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Abstract. Multivariate time series data can be collected and employed in various
fields to predict future data. However, owing to significant uncertainty and noise,
controlling the prediction accuracy during practical applications remains challeng-
ing. Therefore, this study examines the Bayesian information criterion (BIC) as
an evaluation metric for prediction models and analyzes its changes by varying
the explanatory variables, variable pairs, and learning and validation periods. De-
scriptive statistics and decision tree-based algorithms, such as classification and
regression tree, random forest, and dynamic time warping, were employed in the
analysis. The experimental evaluations were conducted using two types of restau-
rant data: sales, weather, number of customers, number of views on gourmet site,
and day of the week. Based on the experimental results, we compared and dis-
cussed the learning behavior based on various explanatory variable combinations.
We discovered that 1. the explanatory variable, the number of customers, exhib-
ited a significantly different trend from other variables when dynamic time warping
was applied, particularly in combination with other variables, and 2. variables with
seasonality yielded the best performance when used independently; otherwise, the
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predictive accuracy decreased according to the decision tree results. This compar-
ative investigation revealed that the proposed BIC analysis method proposed can
be used to effectively identify the optimal combination of explanatory variables for
multivariate time series data that exhibit characteristics such as seasonality.

Keywords: Multivariate time series analysis, Bayesian information criterion, deci-
sion tree, dynamic time warping

1 INTRODUCTION

Owing to the advancements in data acquisition and collection technologies, data-
driven strategic analysis and forecasting have been widely adopted across various
industries. Additionally, both the government and private sectors recognize that
data-oriented strategic planning is essential for appropriately executing tasks.

As for econometric time-series analyses, several fundamental models have been
proposed, including auto regression (AR), moving average (MA), auto regression
integrated moving average (ARIMA) [1], and generalized autoregressive conditional
heteroscedasticity (GARCH), which is based on fluctuation prediction [2].

In addition to the aforementioned traditional statistical analysis approaches,
machine learning-based methods have been gaining popularity in time-series data
research. For instance, recurrent neural networks (RNNs) and long short-term mem-
ory (LSTM) models are frequently employed for time-series data prediction. How-
ever, the selection of prediction models for time series is competitive because the
prediction performance can be highly case-specific. Furthermore, the prediction
performance depends on several factors, including the nature of the data, diverse
preprocessing techniques, feature selection, and algorithm selection.

For instance, a study [3] that compared the performance of various models in
a time-series analysis demonstrated that the ARIMA model [4], originally proposed
to handle business or economic data, is substantially accurate compared to advanced
techniques such as deep learning and LSTM. Moreover, the authors of [5] indicated
that the accuracy of the ARIMA model is equivalent to that of deep learning ap-
proaches and can even be extended to multivariate analyses.

Several hybrid approaches have also been proposed; for instance, a combination
of the ARIMA model and deep learning has been proposed for time-series analy-
sis [6], and deep learning techniques have been introduced to learn the characteristics
of time series data [7, 8, 9]. We also examined an approach [10] that emphasizes ad-
justing seasonality in time series data using a proportional-integral-derivative (PID)
control mechanism. Additionally, accuracy has been further improved by incorpo-
rating Bayesian networks [11]. Moreover, dynamic regression models with Bayesian
networks for time series data have been researched, as demonstrated in [12].

To predict sightseeing demand, a neural-network-based time-series analysis has
been proposed [13], and a study comparing neural networks and traditional time-
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series analysis for predicting single-variable time series data has also been pub-
lished [14]. Yuyama et al. [15] introduced a method to enhance the accuracy of
wind-speed predictions. This technique is based on analyzing prediction errors us-
ing machine learning algorithms for the time series of wind-speed data. Notably,
the identified error tendencies were successfully leveraged as a feature to augment
prediction accuracy. Furthermore, some studies have employed time-series analyses
in the medical field, such as forecasting dengue hemorrhagic fever cases [16] and
estimating the number of beds required during a SARS outbreak [17].

Owing to the increasing ease of obtaining diverse time series data and the grow-
ing practice of combining them into multivariate sets, the application of time series
data analysis has been extended to numerous fields, including medicine [18, 19, 20].
Consequently, multiple regression analysis based on multivariate data have drawn
more attention than univariate analyses. As variable selection is crucial for develop-
ing a multiple regression model, various methods have been proposed, such as the
stepwise approach. However, it is important to note that although the predictive
accuracy is likely to improve with more variables, it often fluctuates based on the
training data and variable combination employed.

This study aimed to advance the field of multivariate regression time-series ana-
lysis by preemptively estimating the optimal combination of variables and under-
standing the tendency of the accuracy estimated for the prediction model. We
focused on enhancing the accuracy of a sales prediction model created using time
series data and present our findings based on a fluctuation analysis of the Bayesian
information criterion (BIC) over the time-series transition, particularly emphasizing
on the BIC characteristics for the model. Furthermore, we delineated the distinct
characteristics of each variable during model generation and the resultant shifts in
the BIC. In particular, the main purpose of our research is to observe the behavior
due to the changes in combinations of variables based on our proposed method,
for obtaining datasets. Thus, the accuracy of proposal forecasting has not been
compared with existing methods. The experimental data employed in this study
comprised restaurant sales figures of a popular tourist destination in Japan, along
with related data.

The remainder of this paper is organized as follows. Section 2 provides a succinct
background of the BIC and time-series analysis. Section 3 introduces the proposed
BIC analysis-based variable selection method for multivariate time series data. Sec-
tion 4 discusses the experimental results. Finally, Section 5 concludes the paper and
proposes directions for future work.

2 METHODS

This section provides a brief overview of certain time-series analytics and evaluation
indices that are frequently used in this study.

Dynamic Time Warping. In the following sections, the evaluation indices and al-
gorithms implemented using the proposed method are explained. The dynamic



1140 A. Ohshiro, M. Nakamura

time warping (DTW) technique is used to calculate the similarity between mul-
tiple time-series datasets, which allows establishing the shortest path for the
time-series data. This path is derived by calculating the distance between each
point in the two time-series datasets using a brute-force approach:

DTW(x, y) = min

p∑
t=1

|xt − yt|, (1)

where x = (x1, x2, . . . , xp) and y = (y1, y2, . . . , yp) denote the two time-series
datasets.

DTW is commonly employed for human behavior analyses, including voice [21]
and locomotion data. Furthermore, the application of DTW to cluster time
series data has been demonstrated in various domains, such as education [22].
Additionally, it has been used in studies focused on detecting student grit using
a clustering method [23].

Bayesian Information Criterion. Several methods are available for evaluating
the performance of prediction models. These include the root mean squared er-
ror (RMSE); R2 (the coefficient of determination); Akaike information criterion
(AIC) [24], which considers the number of parameters and the model likelihood;
and BIC [25], which additionally considers the number of data points.

BIC is particularly useful for model selection, and is expressed as follows:

BIC = −2 log(L) + k log(n), (2)

where L, n, and k denote the likelihood function, number of data points, and
number of parameters, respectively.

Numerous studies have investigated model validation using various types of data
processing methods in conjunction with both the AIC and BIC [26, 27].

The use cases of time series data have expanded beyond traditional applications
in economics and meteorology to many other fields, including medicine [18,
19, 20]. This trend has highlighted the need for multiple regression analysis
using multivariate datasets as opposed to univariate data. It is worth noting
that predictive accuracy is likely to improve with a higher number of variables.
However, this improvement often varies depending on the training data and
variable combination used.

For a multivariate regression time series analysis, predicting the trend of the
estimation accuracy of the constructed model and pre-determining the most
effective combination of variables can significantly contribute to the construction
of predictive models with optimal variable combinations. This study proposes
a method to improve the accuracy of sales prediction models generated using
time series data. It focuses on a fluctuation analysis of BIC in a time-series
transition, with a particular focus on the characteristics of the model’s BIC. This



Bayesian Information Criterion Analysis for Accuracy Improvement . . . 1141

study presents the process and performance results of the proposed analytical
method in detail.

Additionally, we describe the characteristics of each variable used for model
generation and the factors behind changes in BIC. We used variables related to
restaurant sales of a popular tourist location in Japan as the experimental data.

Dynamic Regression Models. Time series analysis typically forecasts future val-
ues by leveraging past changes in univariate data. However, it can also accommo-
date multivariate data by using dynamic regression models [28]. In the general
regression model, assuming a predefined linear relationship between yt and xt at
time t, yt can be expressed using xt, βi (representing the gradient), and ϵt (the
error term denoting the deviation from the regression function) as follows:

yt = β0 + β1xt + ϵt. (3)

By introducing autocorrelation as η and based on the ARIMA process, the
following equation is obtained:

yt = β0 + β1x1,t + · · · βkxk,t + ηt. (4)

Moreover, the optimal combination of variables is determined based on criteria
such as the AIC, BIC, and lag value. The objective is to minimize the values of
both ϵt and ηt.

3 BIC ANALYSIS-BASED VARIABLE SELECTION
FOR MULTIVARIATE TIME SERIES DATA

In this section, we propose a BIC analysis-based algorithm for selecting variables
from multivariate time series data.

Prediction models for time series data can be constructed by combining multi-
ple variables through a multiple regression analysis. Variable selection significantly
influences both the prediction process and results. The characteristics of the vari-
ables can be determined by observing the changes in BIC based on the selection of
different variables.

Cross-validation is commonly employed to ensure robust validation during time
series analysis. Typically, the first m steps in the time series data are employed as
training data, whereas the subsequent n steps are used as test data. Thereafter,
the periods are iteratively shifted forward. In this context, the BIC may fluctuate
according to the period selected. This study aims to investigate model accuracy by
analyzing BIC variations and using the results to guide variable selection.

The analysis of these changes can include various aspects such as statistical
features, time-series changes, and feature classification. We employed descriptive
statistics for statistical features, DTW for time-series changes, and decision tree
models for feature classification.
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The proposed method for improving the accuracy of multivariate time series
data analysis through BIC analysis comprises the following steps:

Step 1. Define the training and test periods for multivariate time series data.

Step 2. Enumerate the combinations of variables for multivariate time series data.

Step 3. Calculate the BIC for each combination of variables using a dynamic re-
gression model.

Step 4. Observe the effects of the training period variations on BIC.

Step 5. Analyze the effects of variable combinations on BIC by using descriptive
statistical values for each test period.

Step 6. Apply DTW to each variable combination and observe the effects of vari-
able combinations at the time-series level.

Step 7. Analyze the relationship between BIC fluctuations and each variable com-
bination by applying a decision tree-based classification algorithm.

Figure 1 illustrates the process of BIC analysis-based variable selection for mul-
tivariate time series data. Steps 1–3 pertain to data generation using the dynamic
regression model and cross-validation for BIC analysis. Steps 4 and 5 involve the
application of descriptive statistics. Step 6 corresponds to the analysis of time series
data using DTW, whereas Step 7 involves feature classification using decision tree
models.

Furthermore, to discuss the variations in results owing to the combination of
multiple variables, the following three hypotheses were formulated and tested using
the proposed analytical method:

H0: BIC prediction accuracy improves as the number of variable combinations in-
creased.

H1: BIC prediction accuracy changes regardless of the number of variable combina-
tions employed.

H2: BIC prediction accuracy changes based on the characteristics of the variables.

4 RESULTS AND DISCUSSION

In this section, we present the experimental evaluation and discuss the results. First,
we report the results of the BIC analysis for the dynamic regression models based
on the explanatory variable combinations employed, as described in Step 5 of the
proposed procedure. Thereafter, we present the results of the BIC classification
of time series data using DTW, as explained in Step 6. Finally, we discuss the
analysis results of the contributing variables and their combinations for decision
tree algorithms, as detailed in Step 7.
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Figure 1. Process of BIC analysis-based variable selection for multivariate time series data
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4.1 BIC Analysis Based on Variable Combination

As previously described, prediction models can be constructed using multiple re-
gression analyses by combining multiple variables, whose characteristics can be de-
termined by observing the changes in BIC according to various selections. For the
experimental data, we used actual daily data collected from a restaurant in Japan,
with a focus on total sales. Therefore, we defined the periods for the training and
validation data as follows:

• Length of training data: 20 weeks;

• Length of validation data: 5 weeks.

The variables used in this study and their combinations used for model genera-
tion are listed in Tables 1 and 2, respectively. As shown in Table 1, we could use at
most five explanatory variables at a time. Table 2 lists the combinations of variables
selected. For example, Case1,2 indicates the selection of the number of customers
and the probability of precipitation variables.

Variable Description

Ot Total sales
p1 Number of customers
p2 Probability of precipitation
p3 Number of views on a gourmet site
p4 Day of the week

Table 1. Available variables

Notation Variable Combination

Case1 {p1}
Case2 {p2}
Case3 {p3}
Case4 {p4}
Case1,2 {p1, p2}
Case1,3 {p1, p3}
Case1,4 {p1, p4}
Case2,3 {p2, p3}
Case2,4 {p2, p4}
Case3,4 {p3, p4}
Case1,2,3 {p1, p2, p3}
Case1,2,4 {p1, p2, p4}
Case1,3,4 {p1, p3, p4}
Case2,3,4 {p2, p3, p4}
Case1,2,3,4 {p1, p2, p3, p4}

Table 2. Combinations of variables
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Multivariate regression analysis was performed with seasonality set to 1 week
(seasonality = 7). The regression coefficients and BIC varied depending on the
training data period and the number or combination of variables. Table 3 presents
the BIC fluctuations for predicting total sales when the periods of the training data,
from t1–tn, and the combination of explanatory variables, from Case1 to Case1,2,3,4,
are altered. The total sales from restaurants (denoted as Da) were used as exper-
imental data. To conserve space, we used the notation Cx for Casex in the first
column of the table. Max, Min, Median, and SD denote the maximum, minimum,
median, and standard deviation of BIC, respectively.

The regression coefficients and BIC varied depending on the training data period
and combination of variables employed. Table 3 presents the changes in BIC for
predicting total sales using various explanatory variables and varying the training
data period from t = 1 to t = 69. For the experimental data, we used the total
sales from restaurants (represented as Da). To save space, we used the notation Cx

for Casex in the first column. Max, Min, Median, and SD denote the maximum,
minimum, median, and standard deviation of BIC, respectively.

t = 1 t = 2 . . . t = 68 t = 69 Max Min Median SD

Ot 4 067.00 4 069.13 4 098.16 4 093.31 4 136.91 3 807.42 3 859.67 132.83
C1 4 008.13 4 026.57 4 048.82 4 043.12 4 090.98 3 797.74 4 011.97 56.98
C2 4 067.44 4 068.81 4 100.06 4 092.83 4 142.61 3 807.93 3 863.12 134.87
C3 4 059.55 4 057.54 4 097.40 4 090.78 4 141.62 3 796.04 4 053.69 102.21
C4 3 847.15 4 032.93 4 102.93 4 098.18 4 110.89 3 788.49 4 023.07 123.03
C1,2 3 974.97 4 014.94 4 050.82 4 040.48 4 075.14 ↓ 3 782.35 ↓ 3 997.95 41.94 ↓
C1,3 3 980.36 4 000.54 4 053.47 4 047.36 4 062.64 ↓ 3 780.71 ↓ 3 999.43 ↓ 54.12 ↓
C1,4 4 036.17 4 037.62 4 102.15 4 095.70 4 109.28 3 789.71 4 038.78 120.41
C2,3 3 991.47 4 027.77 4 056.12 4 045.37 4 092.76 3 801.10 4 016.34 51.86 ↓
C2,4 4 062.16 4 058.64 4 099.20 4 088.91 4 147.59 ↑ 3 796.31 4 053.28 105.39 ↓
C3,4 4 044.65 4 034.11 4 104.51 4 097.66 4 115.80 3 790.31 4 041.72 129.28 ↑
C1,2,3 3 951.51 3 996.6 4 055.44 4 044.92 4 061.91 ↓ 3 773.24 ↓ 3 993.66 61.80
C1,2,4 4 037.22 4 039.95 4 103.59 4 093.8 4 112.80 3 791.95 4 042.31 124.14
C1,3,4 3 985.02 4 016.63 4 054.16 4 042.81 4 083.70 ↓ 3 783.55 ↓ 4 002.83 ↓ 42.65 ↓
C2,3,4 3 967.67 4 002.93 4 060.48 4 049.71 4 077.47 ↓ 3 784.57 ↓ 4 005.98 54.81 ↓
C1,2,3,4 3 953.36 3 999.54 4 058.15 4 047.37 4 066.67 3 775.75 ↓ 3 997.13 57.79

Table 3. Changes in BIC and descriptive statistics according to the selection of explana-
tory variables for Da

Tables 4 a) and 4 b) present the correlation matrices of all variables. As the
patterns of the single variables, the correlation coefficients for the combination of
C1 and C4 are the smallest. According to the result of Da, the correlation coefficients
of C2 tends to be larger than those of other variables, whereas those of C4 tends to
be smaller. As the patterns of the single variables, the correlation coefficients for the
combination of C1 and C2 are the smallest. Furthermore, the correlation coefficients
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of C2,4 tends to be small, which is a common feature based on the results of Da

and Db.
To investigate more characteristics of multivariate time series data, we extracted

coefficient of variance and gradient. To obtain a “Gradient”, the change in BIC was
converted into three values and defined as follows:

di =


−1, ti < ti−1,

0, ti = ti−1,

1, ti > ti−1,

(5)

Gradient =
|{di|di = 1}|

|n|
. (6)

Table 5 presents the coefficients of variance and gradient for all variables of
datasets. The coefficient of variance indicates the fluctuation and is one of the
evaluation indices used to measure changes in time series data. The coefficient of
variance of Ot indicates “Total sales” and that of C2 indicates “Probability of pre-
cipitation” for DA; DB is over 0.03 and the variation is large compared to other
variables. The Gradient of C1,2,4 for DA and C1,3,4 for DB are large, and the ex-
tent of increase is larger than that of other variables. Furthermore, as the maxi-
mum of the Gradient for DA is less than 0.3, it can be predicted that the num-
ber of decrease time than the number of increase time about the time series data
for DA.

First, we analyze the variations in the model accuracy with respect to different
training periods. For instance, when the training period was t = t1, the regression
model yielding the highest estimation accuracy was Case4, which included the Day
of the Week variable. By contrast, when the training period was t = t2, the re-
gression model with the highest estimation accuracy was Case1,2,3, which included
the Number of Customers, Probability of Precipitation, and Number of Views on
Gourmet Site variables. This implies that the combination of variables minimizes
BIC changes according to the learning period. By forecasting BIC behavior and
identifying the most effective variable combination for model generation, we can
optimize store sales prediction accuracy.

Next, we examine the descriptive statistics of model accuracy. ↓ and ↑ denote
increase and decrease in BIC values, respectively, compared with the single-variable
case. When focusing on the maximum and minimum values, the BIC of multivari-
able cases, such as Case1,2, Case1,3, and Case1,2,3, decreased compared to that of
simpler cases, such as Case1, Case2, and Case3. This suggests that the prediction
model accuracy is more likely to improve by combining multiple variables rather
than using each variable individually. Similarly, regarding the SD, the BIC varia-
tion in multivariable cases, such as Case1,2 and Case1,3, decreased compared with
that in simpler cases, indicating that the model accuracy was improved. Further-
more, Case1,2 and Case1,3 exhibited better performance than the all-variable case
Case1,2,3,4.
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DA DB

CV Gradient CV Gradient

Ot 0.033835746 0.2319 0.030835325 0.3889
C1 0.014822804 0.2174 0.017515224 0.3611
C2 0.034247191 0.2464 0.031309082 0.4444
C3 0.02698482 0.2319 0.019616495 0.4167
C4 0.030722214 0.2609 0.023302834 0.4167
C1,2 0.013481039 0.2174 0.025825251 0.4444
C1,3 0.010596037 0.2029 0.014370442 0.4167
C1,4 0.013807141 0.2464 0.014144489 0.4722
C2,3 0.027729362 0.2464 0.022399088 0.3889
C2,4 0.032738189 0.2609 0.029888159 0.4722
C3,4 0.030609652 0.2464 0.020274866 0.4167
C1,2,3 0.010803486 0.2174 0.018425341 0.4167
C1,2,4 0.014022714 0.2754 0.017128383 0.4167
C1,3,4 0.015846182 0.2609 0.013657935 0.5278
C2,3,4 0.031630946 0.2464 0.027224456 0.4444
C1,2,3,4 0.014608557 0.2609 0.016973267 0.4722

Table 5. Coefficient of variance (CV ) and Gradient for all variables of all datasets

Generally, the accuracy of a prediction model in a multiple regression analysis
improves as the number of explanatory variables increases. In this study, the se-
lection of multiple explanatory variables lowered the variations in BIC than using
a single variable. However, if an appropriate combination of variables is pre-selected,
a regression model with reliable accuracy can be obtained without increasing the
number of explanatory variables. Therefore, the variable combination is crucial. If
BIC changes can be predicted, an appropriate set of explanatory variables can be
selected during the generation of the regression model. In the following section,
each combination of variables is visualized as time series data, and their trends are
observed by classifying the fluctuations using DTW.

4.2 Clustering of Time Series Data with DTW

In the previous section, we examined the impact of various variables and their com-
binations by observing the descriptive statistical value of BIC. In this section, we
focus on the transitions in single and multivariable cases and examine the trends
of BIC changes. For the experimental data, we used the total sales from the two
restaurants (denoted as Da and Db), in addition to the data used in the previous
section. The results of applying DTW to multiple time series data, as described in
Table 2, are presented. We attempted extract features of the time series data from
the classification results using DTW in combination with the k-means algorithm.
The classification results for cases with two and three clusters for both experimental
datasets (Da and Db) are shown in Figures 2 a)–2 d).
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a) Clustering for Da (number of clusters = 2) b) Clustering for Da (number of clusters = 3)

c) Clustering for Db (number of clusters = 2) d) Clustering for Db (number of clusters = 3)

Figure 2. Clustering Results for Time Series Data

We analyzed the trends in BIC changes for each dataset in scenarios with dif-
ferent numbers of clusters. In case of two clusters, the data for Da were classified
into a red line (indicating cluster 0) and a blue line (indicating cluster 1), as shown
in Figure 2 a). Among the five patterns of single variables, Ot and Case1–Case4,
Case1 (number of customers) were classified as Cluster 1, whereas the remaining
variables were classified as Cluster 0. This suggests that variables other than that
classified as Case1 exhibited similar trends. Regarding the six patterns involving
combinations of two variables, Case3,4, Case2,3, and Case2,4 were classified as Clus-
ter 0, whereas the other combinations were classified as Cluster 1. This means that
the combinations including Case1 were categorized separately from other combina-
tions. We observed similar results for the combination of three variables among the
four patterns and the combination of four variables: combinations including Case1
were classified as Cluster 1, whereas the other combinations were classified as Clus-
ter 0. This indicates that Case1 significantly affected the other variables. When
the number of clusters was increased to three, the data for Da were indicated as red
(Cluster 0), blue (Cluster 1), and green (Cluster 2) lines, as shown in Figure 2 b).
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Among the five patterns of single variables, Case1 was classified as Cluster 1, Case3
as Cluster 2, and the remaining as Cluster 0.

Next, we discuss the results of Db. In the case of two clusters, Case1 was classi-
fied as Cluster 1 and the other variables as Cluster 0 for single variables, as shown
in Figure 2 c). Furthermore, for combinations of two, three, and four variables, the
classification was similar to that of Da, with combinations that included Case1 sep-
arated from other combinations. In case of three clusters, Case1 was classified as
Cluster 1, Case2 as Cluster 2, and the other variables as Cluster 0 for single vari-
ables, as shown in Figure 2 d). For time series data with combinations of two, three,
and four variables, the cases with variable combinations including either Case1 or
Case2 were classified into the same cluster as the corresponding case. In the case of
variable combinations, both Case1 and Case2 were classified into the same cluster
as Case1.

In summary, we demonstrated that Case1 has a significant feature that also
affects the results when used in combination with multiple variables based on the
comparative classification results obtained by applying DTW.

4.3 BIC-Based Analysis of Effective Variable Combination

In the preceding section, we classified the characteristics of each variable combina-
tion by treating the fluctuations as time series data. Based on these results, we
discussed the effects of integrating multiple variables on analysis accuracy and the
interrelationships among the variables. In this section, we more comprehensively
investigate the relationship between the analysis accuracy and variable combina-
tions.

Sale change forecasting is a critical component of restaurant management. In
this study, we employed a decision tree to identify the influential explanatory vari-
ables for predicting changes in BIC based on total sales. The specific procedure is
as follows:

1. Transform the changes in BIC into binary data, such as by contrasting “in-
crease/decrease” relative to the preceding month as “Up/Down”, and employ
this as the target variable.

2. Define the explanatory variables as the BIC values obtained when employing
the variable combinations presented in Table 2.

3. Apply the random forest algorithm to the data synthesized in Steps 1 and 2, and
extract the effective combinations of variables and the combinations conducive
to predicting changes in BIC.

We identified the crucial variables for predicting BIC transitions to forecast store
sales using decision tree algorithms, such as random forest [29] and CART [30].
Decision tree algorithms highlight the essential variables for generating decision
rules by employing Gini coefficients or variable importance. Similar to the previous
section, we used total sales from the two restaurants (denoted as Da and Db) as
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experimental data. Tables 6 and 7 present the results of sorting Gini coefficients in
descending order and the accuracy of the decision rule for Da, respectively, when
the random forest algorithm was applied.

Variable
Combination

Mean Decreased
Values of Gini

Case1,3 3.207450
Case3 2.954016
Case2 2.944125
Case2,3 2.691539
Case1,2,3 2.365642
Case4 2.352224
Case1,2,4 2.248488
Case1,3,4 2.189068
Case3,4 2.164238
Case2,3,4 2.156108
Case1 2.135660
Case2,4 2.111797
Case1,2 2.082316
Case1,4 2.011359

Table 6. Random forest: Gini coefficient of each variable for Da

Down Up class.error

Down 21 17 0.4473684
Up 17 14 0.5483871

Total 38 31 0.4928

Table 7. Random forest: Discriminant results of rules for Da

From the random forest results, 13 variable combinations were identified as con-
tributing variables. As evident from Table 6, three variable combinations exhibited
high Gini coefficients for BIC changes: “Number of Customers” + “Number of Views
on a Gourmet Site”, “Number of Views on a Gourmet site”, and “Probability of
Precipitation.” Case1, which solely considered the “Number of Customers”, had
the lowest contribution toward prediction when it was used as the only explanatory
variable. However, the performance could be enhanced by combining it with other
variables. Conversely, when “Day of the Week” from Case4 was coupled with other
variables, the value of the Gini coefficient diminished, suggesting that employing it
independently may contribute more effectively toward BIC change prediction. Be-
cause Case4 exhibited seasonality, which was distinct from the other variables, it
was advantageous to use it individually. Because some cases with fewer explana-
tory variables outperformed cases with more variables, it is imperative to carefully
consider the combination of explanatory variables. Furthermore, as shown in Ta-
ble 7, more than 60% of cases were accurately classified as “down” data, and fewer
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than 50% of cases were accurately classified as “up” data, with the total rule accu-
racy exceeding 50%. In essence, the number of accurate branches surpassed that of
inaccurate ones.

Figure 3 shows a list of decision rules for sales changes.

Figure 3. Random forest: Rules acquired for Da

At the highest branching point, Case1,3, which includes the “Number of Cus-
tomers” and “Number of Views on Gourmet Sites” variables, determined the “down”
of BIC for total sales through the combination of these variables. The prediction
rules predominantly used Case1, Case2, Case3, Case4, Case1,2, Case1,3, Case2,4, and
Case1,3,4, which primarily constitute single- or two-variable combinations, except for
Case1,3,4. Therefore, an appropriate combination of explanatory variables can con-
tribute more to the prediction accuracy than cases with a more substantial number
of variables.

Moreover, Table 8 presents the results of the variable importance in a descending
order, and Figure 5 displays the discriminant rules for the case of Da obtained
through the CART algorithm.

Based on the results of the CART algorithm, ten variable combinations were
identified as contributing variables. First, we discuss the similarities with the re-
sults of random forest. The importance of the “Day of the Week” variable in Case4
diminished when it was paired with other variables, suggesting that using it indi-
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Variable
Combination

Values

Case3 17
Case4 15
Case1,3 12
Case2,3 11
Case3,4 10
Case1,4 9
Case2,4 9
Case2 6
Case1 5
Case1,2 4

Table 8. CART: Variable importance for Da

vidually can better contribute to predicting BIC changes. Case1, which employed
only the “Number of Customers” variable, exhibited a low predictive contribution
when it was used as the only explanatory variable, but this increased when it was
combined with other variables.

Second, we discuss the differences compared to the results derived by applying
random forest. Combinations encompassing more than three variables were not
ranked, indicating that the rules could be adequately generated using one or two
variables. Because the decision tree process of random forest is more robust than
that of CART, it is characterized by the extensive use of variables in discriminant
rule generation.

Figure 4. CART: Acquired rules for Da

Similar to the results obtained from the random forest algorithm, Case1,3, which
was a combination of “Number of Customers” and “Number of Views on Gourmet
Sites”, determined the “down” trend in BIC for total sales at the highest branching
point. Similarly, Tables 8 and 10 display the Gini coefficients and accuracy of the
decision rules for the case of Db, respectively, sorted in descending order.

Fourteen variable combinations were identified as contributing factors for im-
plementing the random forest algorithm. As presented in Table 8, the variables
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Combination
of Variable

MeanDecreaseGini

Case4 1.9333199
Case2,4 1.5876963
Case2 1.5788962
Case3,4 1.3392425
Case1 1.3273229
Case1,2,4 1.2881951
Case1,2,3 1.2374755
Case3 1.2294474
Case1,3,4 1.1410541
Case1,4 1.0840145
Case1,2 1.0289199
Case2,3 0.9279831
Case1,3 0.8489635
Case2,3,4 0.7583879

Table 9. Random forest: Gini coefficient of each variable for Db

Down Up class.error

Down 14 8 0.3636364
Up 10 5 0.6666667

Total 24 13 0.4865

Table 10. Random forest: Discriminant results of rules for Db

with high Gini coefficient values for predicting BIC changes included “Day of the
Week”, “Probability of Precipitation” + “Day of the Week”, and “Probability of
Precipitation.” Similar to the case of Da, Case4, which employed only “Day of the
Week”, and Case1, which employed only “Number of Customers”, provided better
predictive contributions when they were used independently rather than in combi-
nation with other variables. Furthermore, as indicated in Table 10, the error rate
for distinguishing “down” trends was relatively low, yet that for distinguishing “up”
trends exceeded 60%, and the accuracy of the entire rule set was more than 50%.
Figure 5 shows the list of decision rules acquired for the total sales change.

Analogous to the case ofDa, the primary branching point, encompassing Case1,3,
“Number of Customers”, and “Number of Views on Gourmet Sites”, established the
‘down’ trend of BIC for total sales. In the prediction rules, Case1, Case2, Case1,3,
Case3,4, and Case1,2,4 primarily comprised one or two variables apart from Case1,2,4.
Finally, Table 11 lists the variable importance, sorted in descending order, and
Figure 6 illustrates the discriminant rules for Db, derived by applying the CART
algorithm.

By applying the CART algorithm, eight variable combinations were identified as
contributing variables. First, we discuss the similarities with the results of random
forest. “Day of the Week”, included in Case4, was the most consequential variable
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Figure 5. Random forest: Acquired rules for Db

Variable
Combination

Values

Case4 20
Case1 16
Case1,4 14
Case1,3 14
Case3,4 14
Case3 12
Case2 5
Case1,2 5

Table 11. CART: Variable importance for Db

and its importance diminished when integrating it with other variables. Hence,
employing it individually can significantly contribute predicting BIC changes. Sec-
ond, we address the disparities between the results of random forest. Analogous
to Da, combinations comprising more than three elements were not ranked, indi-
cating that discriminant rules can be adequately generated using only one or two
variables.

Figure 6. CART: Acquired rules for Db
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In contrast to the results of the data and methods presented thus far, the initial
branching point, Case4, “Day of the Week”, determines the decline in BIC for
total sales. From the experimental results obtained using two real datasets, we
deduced that the seasonal variable should be preferably used independently and the
“Probability of Precipitation” variable contributes significantly even when employed
alone. Notably, although the prediction accuracy of the entire rule surpassed 50%,
further improvements can be made by incorporating enough training data.

Moreover, the outcomes obtained using the two decision tree-based algorithms
indicate that CART produces discriminant rules specialized for the training data,
allowing it to establish decision trees with only one or two variables. In contrast,
random forest randomly partitions the training data and generates discriminant
rules, thereby obtained robust decision trees with a more comprehensive range of
variables. The explanatory variable, which amalgamates all variables, has not been
used for decision tree generation in either the CART or random forest algorithms.
This is can be attributed to the higher contribution of seasonal variables when used
individually for rule generation, resulting in lower contribution when combined with
other variables.

In conclusion, the accuracy of BIC prediction in multivariate time-series analyses
can be enhanced by using seasonal variables individually and appropriately amalga-
mating other variables. The classification tree revealed the characteristic variables
and their impacts on other variables; these insights that were not derived using the
DTW method.

5 CONCLUSIONS

This study aimed to improve the prediction accuracy of multivariate time-series
models by analyzing BIC changes. First, we evaluate the impact of variable com-
binations on BIC accuracy using descriptive statistics, and we discovered that the
improvement conditions for the BIC of the prediction model varied depending on the
combination of explanatory variables, their features, and learning periods. More-
over, we demonstrated that forecasting the estimation accuracy of a model enables
more effective variable selection for model generation. Second, we identified vari-
ables with significant attributes by employing DTW to cluster and visualize the
trends in BIC changes for independently used variables and their combinations.

The study results suggest that using random forest to predict the accuracy of
BIC fluctuations for the dynamic regression model of ARIMA provides invaluable in-
formation to generate variable combinations. However, there is still room to enhance
the discrimination accuracy for the acquired rules. Furthermore, we demonstrated
the possibility of creating models with optimal accuracy by selecting variable com-
binations after pre-verifying their features.

In future studies, we will aim to reevaluate our findings using learning or valida-
tion data and investigate the features of the approach by comparing its performance
with that of deep learning methods such as LSTM.
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