metrics

For a speaker verification system with pairwise input, it is naturally a binary clas-
sifier, and the evaluation metrics are described in this section. The decision result
distribution is illustrated in Figure , which is comprised of True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN). The first term (True
or False) is the result of prediction. If the prediction fits the ground truth, then
the result is True, otherwise, the result will be False. The second term (Positive or
Negative) is the category of ground truth. If the utterance pair is from the same
speaker, then the ground truth is Positive, otherwise it will be Negative. Based on
Figure ] we introduce two common kinds of evaluation metrics, which are Equal
Error Rate (EER) and minimum Decision Cost Function (minDCF).

EER. This is a widely used metric to determine the threshold value when false
acceptance rate Fra and false rejection rate Erg are equal.

Nrn
Epg = ——N 9
FA™ Npx + Nyp 9)
Npp
Epp= —1tf 10
Fr Npp + Nry (10)

where Npy, Nrp, Npp and Npy are the number of False Negative, True Positive,
False Positive and True Negative, respectively.
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Figure 5. Distribution map of decision result. Ground truth is the label, and prediction
is the score generated by the classifier.

minDCF. National Institute of Standards and Technology (NIST) has defined an-
other metric called Decision Cost Function (DCF) in order to compare different
systems at an interesting operating point [51]. DCF is designed to evaluate the
overall cost on making decision errors of both missed detection and false alarm,
and has served as a criterion in every NIST Speaker Recognition Challenge with
some parameter adjustments in its definition [52].

DCF = CFRPTargetPFR+CFA(1 _PTarget)PFAa (]-1)

where Crr (Chiss in [51]) and Ppp are cost and probability of missed detection;
Prorge is a priori probability of the specified target speaker; Cra (Craiseaiarm
in [51])and Pry4 are cost and probability of spurious detection.

In our experiment, Crpr, Cra are set as 1, and Prgqe; is set as 0.05.

4.4 Results

We conduct several experiments to check the efficacy our proposed framework.
Firstly, we build the state-of-the-art baseline as shown in Table [I] and then com-
pare the performance of our baseline system with other existing works using both
minDCF and EER metrics. Secondly, we describe our experimental results on fre-
quency selection by adjusting the frequency range and training our baseline system
repetitively for several times. Moreover, performance improvement of our proposed
multi-stream framework is also illustrated. Finally, we choose some typically used
feature dimension reported in literatures and repeat our experiments as done in 40-d
feature dimension to see the generalized improvement level of our proposed method.

Our baseline system. As shown in Table[d we compare our baseline system with
I-Vectors [47, B3], X-Vectors [9], VoxCelebl’s approach [A7] and VoxCeleb2’s

approach [48].
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The term I-Vectors was coined around 2009/2010, where the “I” stood for “Iden-
tity” [52], and became widely used in speaker verification from then on. This
approach uses one component to model variability of both speaker and chan-
nel, and extract sole low-dimensional representations of utterances. Since it is
not a neural network based encoder, network type and loss function are not

applicable in Table £

W. Yao, S. Chen, J. Cui, Y. Lou

Train ] ] EER
System Sot Feature Encoder Dim. | minDCF (%)
I-Vectors b
7, 53] Vox1 | super vector® | — 400 | 0.73 8.8
ﬁvemrs Voxl | 24-d MFBE | TDNN 512 | 0.393° | 4.16
J.S. Chung
otal gy | Vox1 | spectro-gram | VGG-MCNN | 1024 | 0.75 10.2
J.S. Chung
ctal | VX1 | spectro-gram | VGG-M CNN 256 | 0.71 7.8
A. Nagrani ] ‘ ] ]
ctal gE | VOX2 | spectro-gram | ResNet-34 512 | 0.549 4.83
A. Nagrani
ot al. fig] | YOX2 | spectro-gram | ResNet-50 512 | 0.429 3.95
Xie )
ot al. [] Vox2 | spectro-gram | Thin-ResNet-34 512 | 0.35 3.22
Y. Jung Vox2 | 64-d MFBE | ResNet-34 512 | 0.245 9,61
et al. [54]
S. M. Kye Vox2 | 40-d MFBE ResNet-34 512 | 0.234 2.08
et al. [55]
Our Vox2 | 40-d MFBE | ResNet-344 512 | 0.210 | 2.73
baseline

aWork is done in [47] using method of [53]. PA supervector is composed by stacking
the mean vectors from a Gaussian Mixture Model (GMM). °Prgpyge is 0.01. dThe
depth of our encoder is one quarter of original ResNet-34. *AP: Angular Prototype.

Table 4. Comparison of speaker verification results on VoxCeleb1-Test

In [9], concept of X-Vectors was first proposed by using deep neural network
to capture speaker characteristics, and it quickly became the dominating approach
The neural network used in X-Vectors is also called as
Time-Delay Neural Network (TDNN), which is naturally a variation of 1-D CNN.
Additionally, X-Vectors is usually post-processed by PLDA back-end for satisfying

for speaker recognition.

results.

In [47], VoxCelebl’s approach based on VGG-M CNN is proposed. Different
from X-Vectors and our baseline system, spectrograms is used as feature, and con-

trastive loss is designed as loss function.




Multi-Stream CNN with Frequency Selection for Robust Speaker Verification 835

In [48], VoxCeleb2’s approach based on ResNet is proposed by using VoxCeleb2
as train set. Similar to our baseline system, speaker verification is treated as a case
of metric learning, therefore Euclidean distance is applied as criteria of similarity.
Both ResNet-34 and ResNet-50 are studied, and the performance of ResNet-50 is
better than ResNet-34.

Details of our baseline system is depicted in Section[8] One notable thing is that
almost all reference works have no description on the frequency range, as they might
all use full frequency range. This is common knowledge, which is also the default
setting of our baseline system. However, this common knowledge might also block
us from discovering more useful and interesting things, and that is why we explore
the technique of frequency selection and multi-stream.

Frequency selection and multi-stream. The learning curves of our baseline en-
coder and other six encoders within different frequency range are illustrated in
Figure @ The curves contain three plots for each encoder: Figure training
loss (the smaller, the better), Figure [6 b)| top-1 accuracy (the higher, the better),
and Figure validation EER (the smaller, the better).

We design three sub-bands for both LF and HF sub-bands, which are LF1
([20,1000] Hz), LF2 ([20,2000] Hz), LF3 ([20, 4 000] Hz), HF1 (]2 000, 8 000] Hz),
HF2 ([1000,8000] Hz) and HF3 ([500, 8 000] Hz), respectively. It can be per-
ceived from the curves that the baseline encoder within full frequency range has
the best performance, whereas LF1 encoder has the worst performance. What
is more, we can further conclude that the wider the frequency range, the better
the system performance will be for single-stream system.

7 100 12

90
10 4
80+
70 4

60 1

=
" > g E
8 s 509 —— [20,8000]Hz | g & °©
3 g a0 — [20,4000]Hz | W W
® —— [500, 8000] Hz 44
2 30 [1000, 8000] Hz
20 —— [2000, 8000] Hz 5
11 104 — [20, 2000] Hz
—— [20, 1000] Hz
0 ! | i | o ! i ; : o i | ! ;
0 20 a0 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch epoch
a) Training loss b) Top-1 accuracy c¢) Validation EER

Figure 6. Learning curves

The evaluation results of single-stream with different frequency range and multi-
stream with different combinations of single streams are depicted in Table[f] It can
be perceived that the combination of FB-stream, LF2-stream and HF2-stream has
the best performance. In addition, it is quite interesting that the combination of
top-3 (FB-stream, LF3-stream, HF3-stream) is not the best choice, and the reason
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behind this phenomena might be that only the proper frequency range instead of
wider frequency range can offer relatively the most benefits. Moreover, LF sub-band
and HF sub-band, which is initially designed in Figure [3| is better to be adjusted
from non-overlapping to overlapping. We further conduct more experiments un-
der different dimension of input feature based on adjusted frequency segmentation,
where LF and HF sub-band are designed to be [20,2000] Hz and [1000, 8 000] Hz
respectively.

Stream Info 5;2‘;26&3) minDCF ?(713 )R Optimal Weight®
FB [20, 8 000] 0.2095 | 2.7274 -
LF1 [20, 1 000] 0.4784 | 6.9301 -
LF2 [20, 2 000] 0.3622 | 4.9463 -
LF3 [20, 4 000] 0.2511 | 3.3454 -
HF1 [2000, 8 000] 0.3420 | 4.7920 -
HF2 [1000, 8000] 0.2699 | 3.6326 -
HF3 [500, 8 000] 0.2609 | 3.4677 -
FB + LF1 + HF2 [20, 8 000] 0.1694 | 2.331 [0.37, 0.35, 0.28]
FB+ LF2+ HF1 [20, 8 000] 0.1667 | 2.356 [0.40, 0.40, 0.20]
FB + LF2 + HF2 [20, 8 000] 0.1665 | 2.297 | [0.39, 0.35, 0.26]
FB + LF2 + HF3 [20, 8 000] 0.1717 | 2.339 [0.39, 0.35, 0.26]
FB + LF3 + HF2 [20, 8 000] 0.1695 | 2.313 [0.37, 0.33, 0.30]
FB + LF3 + HF3 [20, 8 000] 0.1737 | 2.383 [0.48, 0.26, 0.26]

aFrom the left to the right, the weights are for FB-stream, LF-stream, and
HF-stream, respectively.

Table 5. Evaluation results of single-stream and multiple-stream

The Detection FError Tradeoff (DET) curves of FB-stream, LF-stream
([20,2000] Hz), HF-stream ([1 000, 8 000] Hz) and Multi-stream are shown with red
dash line, yellow dash line, blue dash line and green solid line, respectively, in
Figure [} It can be perceived that our proposed multi-stream framework has a
comprehensive improvement compared with our baseline system.

Improvement vs. feature dimension. We then conduct experiments by regulat-
ing the feature dimension to 32-d and 80-d, looking forward to check the efficacy
of our proposed method in other dimension. The experimental results are illus-
trated in Table |§|, apart from feature dimension and batch size (the larger the
feature dimension, the more memory requirement), all other configuration are
the same for both training and testing. The batch size for training under feature
dimension with 32-d and 80-d are 480 and 200, respectively.

It can be found from Table [f] that there are significant improvements in both
minDCF and EER metrics from the low-dimensional to high-dimensional feature.

One thing we need to point out is that if the dimension of full-band input data
is n, then the dimension of the multi-stream data will be 3 X n as there are three
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Figure 7. Curves of Detection Error Tradeoff

Feature Dim. | Stream Info ® | minDCF | EER (%) | Optimal Weight?
32-d FB-stream 0.2316 3.077 -
LF-stream 0.4108 5.346 -
HF-stream 0.2767 3.899 -
Multi-stream 0.1805 2.489 | [0.36,0.31,0.33]
40-d FB-stream 0.2095 2.727 -
LF-stream 0.3622 4.946 -
HF-stream 0.2699 3.633 -
Multi-stream 0.1665 2.297 | [0.39,0.35,0.26]
80-d FB-stream 0.1780 2.297 -
LF-stream 0.3272 4.438 -
HF-stream 0.2380 3.090 -
Multi-stream 0.1367 1.946 | [0.36,0.32,0.32]

aFB-stream:  [20,8000]Hz, LF-stream: [20,2000]Hz, HF-stream:
[1000, 8000] Hz. PFrom the left to the right, the weights are for FB-stream,
LF-stream, and HF-stream, respectively.

Table 6. Evaluation results on different feature dimension

encoders with different input data. This fact should be taken into account when
evaluating the results of the system.

Moreover, it can be seen from Table [6] that simple increasing the dimension of
the input representative vector from 40 to 80 in the full-band system gives the same
improvement in EER as the proposed multi-stream approach with the 3 x 40 =
120 dimension. So the simple increasing the dimension seems to be more effective
than the proposed approach. For this reason, we did more experiments to compare
the performance between the multi-stream system and the full band system under
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the same feature dimension. We tried several full band systems with the same
dimension of representative vector as the sum of the input data of the three ensemble
subsystems. The experimental results are illustrated in Table[7]l It can be seen from
Table [, that simple increasing the dimension of the input representative vector
from 96 to 240 in the full-band system gives an improvement in both minDCF
and EER. The full band system with dimension 96 even outperforms the multi-
stream system with dimension 3 x 32 in both minDCF and EER. However, when
dimension increases to 120, multi-stream system outperforms full band system in
minDCF (minDCF is a more important evaluation metric than EER). Moreover,
when dimension increases to 240, the advantages of multi-stream system becomes
more obvious. So the proposed approach is more effective than simple increasing the
dimension when the dimension is larger than the threshold, whereas less effective
when the dimension is lower than the threshold. For this system, the threshold is
around 120.

Feature Dim. | Stream Info* | minDCF | EER (%) | Optimal WeightP
3 x 32-d Multi-stream 0.1805 2.489 | [0.36, 0.31, 0.33]
96-d FB-stream 0.1740 2.287

3 x 40-d Multi-stream 0.1665 2.297 | [0.39, 0.35, 0.26]
120-d FB-stream 0.1720 2.245 -

3 x 80-d Multi-stream 0.1367 1.946 | [0.36, 0.32, 0.32]
240-d FB-stream 0.1619 2.222 -

2FB-stream:  [20,8000]Hz, LF-stream: [20,2000]Hz, HF-stream:
[1000,8000) Hz. PFrom the left to the right, the weights are for FB-
stream, LF-stream, and HF-stream, respectively.

Table 7. Evaluation results with the same feature dimension

The quantitative comparisons are illustrated in Figure [§ and Figure[0] Figure
shows the relative improvement of minDCF metric, where the left y-axis is evalu-
ation result of minDCF with a different feature dimension, and the right y-axis is
the percentage of a relative improvement of minDCF. The “original” means single-
stream with the full frequency range, and it is displayed with “gray” color. The
“multi-stream” means our proposed multi-stream with the full frequency selection,
and it is displayed with “dark green” color. The red dash line illustrates the per-
centage of a relative improvement, and the value are 22.63 %, 20.53 %, and 23.20 %
for 32-d, 40-d and 80-d, respectively.

Figure [ shows the relative improvement of EER metric, where the left y-axis
is evaluation result of EER with different feature dimension, and the right y-axis
is the percentage of the relative improvement of EER. The “original” and “multi-
stream” are displayed with “gray” and “olive” color, respectively. The red dash line
illustrates the percentage of the relative improvement, and the value are 19.11 %,
15.77%, and 15.28 % for 32-d, 40-d and 80-d, respectively.
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Figure 9. Relative improvement of EER

One remarkable thing is that the relative improvement of EER is not as large
as minDCF because the objective of our proposed optimal weight search is based
on minDCF. However, this algorithm can be applied to optimal weight search based
on EER with few changes.

You might be thinking this is somewhat similar to the ensemble scenario, and
wonder if it can outperform the fused system with different training methods, such as
initialization method? To answer this question, we conduct additional experiments
to make comparison between our proposed framework and the ensemble of three
full-bandwidth models with different initialization methods.

We select three different initialization methods for comparison, which are the
Kaiming method [56], Xavier method [57] and normal distribution. The experi-
mental results of minDCF and EER under different training epochs are illustrated
in Table [§ and Table [ respectively. The term “SS” denotes as a Single Stream,
whereas “MS” denotes as a Multiple Stream. For a fair comparison, we only change
the initialization method of three full-bandwidth models, and all other training con-
figurations remain the same. All five single stream systems are trained for 500
epochs and evaluated every 100 epochs.
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100 200 300 400 500
Epochs | Epochs | Epochs | Epochs | Epochs
SS-1: FB-Kaiming-Init* | 0.2028 | 0.1628 | 0.1688 | 0.1597 | 0.1606
SS-2: LF-Kaiming-Init 0.3620 | 0.3223 | 0.3256 | 0.3168 | 0.3125
SS-3: HF-Kaiming-Init 0.2574 | 0.2394 | 0.2237 | 0.2299 | 0.2195
SS-4: FB-Xavier-Init 0.2323 | 0.2144 | 0.1937 | 0.1825 | 0.1816
SS-5: FB-Normal-Init 0.3369 | 0.2933 | 0.2692 | 0.2611 | 0.2544
MS-1: SS-1, SS-4, SS-5 0.2193 | 0.1888 | 0.1819 | 0.1752 | 0.1722
Ours: SS-1, SS-2, SS-3 0.1609 | 0.1333 | 0.1381 | 0.1336 | 0.1310

System

aBaseline.

Table 8. Experimental results of minDCF under different training epochs

100 200 300 400 500
Epochs | Epochs | Epochs | Epochs | Epochs
SS-1: FB-Kaiming-Init?® 2.792 2.350 2.244 2.239 2.132

System

SS-2: LF-Kaiming-Init 5.109 4.212 4.133 4.143 4.042
SS-3: HF-Kaiming-Init 3.691 3.085 3.021 2.872 2.802
SS-4: FB-Xavier-Init 2.840 2.553 2.239 2.096 2.106
SS-5: FB-Normal-Init 4.578 3.844 3.649 3.376 3.260

MS-1: SS-1, SS-4, SS-5 2.813 2.420 2.256 2.175 2.157
Ours: SS-1, SS-2, SS-3 2.303 1.919 1.866 1.834 1.781

2Baseline.

Table 9. Experimental results of EER with different training epochs

The system “SS-1: FB-Kaiming-Init” is defined as baseline, “SS-2” and “SS-3”
are both initialized with Kaiming method and trained with partial bandwidth.
“SS-4” and “SS-5” are full-bandwidth models with different initialization method.
The system “MS-1” is the ensemble of “SS-17, “SS-4”, and “SS-5”, which is set to
be the comparison object.

It can be seen from the table that our proposed method has a significant im-
provement over the whole training period, whereas the ensemble version has almost
no improvement but slight degradation. The graphic comparison can be obtained
in Figure [I0] and Figure [[1} Since “MS-1” has no improvement, we only plot the
relative improvement of our proposed method as shown in Figure [[2]

The experimental results show that the ensemble of three full-bandwidth models
has poorer performance compared to single-stream baseline, whereas our proposed
framework has at least 16.3% and 16.5 % relative reduction in minDCF and EER,
respectively.
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It is obvious that applying frequency selection into speaker recognition with multi-
stream can improve the performance. But the disadvantage is also obvious due to
longer training time and larger network size.
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Figure 12. Relative improvement
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As a follow-up, can we come up with a trade-off design between size and perfor-
mance after investigating the probability of reducing size meanwhile yielding com-
petitive benefits? More generally, is frequency selection also effective using other
acoustic features such as MFCC, and other feature-extracting related techniques
such as amplitude modulation — frequency modulation (AM-FM) technique [58],
and other neural networks such as Recurrent Neural Network (RNN)? Furthermore,
since the MFBE feature is obtained on human perception experiments, is it possible
to find better features based on machine perception experiments? These are some
remaining questions for us to explore and answer in the future.

6 CONCLUSION

In this paper, we propose a novel neural network framework based on frequency
selection, namely multi-stream CNN, for robust speaker verification. The idea
behind this proposal is that the diversity in temporal embeddings across multi-
ple streams, where each stream process “partial” features extracted within a se-
lected frequency range in parallel, could enhance the robustness of acoustic mod-
eling and hence improve the overall performance. This approach can also be seen
as an ensemble of three different models with different bandwidths. It is com-
mon knowledge that ensembles of many models usually increase the performance.
Moreover, to address the problem of massive computation and memory require-
ments, we propose a more practical two-stage training method consisting of “Stage
1: Sequential training of each stream” and “Stage 2: Searching for optimal fusion
weight”.

To validate our proposed method, we conduct various training and testing ex-
periments using the PyTorch library based on the VoxCeleb dataset and make
a comprehensive comparison of the experimental results. The experimental re-
sults demonstrate the efficacy of our proposed method. The technique derived
in our paper can be treated as a variant of metric learning for speaker verifica-
tion.
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