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Abstract. Deep convolutional networks have been widely applied in image denois-
ing tasks with great success. However, many denoising models extract more feature
information by increasing the network depth, which does not fully utilize the shal-
low features, but also makes it difficult to obtain accurate noise information. In this
paper, we introduce a novel modified U-Net structure-based boosted dense attention
neural network (BDANet) specifically designed for image denoising. The convolu-
tional block within the encoding layer of BDANet incorporates dense connections
and residuals, effectively circumventing the vanishing gradient issue through feature
reuse and local residual learning. A boosting strategy is employed in the decoding
layer to augment residual information in the noise map. To adeptly process edge
details in images, BDANet deploys a polarized self-attentive mechanism to direct
the densely connected blocks for depth feature extraction. The network is trained
with Gaussian noise at random noise levels in the study to make it flexible to handle
images with a wide range of noise levels. In experimental comparisons involving ad-
ditive Gaussian noise, BDANet outperformed conventional denoising networks and
attained competitive results relative to state-of-the-art image denoising networks,
with an average improvement of approximately 1.03 dB in terms of PSNR values.
Visualization results show that the image after denoising by BDANet network is
sharper and richer in texture details than other methods.
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1 INTRODUCTION

Image denoising constitutes a pivotal and long-standing challenge in computer vi-
sion, primarily aimed at restoring high-quality images from their degraded, noise-
laden counterparts. This process is commonly utilized in image restoration [1],
image enhancement [2], and super-resolution [3], etc. As a critical preprocessing
step in advanced computer vision tasks such as image recognition [4], target detec-
tion [5, 6], and image segmentation [7, 8], the quality of denoised images bears direct
implications on subsequent tasks. To achieve superior denoising outcomes, a myr-
iad of traditional algorithms have been developed in recent years. Conventional
denoising methods employ image prior models based on the Bayesian perspective,
including non-local means (NLM) [9], Markov random field (MRF) [10, 11], block-
matching and 3D filtering (BM3D) [12], and weighted nuclear norm minimization
(WNNM) [13]. While these approaches have demonstrated reasonable denoising ef-
ficacy, they often exhibit limitations due to time-consuming optimization algorithms
and a reliance on manually-selected parameters, which increase model complexity.

As deep learning has advanced, researchers have explored the use of multilayer
perceptrons [14] and convolutional neural networks (CNNs) [15, 16, 17] for image
denoising. Learning-based denoising methods, with their enhanced modeling ca-
pabilities, network structure design, and parameter training, have surpassed prior-
based models in terms of performance. For instance, DnCNN [16] implements image
denoising with deeper CNN networks and surpasses previous traditional methods.
Building upon this foundation, subsequent models [18, 19] have incorporated tech-
niques such as residual learning and dense connections to increase network com-
plexity and improve performance. Additionally, denoising models like MWCNN [20]
and DHDN [21] have adopted the U-Net architecture [22] to facilitate multi-scale
feature extraction. Boosting algorithm-based denoising models [23, 24, 25] offer
a unique perspective on image denoising, iteratively enhancing image restoration by
extracting residual signals or eliminating noise residue [26]. However, the denoising
performance of boosting strategies alone remains inferior to that of deep learning-
based methods. In [27], the boosting algorithm is integrated into a deep learning
framework to achieve image denoising.

Despite the significant accomplishments of neural networks in image denoising,
they still exhibit certain limitations. As network depth increases, the potential for
gradient vanishing or exploding arises, which can lead to performance degradation
and diminished information capture capabilities. Many denoising models have dif-
ficulty in obtaining accurate noise information when extracting features, and also
ignore the edge information of images, resulting in over-smoothed images with lost
texture details after denoising. Existing denoising networks need to be trained
specifically for different noise levels and are not suitable for denoising a wide range
of noise levels.

In this paper, we propose a boosted dense attention neural network based on
U-Net hierarchical structure to solve the above problem. The BDANet structure
design is based on the U-Net network, and the convolution of the encoding layer is
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improved with densely connected noise extraction blocks to effectively avoid the gra-
dient disappearance problem. BDANet employs a global residual learning approach
to predict the residual noise of the noisy image, rather than predicting the denoised
image directly. Furthermore, a boosting strategy is implemented in the decoder to
extract residual noise information in a multi-scale fashion. To capture edge details
more effectively, the polarized self-attention mechanism [28] is incorporated into the
bottleneck layer for feature extraction, guiding the CNN in image denoising. Self-
integration [29, 30] and model integration [31, 32] techniques are applied in many
methods to improve the network performance, while the model integration technique
requires averaging the outputs of more than two independent networks, which is too
a tedious process, so we employ an efficient self-ensembling technique, generating
eight output images through rotation and flipping of a single input image, with their
average calculated to enhance output image quality.

The main contributions of the work in this paper are summarized as follows:

1. We propose a novel enhanced neural network for image denoising, building upon
the improved U-Net model. The network is trained with random Gaussian noise,
augmenting its adaptability to a wide range of noise levels. Modifications to the
encoding layer contribute to superior denoising performance.

2. The boosting strategy is implemented within the decoding layer, aiming to it-
eratively refine the information contained in noisy images and enhance residual
information extraction capabilities.

3. A polarized self-attention mechanism is incorporated in the proposed model to
obtain the edge information of the image, which enhances the expressiveness
of the denoising model. This leads to visually improved results compared to
traditional denoising models that produce indistinct edges.

4. To prevent loss of spatial details due to consecutive downsampling during the
sampling operation, strided convolution is used for downsampling instead of
simple max pooling.

2 RELATED WORKS

2.1 CNN-Based Image Denoising

In recent years, neural network-based methods have been introduced into the field of
image denoising and have demonstrated excellent denoising capabilities.
DnCNN [16] is the first model that successfully applied CNNs to image denoising
tasks. This model combines the ideas of residual learning [33] and normalization [34],
but its convolution kernel size is singular, which limits the extracted image features.
Zhang et al. [35] proposed the IRCNN model, which utilizes dilated convolutions
to increase the receptive field and incorporates the half-quadratic splitting (HQS)
algorithm. The common limitation of the aforementioned models is their inability
to handle unknown noise using a single model. To tackle this challenge, the fast and
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flexible denoising convolutional neural network (FFDNet) [36] is designed to train
models using noise feature maps with different noise levels, enabling the handling of
multi-level noise. However, the performance is not satisfactory when the noise level
is unspecified. Inspired by the FFDNet network, in this study, different levels of
noise are randomly added to the training dataset, enabling the trained single model
to adapt to a wide range of noise.

Ronneberger et al. [22] proposed the U-Net architecture, which is composed of
a top-down contraction path and a bottom-up expansion path connected by skip con-
nections. This design effectively captures contextual information and has recently
been applied to image denoising as well [37]. In DHDN [21], the convolution blocks
in the contraction and expansion paths are replaced with dense residual blocks,
doubling the number of feature maps at each layer of the network. Drawing on
the multi-scale feature extraction ability of the U-Net network and its potential to
decrease algorithm complexity, in this paper we improved the proposed denoising
method by combining the advantages of the DHDN network.

2.2 Boosting Algorithm

The Boosting Algorithm is a robust approach that incrementally improves results
by recursively using previous estimates as the input for the next step. It has been
successfully employed in the field of image denoising, demonstrated in studies [26,
27, 38]. Various strategies have been explored to improve the denoising ability while
preserving the original image information, including

1. the “twicing” technique [39], which iteratively filters the residuals to extract the
remaining parts, Osher’s iterative regularization [40], and the Talebi-Milanfar
strategy [25],

2. re-enhancement of the denoised image [24], and

3. iterative improvement of the signal-to-noise ratio, such as the Romano and
Elad’s Strengthen-Operate-Subtract (SOS) strategy [27].

Recently, boosting strategies have been integrated with deep learning models
to improve network performance. This combination is first applied to image clas-
sification, where IB-CNN [41] integrates boosting algorithms into CNNs by itera-
tively updating discriminative neurons starting from lower layers. Chen et al. [42]
combined SOS and CNN for the denoising task, and the model used convolutional
networks instead of enhancement units to form a deep enhancement framework to
improve the denoising performance. DBDnet [38] extracts additional valuable in-
formation from residual images by iteratively updating the noise map via residual
networks employing a boosting strategy. Xie et al. [43] propose a model-guided
boosting framework, and enhance the interpretability of the framework using Reg-
ularization by Denoising (RED). Considering that the existing denoising networks
rarely focus on information errors in the noise image when using residual learning to
obtain the observed noise map, in this paper, the boosting algorithm is introduced
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into the decoding layer to iteratively extract the residual noise map to improve the
performance of the denoising network.

2.3 Attention Mechanism

For image denoising, extracting and selecting appropriate feature information is
crucial. However, capturing valuable features within complex backgrounds can be
challenging. Numerous recent studies have sought to enhance feature capture in
denoising tasks by employing attention mechanisms [44, 45]. Tian et al. [46] pro-
posed an attention-guided denoising convolutional neural network (ADNet) to ex-
tract noisy information hidden in complex backgrounds using a non-local self-similar
attention mechanism. Li et al. [47] introduced an enhanced non-local cascading net-
work with the attention mechanism (ENCAM) for noise removal in hyperspectral
remote sensing images (HSIs).

The attention mechanism focuses on the impact of different branches within
the same network, providing supplementary information to the previous stage net-
work and guiding the feature learning of the subsequent stage. The Squeeze-and-
Excitation Network (SE-Net) [48] leverages lightweight architectures to learn rela-
tionships among different channels in features, thereby enhancing the representa-
tional capacity of the network. In CBAM [49], Woo et al. devised a self-attention
mechanism that combines channel and spatial attention, which yielded better re-
sults than self-attention that only considers channels. Liu et al. [28] proposed the
polarized self-attention (PSA) module, which maintains high internal resolution in
both the polarized channel and spatial attention branches, and showed promising
results in semantic segmentation tasks. To restore the texture details of images,
in this study, the PSA mechanism is incorporated into CNN to guide the model in
learning pixel-level features, which resulted in denoised images with sharper edges.

3 THE PROPOSED METHOD

In this section, the architecture of BDANet is first introduced. The following subsec-
tions provide detailed descriptions of the shallow noise extraction block consisting
of densely connected layers, the deep extraction guided by PSA, and the residual
noise enhancement method based on boosting strategies. The loss function of this
network is given at the end.

3.1 Network Architecture

The basic problem of image denoising is to recover a clean image x from a noisy
image y, which can be formulated as:

x = y − v, (1)
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where v represents the additive noise map, typically modelled as white Gaussian
noise with zero mean and standard deviation σ. Since the corrupted image contains
a significant quantity of clean image structure, retaining this structure and estimat-
ing only the added noise is reasonable. Consequently, residual noise is predicted
from noisy images by residual learning, which can be expressed as:

v̂ = F (y) = F (x+ v), (2)

where F (·) denotes the algorithm used to generate residual noise, and v̂ denotes the
approximate value of noise v. The global residual learning method is adopted in
BDANet network, assuming that the parameter mapping R(y) ≈ −v. In addition,
an approximate value of the clean image x can be calculated using the following
formula:

x̂ = y +R(y), (3)

where x̂ is the estimate of x.
Figure 1 shows the proposed BDANet architecture for learning R(y), which

improves the network structure based on the U-Net framework. Generally, a large
convolution kernel is used to extract feature maps in images with high noise levels
in order to capture more information, but this increases the amount of parameter
computation. Therefore, our network begins by using two 3 × 3 convolutions to
enhance the receptive field during image input.

Traditionally, U-Net adopts max pooling with a 2× 2 kernel size and stride of 2
for downsampling. In this study, we use a convolution with a kernel size of 2 × 2
and a step size of 2 instead of pooling to prevent losing a large amount of feature
information during downsampling. This is to prevent a significant loss of feature
information during downsampling. To generate more feature mappings, we utilize
transpose convolution instead of interpolation during upsampling. Moreover, we
incorporate feature maps from the corresponding encoding layer at each upsampling
step, merging shallow and in-depth information and performing 3 × 3 convolution
to reduce the number of features while retaining critical information.

The contraction path of our proposed denoising network consists of three en-
coding layers, each containing two densely connected noise extraction blocks. The
bottleneck layer between the contraction and expansion networks incorporates an
attention mechanism to refine edge information and a decoding layer to improve
the capture of residual information using the boosting algorithm. Further details of
each component are described in the following subsections.

3.2 Noise Extraction Block

The proposed network replaces the regular convolution of the encoding layer in the
U-Net architecture with a densely connected noise extraction block, as depicted in
Figure 2. This approach is based on the DenseNet [50] model, which utilizes three
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Figure 1. The architecture of the proposed BDANet network
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3 × 3 convolutions and PreLU to map the features from the preceding layer to the
subsequent layers. Each convolutional layer reduces the number of feature maps to
half of the input features and utilizes the output of all preceding layers as input
information. Finally, a 3 × 3 convolutional layer controls the output of the gen-
erated feature maps, combined with local residual learning to improve information
flow and gradients. The spatial information of the noise is effectively extracted at
the encoding layer with a densely connected noise extraction block, which achieves
feature reuse and circumvents the gradient disappearance problem.

Figure 2. Architecture of noise extraction block

3.3 Boosting Perspective of Denoising

The denoising network proposed in this study performs denoising by predicting resid-
ual noise, and the quality of the predicted noise directly affects the final denoising
effect. As the denoising network may mistakenly identify noise information as clean
image information during the process of capturing information, the extracted noise
map may contain some unrecovered noise information. Furthermore, high-frequency
information such as edges and details in the clean image may be introduced into the
estimated noise as noise during feature extraction. Based on the aforementioned pos-
sibilities, errors may occur in the predicted noise, leading to a discrepancy between
the estimated noise and the added noise. This can be described by the following
equation:

v̂ − v = xr − vr. (4)

To extract the residual noise map from the noisy image, one can add unrecovered
noise information to the estimated noise while removing high-frequency information,
as described by the above equation, resulting in the true added noise map [27]. And
using the boosting method with a recursive function, the noise map is iteratively
enhanced. The process can be expressed as follows:

v̂n = v̂n−1 + v̂r − x̂r, (5)
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where v̂r and x̂r are feature maps for iterations vr and xr, respectively, and v̂n−1 is
the noise map of the previous level. Repeated iterations make v̂n closer to the noise
map v, gradually reducing the error in the predicted noise.

Drawing inspiration from the effective design of the boosting algorithm for noise
progressive refinement in [38], we propose a noise enhancement module at the de-
coding layer in our network to gradually optimize the noise information extracted
from the shallow layer, as depicted in Figure 3. To prevent mutual interference
when extracting error information from the noise image, the enhancement module
extracts the unrecovered information and high-frequency information separately. In
the enhancement module, the unrecovered information is extracted through two
3× 3 convolutions followed by PreLU activation, as the unrecovered information is
a part of the noise added in the image and can be captured more easily from the
image. In contrast, capturing high-frequency information that is mistakenly identi-
fied as noise in clean images requires obtaining details through dense connections at
a deeper level. The structure is illustrated in the blue box on the right side of Fig-
ure 3, consisting of three densely connected 3 × 3 convolutions with PreLU, which
enhances the capability of capturing information. Subsequently, the relationship
between the noise map and the high-frequency information is measured by one 3×3
convolution and sigmoid convolution layer, and its output weight map is operated
point by point with the feature values after extracting the unrecovered information,
which enhances the complexity of module extraction to better capture the hidden
high-frequency information from the noise map. After the experiments in [38], it is
verified that its performance is best when the number of noise cancellation blocks
is 6. In this paper, unlike the stepwise noise map noise cancellation blocks, the
enhancement blocks are used in the decoding layer of the hierarchical denoising
network to achieve multi-scale gradual denoising enhancement.

3.4 Polarized Self-Attention Block

As shown in the network architecture diagram in Figure 1, an attention block con-
sisting of polarized self-attention mechanism (PSA) is added after the 1024th layer
of the network. PSA has two advantages:

1. Filtering: it completely collapses the features in one direction while maintaining
high resolution in its orthogonal direction;

2. High Dynamic Range: normalization is done by Softmax at the bottleneck ten-
sor (the smallest feature tensor in the attention block), and then tone mapping
is performed using the Sigmod function to increase the dynamic range of atten-
tion [28].

This block connects the encoding layer and decoding layer simultaneously, enabling
the network to effectively learn edge and complex texture information. Its module
structure is shown in Figure 4. The blue dashed box above represents Channel-
only Self-Attention, and the yellow dashed box below represents Spatial-only Self-
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Figure 3. Architecture of boosted module

Attention, where H ×W is the height and width of the image, and C is the number
of channels. The model can be represented as follows:

Channel-only branch can be expressed as:

Ach(X) = Sigmod [LN (σ1(Wν(X))× Softmax(σ2(Wq(X))))] . (6)

Spatial-only branch can be expressed as:

Asp(X) = Sigmod [σ3 (Softmax(σ1(OGP (Wq(X))))× σ2(Wν(X)))] , (7)

where Ach(X) ∈ RC×1×1. Wν and Wq are 1 × 1 convolution, σ1, σ2 and σ3 are
three tensor shaping operators, OGP (·) is the global pooling operator, LN is the
LayerNorm operator, and × is the dot product of the matrix.

Incorporating LayerNorm in the attention mechanism can alter the data distri-
bution, consequently affecting the subsequent convolution and hindering the adjust-
ment of the decoding layer in the proposed network. Therefore, LayerNorm is not
applied in the Channel-only branch, and the formula is as follows:

Ach(X) = Sigmod [σ1(Wν(X))× Softmax(σ2(Wq(X)))] . (8)
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Figure 4. Architecture of Polarized self-attention mechanism

In a sequential arrangement, combine the results of the Channel-only branch
and the Spatial-only branch discussed previously. The formula is as follows:

PSA(X) = Asp(Ach(X)⊙chX)⊙spAch(X)⊙chX, (9)

where ⊙ch is the channel multiplication operator and ⊙sp is the space multiplication
operator.

3.5 Loss Function

Let fBDANet(y; θ) be the output of the network proposed in this study, where θ de-
notes the parameters of the network. The denoising model is trained using a paired
dataset {(yi, xi)}Ni=1, where yi represents the i

th noisy image and xi represents the i
th

clear image. Through experimental research, it is found that the BDANet network
obtains better results by using L1-norm training. The L1 loss function is shown as
follows:

L(θ) =
1

N

N∑
i=1

∥ fBDANet(yi; θ)− yi − xi∥1, (10)

where N is the number of noisy input images, and the Adam algorithm [51] is used
to optimize the objective function stated above.
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4 EXPERIMENTS

4.1 Experiment Datasets

4.1.1 Training Datasets

In recent years Agustsson and Timofte proposed the DIV2K [52] dataset, which
contains 1 000 high quality color images with 2 k resolution, of which 800 are used
as the training dataset and 100 as the validation dataset. Initially designed for im-
age super-resolution, the DIV2K dataset has been utilized by many image denoising
algorithms [20, 21] for network training due to its sufficient number and high reso-
lution. Therefore, we also utilize this dataset for network training and validation in
our study. The training dataset is cropped to 64×64 size image blocks, which helps
to improve the efficiency of the training model. To further enhance the denoising
model’s robustness by increasing the diversity and complexity of the training sam-
ples, we expand the data by randomly flipping the original images horizontally and
vertically and rotating the images 90 degrees counterclockwise. Additionally, we
add white Gaussian noise to the training dataset with noise levels ranging from 5
to 50 to accommodate various noise levels.

4.1.2 Test Datasets

In this study, we aim to evaluate the denoising performance of the BDANet net-
work by testing five datasets. The Set12 and BSD68 [53] datasets are utilized to
validate the greyscale image denoising effect, where Set12 comprises 5 images with
dimensions of 512× 512 and 7 images with dimensions of 256× 256, and the BSD68
dataset includes 68 images measuring 321× 481 pixels. For colour image denoising,
three datasets are adopted: Kodak24, CBSD68, and McMaster [54]. The Kodak24
dataset comprises 24 images of size 768×512, CBSD68 shares the same colour image
dataset as the BSD68 scene, and the McMaster dataset comprises 18 images of size
500× 500.

4.2 Implementation Details

The initial learning rate of the network in this study is 1e−4, which decays by half
every three-period iterations over the whole dataset, stopping when it decays to
1e−6. AdamW algorithm with parameters β1 = 0.9, β2 = 0.999 and ε = 10−8

is adopted to optimize the loss function. The BDANet denoising model is trained
with a batch size of 16. The denoising model is trained and tested for denoising
performance on PyTorch 1.10 and Python 3.8. Finally, all experiments are run on
an Nvidia RTX 3090 GPU.
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4.3 Performance Comparison

This section presents a comparison of the proposed model with other denoising
methods, including model-based methods BM3D [12], WNNM [13], and TNRD [55],
as well as CNN-based denoising methods DnCNN [16], IRCNN [35], FFDNet [36],
DBDNet [38], ADNet [46], DHDN [21], SUNet [56], and MWDCNN [57]. All of
the aforementioned methods are state-of-the-art denoising models. In this study, we
compare the experimental results in terms of both greyscale and colour images. To
further evaluate the network’s performance, we utilize PSNR [58] and SSIM [59] to
quantify the denoising effect.

Set12
Methods σ = 15 σ = 25 σ = 50

PSNR/SSIM PSNR/SSIM PSNR/SSIM

BM3D 32.37/0.8952 29.97/0.8504 26.72/0.7676
WNNM 32.70/0.8982 30.28/0.8557 27.05/0.7775
TNRD 32.50/0.8958 30.06/0.8512 26.81/0.7680
U-Net 32.91/0.9042 30.53/0.8649 27.39/0.7919
DnCNN 32.86/0.9031 30.44/0.8622 27.18/0.7829
IRCNN 32.77/0.9008 30.38/0.8601 27.14/0.7804
FFDNet 32.75/0.9027 30.43/0.8634 27.32/0.7804
DHDN N/A N/A 27.58/0.7984
ADNet 32.98/0.8916 30.58/0.8561 27.37/0.7908
DBDNet 33.03/ – 30.65/ – 27.46/ –
MWDCNN 32.91/0.8972 30.55/0.8551 27.34/0.7882
BDANet 33.04/0.9064 30.70/0.8681 27.65/0.8022
BDANet+ 33.08/0.9068 30.74/0.8688 27.70/0.8033

Table 1. Comparison of the average PSNR (dB)/SSIM performance of the different meth-
ods on the Set12 datasets for grayscale images with noise levels of σ = 15, 25, and 50.
The best performance is indicated in red and the next best performance is highlighted in
blue.

Regarding Gaussian denoising in state-of-the-art methods [16, 38, 46], three
noise levels of 15, 25, and 50 determined by standard deviation σ are usually adopted
to evaluate the method. In this study, the same noise level is also used for testing
to ensure its fairness. As shown in Tables 1 and 2, we tested the grayscale images
on the Set12 and BSD68 datasets, and BDANet achieved optimal and sub-optimal
denoising performance at noise levels 15, 25, and 50, respectively, where red repre-
sents the ideal and blue represents the suboptimal. Table 1 shows that BDANet+
denotes the version with self-ensemble, and the experimental results indicate that
the self-ensemble method leads to an improvement in denoising performance. In
addition, we also consider an experimental comparison of U-Net networks to train
denoising models for grey-scale images at different noise levels. Most of the results
in the table are taken from the original literature or obtained from open code. The
experimental results show that the BDANet in this paper improves 0.98 dB in PSNR
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BSD68
Methods σ = 15 σ = 25 σ = 50

PSNR/SSIM PSNR/SSIM PSNR/SSIM

BM3D 31.07/0.8722 28.57/0.8017 25.62/0.6869
WNNM 31.37/0.8766 28.83/0.8087 25.87/0.6982
TNRD 31.42/0.8769 28.92/0.8093 25.97/0.6994
U-Net 31.77/0.8769 29.29/0.8220 26.36/0.6994
DnCNN 31.73/0.8906 29.23/0.8278 26.23/0.7189
IRCNN 31.63/0.8881 29.15/0.8249 26.19/0.7171
FFDNet 31.63/0.8902 29.19/0.8289 26.29/0.7245
DHDN N/A N/A 26.44/0.7296
ADNet 31.74/0.8916 29.25/0.8294 26.29/0.7216
DBDNet 31.85/ – 29.37/ – 26.43/ –
MWDCNN 31.77/0.8921 29.28/0.8299 26.29/0.7208
BDANet 31.81/0.8934 29.33/0.8301 26.41/0.7288
BDANet+ 31.84/0.8939 29.36/0.8307 26.45/0.7300

Table 2. Comparison of the average PSNR (dB)/SSIM performance of the different meth-
ods on the BSD68 datasets for grayscale images with noise levels of σ = 15, 25, and 50.
The best performance is indicated in red and the next best performance is highlighted in
blue.

when the noise level is 50 compared with the conventional denoising model on the
Set12 dataset. Our network improves 0.24 dB over DBDNet, which also uses the
boosting strategy, and 0.34 dB compared to the latest technology, MWDCNN. The
worst PSNR result of the difference is also less than 0.01 dB. BDANet+ exceeds
the SSIM of each noise level in the competing networks and has better structural
similarity.

The denoising performance of the BDANet model is evaluated on three widely
used colour image datasets, namely CBSD68, Kodak24, and McMaster, and com-
pared with several representative denoising models, as presented in Tables 3 and 4.
The results demonstrate that BDANet outperforms other methods for different
datasets and noise levels. When the noise level is 50, BDANet has better denoising
effect than the U-Net based models (DHDN, SUNet) on the CBSD68 and Kodak24
datasets, with 0.21 dB and 0.3 dB improvement on the two data and compared with
the latest denoising model MWDCNN, respectively. On the McMaster data set our
model improves by 1.35 dB. Moreover, BDANet achieves a higher structural simi-
larity than most competing networks when comparing the SSIM results on CBSD68
and Kodak24 datasets. Notably, BDANet+ exhibits the best performance on the
McMaster dataset in terms of both peak signal-to-noise ratio and structural simi-
larity, indicating its superior denoising capability.

To more directly reflect the denoising effect, we qualitatively analyse the de-
noised images on each dataset through subjective tests. Specifically, the visual
graph of the enlarged area is obtained by locally zooming in on different locations
of the test image, and the clearer the enlarged area is, the better the denoising
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CBSD68
Methods σ = 15 σ = 25 σ = 50

PSNR/SSIM PSNR/SSIM PSNR/SSIM

BM3D 33.52/0.9233 30.71/0.8719 27.38/0.7669
U-Net 33.80/0.9281 31.24/0.8820 27.95/0.7917
DnCNN 33.90/0.9291 30.44/0.8828 27.95/0.7882
IRCNN 33.86/0.9285 31.16/0.8824 27.86/0.7898
FFDNet 33.87/0.9295 31.21/0.8865 27.96/0.7920
DHDN N/A N/A 27.71/0.7874
ADNet 33.99/0.9330 31.31/0.8889 28.04/0.7974
BRDNet 34.10/0.9347 31.43/0.8917 28.16/0.8010
SUNet N/A N/A 27.85/0.7990
MWDCNN 34.18/0.9330 31.45/0.8867 28.13/0.7945
BDANet 34.19/0.9331 31.55/0.8896 28.30/0.8022
BDANet+ 34.22/0.9334 31.58/0.8901 28.34/0.8034

Table 3. Comparison of the average PSNR (dB)/SSIM performance of the different meth-
ods on the CBSD68 datasets for color images with noise levels of σ = 15, 25, and 50. The
best performance is indicated in red and the next best performance is highlighted in blue.

effect of the model. The graphs in Figures 5 and 6 show the denoising effect on
grayscale images. Figure 5 demonstrates that the denoising model proposed in this
study results in better clarity and contrast in image recovery. Meanwhile, the tradi-
tional model in Figure 6 causes deformation of the window contour due to excessive
smoothing during denoising, while the proposed method produces smoother lines.

Kodak24
Methods σ = 15 σ = 25 σ = 50

PSNR/SSIM PSNR/SSIM PSNR/SSIM

BM3D 34.28/0.9160 31.68/0.8684 28.46/0.7758
U-Net 34.51/0.9214 32.09/0.8783 29.04/0.7979
DnCNN 34.47/0.9204 32.14/0.8766 28.85/0.7915
IRCNN 34.55/0.9198 32.18/0.8741 28.91/0.7929
FFDNet 34.63/0.9211 32.11/0.8789 28.98/0.7938
DHDN N/A N/A 29.72/0.8170
ADNet 34.76/0.9247 32.26/0.8827 29.10/0.7994
BRDNet 34.88/0.9257 32.41/0.8862 29.22/0.8024
SUNet N/A N/A 29.54/0.8100
MWDCNN 34.91/0.9269 32.40/0.8862 29.26/0.8062
BDANet 35.10/0.9279 32.64/0.8889 29.50/0.8126
BDANet+ 35.14/0.9284 32.69/0.8897 29.56/0.8141

Table 4. Comparison of the average PSNR (dB)/SSIM performance of the different meth-
ods on the Kodak24 datasets for color images with noise levels of σ = 15, 25, and 50. The
best performance is indicated in red and the next best performance is highlighted in blue.
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McMaster
Methods σ = 15 σ = 25 σ = 50

PSNR/SSIM PSNR/SSIM PSNR/SSIM

BM3D 34.06/0.9111 31.66/0.8738 28.51/0.7945
DnCNN 33.44/0.9038 31.52/0.8691 28.62/0.7993
IRCNN 34.58/0.9196 32.18/0.8819 28.91/0.8067
FFDNet 34.66/0.9218 32.35/0.8894 29.18/0.8166
ADNet 34.93/0.9286 32.56/0.8942 29.36/0.8246
BRDNet 35.08/0.9297 32.75/0.8974 29.52/0.8280
BDANet 35.20/0.9296 32.91/0.8989 29.78/0.8369
BDANet+ 34.26/0.9304 32.98/0.8998 29.86/0.8387

Table 5. Comparison of the average PSNR (dB)/SSIM performance of the different meth-
ods on the McMaster datasets for color images with noise levels of σ = 15, 25, and 50.
The best performance is indicated in red and the next best performance is highlighted in
blue.

Figure 5. PSNR (dB)/SSIM values of grayscale image denoising for different methods at
noise level σ = 15

Figure 6. PSNR (dB)/SSIM values of grayscale image denoising for different methods at
noise level σ = 50
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Figures 7, 8 and 9 show the color image visualization results of the proposed method
with the conventional model. In Figure 7, the traditional model produces a very
blurry image after denoising, with the grid edge almost indistinguishable, while the
proposed method better reconstructs the grid structure and preserves the edge in-
formation. Figure 8 shows that the suggested network preserves texture information
while removing severe noise, whereas the existing model loses the hair texture on
the squirrel’s tail after denoising. In Figure 9, the proposed network restores the
texture on the wheel and recovers some background information from the grass,
while the traditional denoising process smooths out the texture on the wheel and
does not restore the background structure. The above qualitative analysis shows
that the proposed denoising network outperforms the traditional denoising method
and performs better.

Figure 7. PSNR (dB)/SSIM values of color image denoising for different methods at noise
level σ = 50

Figure 8. PSNR (dB)/SSIM values of color image denoising for different methods at noise
level σ = 15
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Figure 9. PSNR (dB)/SSIM values of color image denoising for different methods at noise
level σ = 50

4.4 Ablation Experiments

Ablation experiments are designed in the study, as shown in Table 4, to evaluate the
efficacy of the various modules in the BDANet network architecture. The table com-
pares the effects of using the noise extraction block, the residual noise enhancement
block based on boosting strategy, the polarized self-attention (PSA) mechanism, and
the different downsampling methods, where BDANeti (i = 1, 2) represent versions
of the various modules. And the basic network model U-Net and the DHDN model
are evaluated together on the CBSD68 dataset for images with a noise level of 50.

Methods U-Net DHDN BDANet1 BDANet2 BDANet

MP2×2 ✓ ✓ ✓
Con2×2 ✓ ✓
Densely connected residual ✓
Noise extraction ✓ ✓ ✓
Residual noise enhancement ✓
Polarized self-attention ✓ ✓ ✓
Parameters 29M 168M 160M 163M 152M
MACs 15G 64G 46G 48G 51G
PSNR (dB) 27.35 27.71 28.28 28.29 28.30

Table 6. The different blocks of the ablation study include max pooling downsampling
MP, convolution downsampling, noise extraction block, residual noise cancellation block,
and polarized self-attention. The comparison model averages PSNR (dB) values at noise
level σ = 50 on the CBSD68 dataset.

The DHDN model uses a dense residual block in the layered network, while the
BDANet1 uses a noise extraction and PSA mechanism, which improves the denoising
effect and reduces the number of model parameters compared to the DHDNmodel by
using a noise extraction block instead of a normal convolutional layer and combining
the PSA mechanism. For downsampling, the max pooling downsampling in U-Net
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a)

b)

Figure 10. Comparing the PSNR of various variant models as well as the base model
U-Net at each training round: a) comparison of the training curves of the BDANet1
model with noise extraction block and polarized self-attention and BDANet2 model with
convolutional downsampling and BDANet model with residual noise enhancement block,
b) comparison of the training curves of BDANet model and U-Net model.
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is replaced by stride convolution in BDANet2, although it slightly increases the
number of parameters, considering that more feature information can be learned
using stride convolution, while the pooling operation can only be simply mapped.
The residual noise enhancement module is added to BDANet for the decoding layer
to achieve multi-scale extraction of the noise map, and it can be seen in Table 4 that
the addition of this module reduces the number of parameters and also significantly
improves the network performance. Figure 10 a) displays the variation of the peak
SNR of various variant models at each training round, where the red line represents
the BDANet model, and the green line BDANet1 and the yellow line BDANet2. The
overall denoising effect of BDANet is better than the other two models. Figure 10 b)
compares the base U-Net model and the BDANet model with the addition of noise
extraction block, PSA mechanism, and noise enhancement block, demonstrating
that the improved BDANet denoising performance is significantly better than that
of U-Net.

5 CONCLUSION

In this paper, we propose a boosted dense attention neural network (BDANet) based
on an improved U-Net structure for image denoising. To enhance the extraction of
image noise features, the coding layer of the U-Net network is improved through
the use of densely connected blocks, rather than conventional convolution methods.
Additionally, local residual connections are employed to promote feature reuse and
overcome the issue of gradient disappearance. Meanwhile iterative enhancement
of the residual noise map at the decoding layer is combined with the theory of
the boosting algorithm to improve the network’s ability to capture information.
A polarized self-attention mechanism is introduced at the bottleneck between the
encoding and decoding layers, enabling the network to learn edge information and
enhance the texture details of the image. The experimental results show that our
method effectively improves image detail processing and denoising performance. In
future work, we aim to extend BDANet to other types of images, such as near-
infrared images.
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