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Abstract. Program dependence net (PDNet) is a kind of Petri nets which can
represent concurrent systems and software to apply the automata-theoretic ap-
proach for software model checking on Linear Temporal Logic (LTL). This paper
presents a formal modelling method to construct a PDNet which is consistent with
the behavior of multi-threaded C programs (PThread programs) from a source
code. For concurrent programs with a function call and POSIX threads, we pro-
pose the formal operational semantics by the labeled transition system (LTS). We
formalize the statements by the basic PDNet structure based on LTS operational
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semantics. Then, we propose the formal modelling method to build a basic flow
to simulate the execution of PThread programs. Finally, we give a case study to
illustrate the formal modelling method for verifying PThread programs on LTL
properties.
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1 INTRODUCTION

The multi-threaded C programs (PThread programs) are becoming increasingly
common in modern concurrent systems and software, which are universally uti-
lized with the advent of multi-core processors and the concurrency support of popu-
lar programming languages. Thus, property verification of their safety, correctness,
user-defined specification are critical and urgent. Over the past three decades, model
checking [1, 2] has received much attention as a formal verification method, which
could automatically explore the whole state space and effectively validate the crucial
requirements of concurrent systems and software.

However, the automatic construction of a verifiable finite model is still an ur-
gent problem. There exist some formal models, such as automata [3] and Petri
nets [4]. Owning to the analysis ability of structure and behavior, Petri nets have
been widely used for modelling concurrent systems and software. This formal model
can explicitly describe concurrency and synchronization. Thus, it is a powerful
model to represent concurrent programs. There are some works that represent con-
current programs [5, 6, 7, 8, 9]. They are able to construct Petri nets for a specific
class of properties, which can be used to analyze and verify the satisfaction of such
properties. But these modelling approaches either do not target a particular type
of code specification, or do not propose formal modelling methods.

Therefore, constructing a verifiable model directly from the source code requires
formal specifications. This is a challenging problem. Recent studies have been de-
voted to model multi-threaded programs using a control flow graph [10, 11]. But
there is still a need for a formal modelling approach based on Petri nets. In our pre-
vious work, we proposed a program dependence net (PDNet) [12] based on Colored
Petri Net (CPN) for concurrent systems and software. It also extends the types of
token, guard functions and arc expression, which makes it capable to describe the
operation of data. Then, it was used to verify the linear temporal properties for
model checking.

In this paper, we propose a formal modelling method based on PDNet model.
The overview of our PDNet-based formal modelling method is shown in Figure 1.
The modelling result (a PDNet model) can be used for software model checking.
The entire formal modelling process is divided into PDNet structure modelling for
basic structures and basic flow modelling for control flows and data flows. Thus, the
main contributions of this paper are summarized as follows:
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Figure 1. Overview of a formal modelling method

1. For the concurrent programs with a function call and POSIX threads, we define
the formal operational semantics by the labeled transition system (LTS).

2. We propose the basic PDNet structure based on the formal operational semantics
to formalize the statement.

3. We propose the formal modelling method to build a basic flow to simulate the
execution of concurrent programs.

In Section 2, some definitions related to PDNet are introduced. The semantics
of concurrent programs is proposed in Section 3. The modelling method based
on the PDNet of structure and flow are proposed in Sections 4 and 5. Then, the
model checking problem is defined in Section 6. The related works are reviewed in
Section 7. Finally, we summarize the whole paper.

2 PRELIMINARIES

2.1 Introduction of PDNet

Program dependence net (PDNet) [12, 13] can combine the control-flow structure
with the control-flow dependencies and provide the on-demand data-flow dependen-
cies calculating ability for the concurrent programs [13]. We introduce the PDNet
in this section.

In the following, B is the set of Boolean predicates with standard logic opera-
tions. E is a set of expressions. Type[e] is the type of an expression e ∈ E, i.e., the
type of the values obtained when evaluating e. Var(e) is the set of all variables in
an expression e. EV for a variable set V is the set of expressions e ∈ E such that
Var(e) ⊆ V . Type[v] is the type of a variable v.

Definition 1 (PDNet). PDNet is defined by a 9-tuple N ::= (Σ, V, P, T, F, C,G,E,
I), where:

1. Σ is a finite non-empty set of types, called color sets.

2. V is a finite set of typed variables. ∀v ∈ V : Type[v] ∈ Σ.

3. P is a finite set of places. P = Pc∪Pv ∪Pf . Concretely, Pc is a subset of control
places, Pv is a subset of variable places, and Pf is a subset of execution places.

4. T is a finite set of transitions and T ∩ P = ∅.
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5. F ⊆ (P × T ) ∪ (T × P ) is a finite set of directed arcs. F = Fc ∪ Frw ∪ Ff .
Concretely, Fc ⊆ (Pc × T ) ∪ (T × Pc) is a subset of control arcs, Frw ⊆ (Pv ×
T ) ∪ (T × Pv) is a subset of read-write arcs, and Ff ⊆ (Pf × T ) ∪ (T × Pf ) is
a subset of execution arcs.

6. C : P → Σ is a color set function, that assigns a color set C(p) belonging to the
set of types Σ to each place p.

7. G : T → EV is a guard function, that assigns an expression G(t) to each transi-
tion t. ∀t ∈ T : Type[G(t)] ∈ B ∧ Type[Var(G(t))] ⊆ Σ.

8. E : F → EV is a function, that assigns an arc expression E(f) to each arc f .
∀f ∈ F : Type[E(f)] = C(p(f))MS ∧ Type[Var(E(f))] ⊆ Σ, where p(f) is the
place connected to arc f .

9. I : P → E∅ is an initialization function, that assigns an initialization expression
I(p) to each place p. ∀p ∈ P : Type[I(p)] = C(p)MS ∧ Var(I(p)) = ∅.

Other related definitions (e.g., the enabled and occurrence rules) and more de-
tails of PDNet can be found in [12, 13]. To define the verification problem, the occur-
rence sequence of PDNet is defined based on its enabled and occurrence rules [12, 13].

Definition 2 (Occurrence Sequence of PDNet). Let N be a PDNet, M0 be the ini-

tial marking of N , (t, b) be a binding element of N , and B̃(t) be a set of all binding
elements of t. An occurrence sequence ω of N can be defined by the following
inductive scheme:

1. M0[ε⟩M0 (ε is an empty sequence),

2. M0[ω⟩M1 ∧M1[(t, b)⟩M2 : M0[ω(t, b)⟩M2.

An occurrence sequence ω of N is maximal, iff

1. ω is of infinite length (e.g., (t1, b1), (t2, b2), · · · , (tn, bn), · · · ), or
2. M0[ω⟩M1 ∧ ∀t ∈ T , ∃/(t, b) ∈ B̃(t) : M1[(t, b)⟩.

All maximal occurrence sequences constitute the language accepted by a PDNet
N , denoted by L(N). The state-space of the PDNet consists of the marking set,
where every marking is reached from the initial marking by an occurrence sequence.
And a marking sequenceM [ω] could be generated by occurring all binding elements
in ω. Hence, the language L(N) accepted by the PDNet N represents the semantics
of all marking sequences starting from the initial marking M0 of N .

2.2 LTL Properties of PDNet

For model checking, linear temporal logic (LTL) [14] is an adequate formalism to
specify the linear temporal properties of the concurrent programs. As we have
defined in [12, 13], we remove the X operator in this paper. We introduce LTL
properties based on the proposition and LTL-X formula of PDNet.
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Definition 3 (Proposition and LTL-X Formula of PDNet). Let N be a PDNet, a
be a proposition, A be a set of propositions, and ψ be a LTL-X formula. The syntax
of propositions is defined:

a ::= true | false | is-fireable(t) | token-value(p) ⋆ c. (1)

The proposition semantics is defined w.r.t. a marking M :

is-fireable(t) =

{
true, if ∃b : M [(t, b)⟩,
false, otherwise,

(2)

token-value(p) ⋆ c =

{
true, if M(p) ⋆ c holds,

false, otherwise.
(3)

The syntax of LTL-X over A is defined:

ψ ::= a | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ψ1 ⇒ ψ2 | Fψ | Gψ | ψ1Uψ2, (4)

where ¬, ∧, ∨ and ⇒ are usual propositional connectives, F , G and U are temporal
operators, ψ, ψ1 and ψ2 are LTL-X formulae.

The semantics of LTL-X is the same as [13] of Petri nets. For example, G
is-fireable(t) ⇒ F token-value(p) = 0 means that whenever the transition t is en-
abled, the token of p will be equal to 0 in some subsequent states. The Büchi
automaton can encode an LTL-X formula as [14, 15] for the explicit model checking.
That is, the negation of the verified property ψ is translated into a Büchi automaton
A¬ψ. We define the model checking problem in Section 6.

3 OPERATIONAL SEMANTICS OF CONCURRENT PROGRAM

C programs using POSIX threads [16] refers to the concurrent programs in this
paper. POSIX threads extension specifies primitives to provide mutual exclusion, as
well as synchronized waiting. For simplicity, we consider the assignment statements
to be atomic.

Take inspiration from existing researches on the function call [10] and concur-
rency primitive [17], we describe the complete semantics for the function calls and
the concurrency primitives. The syntax of concurrent programs is defined in [12].
To express the operational semantics of a concurrent program for our PDNet mod-
elling, we define the labeled transition system (LTS) semantics of the concurrent
programs.

Definition 4 (LTS Semantics of Concurrent Programs). Let P be a concurrent
program, NP ::= ⟨S,A,→,S0⟩ be the labeled transition system of P , where:

1. S ⊆ H ×M× (L → I)× (C → IMS) is a set of the program configurations.
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2. A ⊆ T × B is a set of actions, where T comes from P .

3. →⊆ S × A × S is a set of transition relations on the concurrent program con-
figurations S.

4. S0 ∈ S is the initial configuration.

Formally, s ::= ⟨h,m, r, u⟩ is a configuration of S, where h ∈ H is a func-
tion that indicates the current program location of every thread, m ∈ M is the
current memory state, r is a function which maps every mutex to a thread iden-
tifier, and u is also a function that maps every condition variable to a multiset of
thread identifiers of the threads which are currently waiting on the condition vari-
able. S0 ::= ⟨h0,m0, r0, u0⟩ where h0 ∈ H and m0 ∈ M come from P , r0 : L → {0}
represents every mutex, and it is not initially held by any threads, and u0 : C → ∅
represents every condition variable that do not initially block any threads. Hence,
we characterize the states of P by the configurations S of NP . α ::= ⟨τ, β⟩ is an
action of A, where τ ∈ T is a statement of P and β ∈ B is an effect for the op-
eration q from the statement τ . The transition relation → on the configurations

is represented by s
⟨τ,β⟩−→ s′. The interleaved execution of τ could update the con-

figuration s to a new configuration s′ based on the effect β corresponding to the
operation of τ . In fact, the effect of an action α ∈ A characterizes the nature of the
transition relations with this action on configurations of NP . The effect is defined
by B := ({asi , jum, ret , tcd , fcd , call , rets} × K) ∪ ({acq , rel} × L) ∪ ({sig} × C) ∪
({wa1,wa2,wa3} × C × L)).

To formalize our PDNet modelling methods, the semantics of a concurrent pro-
gram is expressed by the transition relations → on the program configurations under
a current configuration s = ⟨h,m, r, u⟩ of P in Table 1. The intuition behind the
semantics is how s updates based on the transition relations with the actions of A.
Thus, the execution of a statement gives rise to a transition relation in correspon-
dence with the operation of the statement. For convenience, the action referenced
later is denoted by an abbreviation at the end of each row in Table 1. For instance,
asi represents the action ⟨τ, ⟨asi , l′⟩⟩ where ⟨asi, l′⟩ is the effect corresponding to the
operation of τ , updating the program location to l′. Here, suppose an assignment
operation is ν := w in statement τ . [[w]]m denotes that the value evaluating by the
expression w under the memory statem. And this value is assigned to the variable ν.
Thus, m′ = m[ν 7→ [[w]]m] denotes the new memory state where m′(ν) = [[w]]m and
m′(y) = m(y) (∀y ∈ V : y ̸= ν).

In the same way, jum represents the action ⟨τ, ⟨jum, l′⟩⟩ where the jump opera-
tion of τ is break or continue, updating the program location to l′. But jum does not
update the memory state. ret represents the action ⟨τ, ⟨ret, l′⟩⟩ where the jump oper-
ation of τ is return, updating the program location to l′. For a branching operation,
tcd represents the action ⟨τ, ⟨tcd, l′⟩⟩, where the Boolean condition w is evaluated
by true (i.e., [[w]]m = true), and fcd represents the action ⟨τ, ⟨tcd, l′⟩⟩, where the
boolean condition w is evaluated by false (i.e., [[w]]m = false). Neither tcd or fcd
updates the memory state. And they update the program locations to different pro-
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Action Semantics

asi
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := ν := w h(i) = l

⟨h,m, r, u⟩ ⟨τ,⟨ass,l′⟩⟩−→ ⟨h[i 7→ l′],m′, r, u⟩

jum
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := break or continue h(i) = l

⟨h,m, r, u⟩ ⟨τ,⟨jum,l′⟩⟩−→ ⟨h[i 7→ l′],m, r, u⟩

ret
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := return h(i) = l

⟨h,m, r, u⟩ ⟨τ,⟨ret,l′⟩⟩−→ ⟨h[i 7→ l′],m′, r, u⟩

tcd
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := if(w) or while(w) [[w]]m = true h(i) = l

⟨h,m, r, u⟩ ⟨τ,⟨tcd ,l′⟩⟩−→ ⟨h[i 7→ l′],m, r, u⟩

fcd
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := if(w) or while(w) [[w]]m = false h(i) = l

⟨h,m, r, u⟩ ⟨τ,⟨fcd,l′⟩⟩−→ ⟨h[i 7→ l′],m, r, u⟩

call
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := call h(i) = l

⟨h,m, r, u⟩ ⟨τ,⟨call,l′⟩⟩−→ ⟨h[i 7→ l′],m′, r, u⟩

rets
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := rets h(i) = l

⟨h,m, r, u⟩ ⟨τ,⟨rets,l′⟩⟩−→ ⟨h[i 7→ l′],m′, r, u⟩

acq
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := ⟨lock , ℓ⟩h(i) = l r(ℓ) = 0

⟨h,m, r, u⟩ ⟨τ,⟨acq,ℓ⟩⟩−→ ⟨h[i 7→ l′],m, r[ℓ 7→ i], u⟩

rel
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := ⟨unlock , ℓ⟩h(i) = l r(ℓ) = i

⟨h,m, r, u⟩ ⟨τ,⟨rel ,ℓ⟩⟩−→ ⟨h[i 7→ l′],m, r[ℓ 7→ 0], u⟩

sig
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := ⟨singal , γ⟩h(i) = l {j} ∈ u(γ)

⟨h,m, r, u⟩ ⟨τ,⟨sig,γ⟩⟩−→ ⟨h[i 7→ l′],m, r, u[γ 7→ u(γ) \ {j} ∪ {−j}]⟩

wa1
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := ⟨wait , γ, ℓ⟩h(i) = l r(ℓ) = i {i} /∈ u(γ)

⟨h,m, r, u⟩ ⟨τ,⟨wa1,γ,ℓ⟩⟩−→ ⟨h,m, r[ℓ 7→ 0], u[γ 7→ u(γ) ∪ {i}]⟩

wa2
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := ⟨wait , γ, ℓ⟩h(i) = l r(ℓ) = 0 {−i} ∈ u(γ)

⟨h,m, r, u⟩ ⟨τ,⟨wa2,γ,ℓ⟩⟩−→ ⟨h,m, r, u[γ 7→ u(γ) \ {−i}]⟩

wa3
τ := ⟨i, q, l, l′,m,m′⟩ ∈ T q := ⟨wait , γ, ℓ⟩h(i) = l r(ℓ) = 0

⟨h,m, r, u⟩ ⟨τ,⟨wa3,γ,ℓ⟩⟩−→ ⟨h[i 7→ l′],m, r[ℓ 7→ i], u⟩

Table 1. Semantics of concurrent programs
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gram locations l′. For a function call, call represents the action ⟨τ, ⟨call, l′⟩⟩, where
l′ is the entry of the called function, and rets represents the action ⟨τ, ⟨rets, l′⟩⟩,
where l′ is the return site of the calling function. Similarly, suppose cassign of call
is ν1 := w1 and rassign of rets is ν2 := w2. m′ = m[ν1 7→ [[w1]]m] denotes the
new memory state for call and m′ = m[ν2 7→ [[w2]]m] denotes the new memory
state for rets . In addition, asi , jum, tcd , fcd , call and rets do not update r and u
of s.

Moreover, acq represents the action ⟨τ, ⟨acq, ℓ⟩⟩ corresponding to the operation
⟨lock, ℓ⟩. If ℓ is not held by any thread (r(ℓ) = 0), acq represents thread i obtains
this mutex ℓ (r[ℓ 7→ i]) and updates the program location to l′. However, if ℓ is
held by other thread, thread i could be blocked by ℓ and current configuration s
cannot be updated by acq . And rel represents the action ⟨τ, ⟨rel , ℓ⟩⟩ corresponding
to the operation ⟨unlock , ℓ⟩. Here, r(ℓ) = i means the mutex ℓ is held by thread i.
If r(ℓ) = i, thread i could release this mutex ℓ (r[ℓ 7→ 0]) and updates the program
location to l′. Then, sig represents the action ⟨τ, ⟨sig, γ⟩⟩ corresponding to the
operation ⟨signal , γ⟩. Thread i could notify a thread j belonging to u(γ) ({j} ∈
u(γ)). Thus, thread j could be notified by thread i (u[γ 7→ u(γ) \ {j} ∪ {j, i}]).
And it updates the program location to l′. Particularly, the operation ⟨wait , γ, ℓ⟩
corresponds to three actions wa1, wa2 and wa3, where only wa3 updates the program
location to l′. If the mutex ℓ is held by thread i (r(ℓ) = i) and thread i is not
waiting for γ currently ({i} /∈ u(γ)), wa1 (⟨wa1, γ, ℓ⟩) represents the action releases
the mutex ℓ (r[ℓ 7→ 0]), and thread i is added to the current thread multiset waiting
on condition variable γ (u[γ 7→ u(γ) ∪ {i}]). Then, wa2 (⟨wa2, γ, ℓ⟩) represents the
thread i is blocked until a thread j ({i, j} ∈ u(γ)) notifies by condition variable γ.
Thus, thread i no long waits for a notification on γ (u[γ 7→ u(γ) \ {i, j}]). Finally,
if the thread i has been woken up by the other thread and ℓ is not held (r(ℓ) = 0),
wa3 (⟨wa3, γ, ℓ⟩) represents the action acquires the mutex ℓ again (r[ℓ 7→ i]) and
updates the program location to i. In addition, acq , rel , sig , wa1, wa2 and wa3 do
not update m of the current configuration s.

4 PDNET STRUCTURE MODELLING

The intuition of our formal modelling is to construct specific PDNet structures for
the concurrent program semantics, as shown in Table 1. Declarations of variables
and functions are constructed firstly. The PDNet structures for the operations from
the syntax in [12] are constructed based on the semantics in Table 1. Then, the
basic flows are constructed to complete the control-flow structure. In Figure 2,
those that have been built before the corresponding modelling are in the dotted
boxes.

4.1 Declaration Modelling

There are three kinds of declarations we support as follows.
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1

(a) (b) (c)

ca

ta

ci

ti1

(f)

S for 
global 

variable

D  int 
Basic 
variable

Pointer 
variable

Array 
variable

Structure
variable

Variable declaration 
form

D  int  
string

int  int 
int  int  

string

D  int  
int

D  int  int 
 string

D1 Dn  
int  string

D1   
Dn  int

S for 
location 
variable

Variable 
category

u ::= char | unsigned 

char | short | 
unsigned short | int | 

unsigned int | long | 

unsigned long | float 
| double | long int | 

long long | long 
double

*u 

 u [n] 

u1 |    | un 

va

Pv 

vb

I(Pv)

(1, bid)

vb

vz (aid, zid)

e.g. main() {

    int a=2, b=1;

    int *z=&a;

}

Pc

(ca, ta)

F

 ta
ca

TM(P)P

 ci

 ti1

 ti2

G(T)

true

[a>0]

[a0]

E(F)

(ci, ti1)

(ci, ti2)

main

fun

main

e.g. 

main() {

   a=b+2;

}

ti2

e.g. 

fun() {

   if(a>0) { }

   else { }

}

tw1 cs

cw1

vm

cw2

vc

cw3

ts

tw3

tw2

e.g.
thr1 {

pthread_cond
_signal(&γ); }
thr2 {

pthread_cond
_wait(&γ, &l); }

vm

cl

tl

cu

tu

e.g.

thr {

pthread_mutex

_lock(&l);



pthread_mutex

_unlock(&l);

}

(g)

tb

cb

ce
vt

e.g. 

int fun(int s, int t);

E(F)

Pc

Pf

(cb, tb)

Pv

vt

cb

ce

I(P)P F

 fun

(0, tid, fun)

tj

E(F)

Pc

Pf

(cj, tj)

Pv vr

cj

TI(P)

/

(0, rid, fun)

P

main

F

(tj, cb) NULL

tb

cb

tj

cj

vr

(e)

(d)

ce

tk

ck

e.g. main() {

    fun(a, 2);

}

(ce, tk) NULL

(cw1, tw1)

F

tw1cw1

TM(P)

thr1

P

thr1 tw2

tw3

E(F)

(cw2, tw2)

(cw3, tw3)

thr1

thr1

thr1
cw2

cw3

cs

thr1

thr2 ts

(cs, ts)

(tw1, vm)

F E(F)

(tw1, cw2)

(tw2, cw3)

thr1

thr1

thr1

(vm, tw3)

(ts, vc)

(vm, tl)

(tu, vm)

thr2
thr

thr

FTM(P)P

cl

E(F)

cu

thr

thr

tl

tu

(cl, tl)

(cu, tu)

thr

thr (vc, tw2) NULL

thr1

NULL

fifa

Pf

fa

fi

(fa, ta)

(fi, ti1)

(fi, ti2)

fun

fun

Fc

Ff

e.g. main() {
   a=b+2;
}

t1

c1
va

vb

T

tb

Type

Basic 
variable

Pointer 
variable

ca

ta

fa

(va, ta)

Frw E(Frw)

(ta, va)

(b+2, aid)

(a, aid)

(vb, ta)

Frw E(Frw)

(tb, va)

(b, bid)

(b, bid)

(h)

e.g. main() {

   a=2; b=3; c=1; }

(i)

c2

t2

f2f1 c3

t3

f3

tb

cb

(tb, f1)

Ff E(Ff)

main (t1, f2) main  (t2, f3) main

vz

va (2, aid)
Basic 
variable

G(T)

true

ck /

Ff E(Ff) Ff E(Ff)

(j)

vs (0, sid, fun)

F E(F)(ck, tk) main

tk

G(T)

vs

true

true

G(T)

true

true

true

true

G(T)

true

true

vt

vs

tj

cj

te

cevt

vs

e.g. main() {

    fun(a, 2); }

fun(int s, int t) {

    return s+t; }

va

(va, tj)

Frw E(Frw)

(tj, va)

(a, aid)

(a, aid)

(vs, tj)

Frw E(Frw)

(tj, vs)

(s, sid, 
fun)

(a, sid, 
fun)

(vt, tj)

Frw E(Frw)

(tj, vt)

(t, tid, 
fun)

(2, tid, 
fun)

(vs, te)

Frw E(Frw)

(te, vs)

(s, sid, 
fun)

(s, sid, 
fun)

vr

(vt, te)

Frw E(Frw)

(te, vt)

(t, tid, 
fun)

(t, tid, 
fun)

(vr, te)

Frw E(Frw)

(te, vt)

(t, rid, 
fun)

(s+t, rid, 
fun)

fun
main

main

fun

fun

/

/

te

a)

1

(a) (b) (c)

ca

ta

ci

ti1

(f)

S for 
global 

variable

D  int 
Basic 
variable

Pointer 
variable

Array 
variable

Structure
variable

Variable declaration 
form

D  int  
string

int  int 
int  int  

string

D  int  
int

D  int  int 
 string

D1 Dn  
int  string

D1   
Dn  int

S for 
location 
variable

Variable 
category

u ::= char | unsigned 

char | short | 
unsigned short | int | 

unsigned int | long | 

unsigned long | float 
| double | long int | 

long long | long 
double

*u 

 u [n] 

u1 |    | un 

va

Pv 

vb

I(Pv)

(1, bid)

vb

vz (aid, zid)

e.g. main() {

    int a=2, b=1;

    int *z=&a;

}

Pc

(ca, ta)

F

 ta
ca

TM(P)P

 ci

 ti1

 ti2

G(T)

true

[a>0]

[a0]

E(F)

(ci, ti1)

(ci, ti2)

main

fun

main

e.g. 

main() {

   a=b+2;

}

ti2

e.g. 

fun() {

   if(a>0) { }

   else { }

}

tw1 cs

cw1

vm

cw2

vc

cw3

ts

tw3

tw2

e.g.
thr1 {

pthread_cond
_signal(&γ); }
thr2 {

pthread_cond
_wait(&γ, &l); }

vm

cl

tl

cu

tu

e.g.

thr {

pthread_mutex

_lock(&l);



pthread_mutex

_unlock(&l);

}

(g)

tb

cb

ce
vt

e.g. 

int fun(int s, int t);

E(F)

Pc

Pf

(cb, tb)

Pv

vt

cb

ce

I(P)P F

 fun

(0, tid, fun)

tj

E(F)

Pc

Pf

(cj, tj)

Pv vr

cj

TI(P)

/

(0, rid, fun)

P

main

F

(tj, cb) NULL

tb

cb

tj

cj

vr

(e)

(d)

ce

tk

ck

e.g. main() {

    fun(a, 2);

}

(ce, tk) NULL

(cw1, tw1)

F

tw1cw1

TM(P)

thr1

P

thr1 tw2

tw3

E(F)

(cw2, tw2)

(cw3, tw3)

thr1

thr1

thr1
cw2

cw3

cs

thr1

thr2 ts

(cs, ts)

(tw1, vm)

F E(F)

(tw1, cw2)

(tw2, cw3)

thr1

thr1

thr1

(vm, tw3)

(ts, vc)

(vm, tl)

(tu, vm)

thr2
thr

thr

FTM(P)P

cl

E(F)

cu

thr

thr

tl

tu

(cl, tl)

(cu, tu)

thr

thr (vc, tw2) NULL

thr1

NULL

fifa

Pf

fa

fi

(fa, ta)

(fi, ti1)

(fi, ti2)

fun

fun

Fc

Ff

e.g. main() {
   a=b+2;
}

t1

c1
va

vb

T

tb

Type

Basic 
variable

Pointer 
variable

ca

ta

fa

(va, ta)

Frw E(Frw)

(ta, va)

(b+2, aid)

(a, aid)

(vb, ta)

Frw E(Frw)

(tb, va)

(b, bid)

(b, bid)

(h)

e.g. main() {

   a=2; b=3; c=1; }

(i)

c2

t2

f2f1 c3

t3

f3

tb

cb

(tb, f1)

Ff E(Ff)

main (t1, f2) main  (t2, f3) main

vz

va (2, aid)
Basic 
variable

G(T)

true

ck /

Ff E(Ff) Ff E(Ff)

(j)

vs (0, sid, fun)

F E(F)(ck, tk) main

tk

G(T)

vs

true

true

G(T)

true

true

true

true

G(T)

true

true

vt

vs

tj

cj

te

cevt

vs

e.g. main() {

    fun(a, 2); }

fun(int s, int t) {

    return s+t; }

va

(va, tj)

Frw E(Frw)

(tj, va)

(a, aid)

(a, aid)

(vs, tj)

Frw E(Frw)

(tj, vs)

(s, sid, 
fun)

(a, sid, 
fun)

(vt, tj)

Frw E(Frw)

(tj, vt)

(t, tid, 
fun)

(2, tid, 
fun)

(vs, te)

Frw E(Frw)

(te, vs)

(s, sid, 
fun)

(s, sid, 
fun)

vr

(vt, te)

Frw E(Frw)

(te, vt)

(t, tid, 
fun)

(t, tid, 
fun)

(vr, te)

Frw E(Frw)

(te, vt)

(t, rid, 
fun)

(s+t, rid, 
fun)

fun
main

main

fun

fun

/

/

te

b)

1

(a) (b) (c)

ca

ta

ci

ti1

(f)

S for 
global 

variable

D  int 
Basic 
variable

Pointer 
variable

Array 
variable

Structure
variable

Variable declaration 
form

D  int  
string

int  int 
int  int  

string

D  int  
int

D  int  int 
 string

D1 Dn  
int  string

D1   
Dn  int

S for 
location 
variable

Variable 
category

u ::= char | unsigned 

char | short | 
unsigned short | int | 

unsigned int | long | 

unsigned long | float 
| double | long int | 

long long | long 
double

*u 

 u [n] 

u1 |    | un 

va

Pv 

vb

I(Pv)

(1, bid)

vb

vz (aid, zid)

e.g. main() {

    int a=2, b=1;

    int *z=&a;

}

Pc

(ca, ta)

F

 ta
ca

TM(P)P

 ci

 ti1

 ti2

G(T)

true

[a>0]

[a0]

E(F)

(ci, ti1)

(ci, ti2)

main

fun

main

e.g. 

main() {

   a=b+2;

}

ti2

e.g. 

fun() {

   if(a>0) { }

   else { }

}

tw1 cs

cw1

vm

cw2

vc

cw3

ts

tw3

tw2

e.g.
thr1 {

pthread_cond
_signal(&γ); }
thr2 {

pthread_cond
_wait(&γ, &l); }

vm

cl

tl

cu

tu

e.g.

thr {

pthread_mutex

_lock(&l);



pthread_mutex

_unlock(&l);

}

(g)

tb

cb

ce
vt

e.g. 

int fun(int s, int t);

E(F)

Pc

Pf

(cb, tb)

Pv

vt

cb

ce

I(P)P F

 fun

(0, tid, fun)

tj

E(F)

Pc

Pf

(cj, tj)

Pv vr

cj

TI(P)

/

(0, rid, fun)

P

main

F

(tj, cb) NULL

tb

cb

tj

cj

vr

(e)

(d)

ce

tk

ck

e.g. main() {

    fun(a, 2);

}

(ce, tk) NULL

(cw1, tw1)

F

tw1cw1

TM(P)

thr1

P

thr1 tw2

tw3

E(F)

(cw2, tw2)

(cw3, tw3)

thr1

thr1

thr1
cw2

cw3

cs

thr1

thr2 ts

(cs, ts)

(tw1, vm)

F E(F)

(tw1, cw2)

(tw2, cw3)

thr1

thr1

thr1

(vm, tw3)

(ts, vc)

(vm, tl)

(tu, vm)

thr2
thr

thr

FTM(P)P

cl

E(F)

cu

thr

thr

tl

tu

(cl, tl)

(cu, tu)

thr

thr (vc, tw2) NULL

thr1

NULL

fifa

Pf

fa

fi

(fa, ta)

(fi, ti1)

(fi, ti2)

fun

fun

Fc

Ff

e.g. main() {
   a=b+2;
}

t1

c1
va

vb

T

tb

Type

Basic 
variable

Pointer 
variable

ca

ta

fa

(va, ta)

Frw E(Frw)

(ta, va)

(b+2, aid)

(a, aid)

(vb, ta)

Frw E(Frw)

(tb, va)

(b, bid)

(b, bid)

(h)

e.g. main() {

   a=2; b=3; c=1; }

(i)

c2

t2

f2f1 c3

t3

f3

tb

cb

(tb, f1)

Ff E(Ff)

main (t1, f2) main  (t2, f3) main

vz

va (2, aid)
Basic 
variable

G(T)

true

ck /

Ff E(Ff) Ff E(Ff)

(j)

vs (0, sid, fun)

F E(F)(ck, tk) main

tk

G(T)

vs

true

true

G(T)

true

true

true

true

G(T)

true

true

vt

vs

tj

cj

te

cevt

vs

e.g. main() {

    fun(a, 2); }

fun(int s, int t) {

    return s+t; }

va

(va, tj)

Frw E(Frw)

(tj, va)

(a, aid)

(a, aid)

(vs, tj)

Frw E(Frw)

(tj, vs)

(s, sid, 
fun)

(a, sid, 
fun)

(vt, tj)

Frw E(Frw)

(tj, vt)

(t, tid, 
fun)

(2, tid, 
fun)

(vs, te)

Frw E(Frw)

(te, vs)

(s, sid, 
fun)

(s, sid, 
fun)

vr

(vt, te)

Frw E(Frw)

(te, vt)

(t, tid, 
fun)

(t, tid, 
fun)

(vr, te)

Frw E(Frw)

(te, vt)

(t, rid, 
fun)

(s+t, rid, 
fun)

fun
main

main

fun

fun

/

/

te

c)

1

(a) (b) (c)

ca

ta

ci

ti1

(f)

S for 
global 

variable

D  int 
Basic 
variable

Pointer 
variable

Array 
variable

Structure
variable

Variable declaration 
form

D  int  
string

int  int 
int  int  

string

D  int  
int

D  int  int 
 string

D1 Dn  
int  string

D1   
Dn  int

S for 
location 
variable

Variable 
category

u ::= char | unsigned 

char | short | 
unsigned short | int | 

unsigned int | long | 

unsigned long | float 
| double | long int | 

long long | long 
double

*u 

 u [n] 

u1 |    | un 

va

Pv 

vb

I(Pv)

(1, bid)

vb

vz (aid, zid)

e.g. main() {

    int a=2, b=1;

    int *z=&a;

}

Pc

(ca, ta)

F

 ta
ca

TM(P)P

 ci

 ti1

 ti2

G(T)

true

[a>0]

[a0]

E(F)

(ci, ti1)

(ci, ti2)

main

fun

main

e.g. 

main() {

   a=b+2;

}

ti2

e.g. 

fun() {

   if(a>0) { }

   else { }

}

tw1 cs

cw1

vm

cw2

vc

cw3

ts

tw3

tw2

e.g.
thr1 {

pthread_cond
_signal(&γ); }
thr2 {

pthread_cond
_wait(&γ, &l); }

vm

cl

tl

cu

tu

e.g.

thr {

pthread_mutex

_lock(&l);



pthread_mutex

_unlock(&l);

}

(g)

tb

cb

ce
vt

e.g. 

int fun(int s, int t);

E(F)

Pc

Pf

(cb, tb)

Pv

vt

cb

ce

I(P)P F

 fun

(0, tid, fun)

tj

E(F)

Pc

Pf

(cj, tj)

Pv vr

cj

TI(P)

/

(0, rid, fun)

P

main

F

(tj, cb) NULL

tb

cb

tj

cj

vr

(e)

(d)

ce

tk

ck

e.g. main() {

    fun(a, 2);

}

(ce, tk) NULL

(cw1, tw1)

F

tw1cw1

TM(P)

thr1

P

thr1 tw2

tw3

E(F)

(cw2, tw2)

(cw3, tw3)

thr1

thr1

thr1
cw2

cw3

cs

thr1

thr2 ts

(cs, ts)

(tw1, vm)

F E(F)

(tw1, cw2)

(tw2, cw3)

thr1

thr1

thr1

(vm, tw3)

(ts, vc)

(vm, tl)

(tu, vm)

thr2
thr

thr

FTM(P)P

cl

E(F)

cu

thr

thr

tl

tu

(cl, tl)

(cu, tu)

thr

thr (vc, tw2) NULL

thr1

NULL

fifa

Pf

fa

fi

(fa, ta)

(fi, ti1)

(fi, ti2)

fun

fun

Fc

Ff

e.g. main() {
   a=b+2;
}

t1

c1
va

vb

T

tb

Type

Basic 
variable

Pointer 
variable

ca

ta

fa

(va, ta)

Frw E(Frw)

(ta, va)

(b+2, aid)

(a, aid)

(vb, ta)

Frw E(Frw)

(tb, va)

(b, bid)

(b, bid)

(h)

e.g. main() {

   a=2; b=3; c=1; }

(i)

c2

t2

f2f1 c3

t3

f3

tb

cb

(tb, f1)

Ff E(Ff)

main (t1, f2) main  (t2, f3) main

vz

va (2, aid)
Basic 
variable

G(T)

true

ck /

Ff E(Ff) Ff E(Ff)

(j)

vs (0, sid, fun)

F E(F)(ck, tk) main

tk

G(T)

vs

true

true

G(T)

true

true

true

true

G(T)

true

true

vt

vs

tj

cj

te

cevt

vs

e.g. main() {

    fun(a, 2); }

fun(int s, int t) {

    return s+t; }

va

(va, tj)

Frw E(Frw)

(tj, va)

(a, aid)

(a, aid)

(vs, tj)

Frw E(Frw)

(tj, vs)

(s, sid, 
fun)

(a, sid, 
fun)

(vt, tj)

Frw E(Frw)

(tj, vt)

(t, tid, 
fun)

(2, tid, 
fun)

(vs, te)

Frw E(Frw)

(te, vs)

(s, sid, 
fun)

(s, sid, 
fun)

vr

(vt, te)

Frw E(Frw)

(te, vt)

(t, tid, 
fun)

(t, tid, 
fun)

(vr, te)

Frw E(Frw)

(te, vt)

(t, rid, 
fun)

(s+t, rid, 
fun)

fun
main

main

fun

fun

/

/

te

d)
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1

(a) (b) (c)

ca

ta

ci

ti1

(f)

S for 
global 

variable

D  int 
Basic 
variable

Pointer 
variable

Array 
variable

Structure
variable

Variable declaration 
form

D  int  
string

int  int 
int  int  

string

D  int  
int

D  int  int 
 string

D1 Dn  
int  string

D1   
Dn  int

S for 
location 
variable

Variable 
category

u ::= char | unsigned 

char | short | 
unsigned short | int | 

unsigned int | long | 

unsigned long | float 
| double | long int | 

long long | long 
double

*u 

 u [n] 

u1 |    | un 

va

Pv 

vb

I(Pv)

(1, bid)

vb

vz (aid, zid)

e.g. main() {

    int a=2, b=1;

    int *z=&a;

}

Pc

(ca, ta)

F

 ta
ca

TM(P)P

 ci

 ti1

 ti2

G(T)

true

[a>0]

[a0]

E(F)

(ci, ti1)

(ci, ti2)

main

fun

main

e.g. 

main() {

   a=b+2;

}

ti2

e.g. 

fun() {

   if(a>0) { }

   else { }

}

tw1 cs

cw1

vm

cw2

vc

cw3

ts

tw3

tw2

e.g.
thr1 {

pthread_cond
_signal(&γ); }
thr2 {

pthread_cond
_wait(&γ, &l); }

vm

cl

tl

cu

tu

e.g.

thr {

pthread_mutex

_lock(&l);



pthread_mutex

_unlock(&l);

}

(g)

tb

cb

ce
vt

e.g. 

int fun(int s, int t);

E(F)

Pc

Pf

(cb, tb)

Pv

vt

cb

ce

I(P)P F

 fun

(0, tid, fun)

tj

E(F)

Pc

Pf

(cj, tj)

Pv vr

cj

TI(P)

/

(0, rid, fun)

P

main

F

(tj, cb) NULL

tb

cb

tj

cj

vr

(e)

(d)

ce

tk

ck

e.g. main() {

    fun(a, 2);

}

(ce, tk) NULL

(cw1, tw1)

F

tw1cw1

TM(P)

thr1

P

thr1 tw2

tw3

E(F)

(cw2, tw2)

(cw3, tw3)

thr1

thr1

thr1
cw2

cw3

cs

thr1

thr2 ts

(cs, ts)

(tw1, vm)

F E(F)

(tw1, cw2)

(tw2, cw3)

thr1

thr1

thr1

(vm, tw3)

(ts, vc)

(vm, tl)

(tu, vm)

thr2
thr

thr

FTM(P)P

cl

E(F)

cu

thr

thr

tl

tu

(cl, tl)

(cu, tu)

thr

thr (vc, tw2) NULL

thr1

NULL

fifa

Pf

fa

fi

(fa, ta)

(fi, ti1)

(fi, ti2)

fun

fun

Fc

Ff

e.g. main() {
   a=b+2;
}

t1

c1
va

vb

T

tb

Type

Basic 
variable

Pointer 
variable

ca

ta

fa

(va, ta)

Frw E(Frw)

(ta, va)

(b+2, aid)

(a, aid)

(vb, ta)

Frw E(Frw)

(tb, va)

(b, bid)

(b, bid)

(h)

e.g. main() {

   a=2; b=3; c=1; }

(i)

c2

t2

f2f1 c3

t3

f3

tb

cb

(tb, f1)

Ff E(Ff)

main (t1, f2) main  (t2, f3) main

vz

va (2, aid)
Basic 
variable

G(T)

true

ck /

Ff E(Ff) Ff E(Ff)

(j)

vs (0, sid, fun)

F E(F)(ck, tk) main

tk

G(T)

vs

true

true

G(T)

true

true

true

true

G(T)

true

true

vt

vs

tj

cj

te

cevt

vs

e.g. main() {

    fun(a, 2); }

fun(int s, int t) {

    return s+t; }

va

(va, tj)

Frw E(Frw)

(tj, va)

(a, aid)

(a, aid)

(vs, tj)

Frw E(Frw)

(tj, vs)

(s, sid, 
fun)

(a, sid, 
fun)

(vt, tj)

Frw E(Frw)

(tj, vt)

(t, tid, 
fun)

(2, tid, 
fun)

(vs, te)

Frw E(Frw)

(te, vs)

(s, sid, 
fun)

(s, sid, 
fun)

vr

(vt, te)

Frw E(Frw)

(te, vt)

(t, tid, 
fun)

(t, tid, 
fun)

(vr, te)

Frw E(Frw)

(te, vt)

(t, rid, 
fun)

(s+t, rid, 
fun)

fun
main

main

fun

fun

/

/

te

e)

1

(a) (b) (c)

ca

ta

ci

ti1

(f)

S for 
global 

variable

D  int 
Basic 
variable

Pointer 
variable

Array 
variable

Structure
variable

Variable declaration 
form
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4.1.1 Variable Declarations Modelling

For variable declarations, we support four kinds of variable categories in this paper.
In Figure 2 a), the variable declaration forms of basic variable – pointer variable, ar-
ray variable and structure variable are listed in the second column. The color sets Σ
for global variables and local variables are all products listed in the third column
and the fourth column, respectively. Here, ν is a variable identifier and D represents
the corresponding variable type. For Σ of a global variable, the first component of
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Figure 2. Modelling a) Color sets for four kinds of variable declaration forms; b) Variable
declaration c) Function declaration d) PDNet structures for local operations e) PDNet
structures for function call operations f) PDNet structures for operations ⟨wait , γ, ℓ⟩ and
⟨signal , γ⟩ g) PDNet structures for operations ⟨lock , ℓ⟩ and ⟨unlock , ℓ⟩ h) PDNet arcs for
data-flow of variable read/write i) PDNet arcs for data-flow of parameter passing j) PDNet
arcs for traditional control-flow structure
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the basic variable and array variable is the data type, and the first component of
the pointer variable is int representing the variable identifier it currently points to.
The second component of the basic variable, pointer variable and array variable is
the variable identifier expressed by an integer. The third component of the array
variable is the array index. Particularly, if there are n different elements in a struc-
ture variable, Di (i ≤ n) represents the type of the ith element. Moreover, for Σ
of a local variable, the components are all the same like the global variable of the
corresponding type, except that the last component is the extra thread identifier.
Then, we construct specific variable places with diverse color sets. The initial mark-
ings of variable places represent the initial values. For instance, ν[10] represents
a 10 dimensional local array variable of thread thr whose type is double. A variable
place whose Σ is the product double × int × int × string is constructed for ν[10]. If
ν[5] = 1.5, (1.5, νid , 5, thr) represents a token corresponding to ν[5] in this variable
place, where νid is the variable identifier. As the examples in Figure 2 b), variables a
and b are declared as two global basic variables with the type of int , and z is declared
as a global pointer variable. The variable places va, vb and vz are constructed when
they are declared, whose identifiers are denoted by aid , bid and zid , respectively.
Here, the first component of the initial marking I(va) is 2 meaning the value of a
is 2, and the first component of I(vz) is aid meaning the pointer variable z currently
points to the variable a.

For two special declarations of mutex and condition variable, a place with color
sets int × string is constructed for the following POSIX thread operations. And the
place is not only a control place but also an execution place.

4.1.2 Function Declarations Modelling

For function declarations, we construct specific places and transitions to describe
a function. As an example in Figure 2 c), vs and vt are constructed for the parameter
list (int s, int t). A place cb, a transition tb (named enter transition) and an arc
(cb, tb) model the entry of this function. If cb gets tokens, it means the function
is called and could execute the subsequent statements. Then, a place ce models
the export of this function. If ce gets tokens, it means the function returns. And
there could be one or more transitions in •ce (these transitions for action ret are
constructed by the following operations modelling). Particularly, cb and ce belong
to Pc and Pf , and (cb, tb) belongs to Fc and Ff . E(cb, tb) and the last component of
I(vs) and I(vt) are all fun to identify the function they belong to.

4.2 Operations Modelling

There are three kinds of statements τ = local | calls | syns . We propose specific
structures for the operations in local , calls and syns [12].
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4.2.1 Local Operations

There are five actions asi , jum, ret , tcd and fcd of local operations. We propose two
kinds of PDNet structures for five actions of local operations as follows.

1. The PDNet structure for the assignment operation and jump oper-
ation. From the previous explanation, asi of the assignment operation and
jum, ret of the jump operation could update the current location to a successor
location. Thus, we construct a transition to represent the action. Here, the
transition for asi is named assign transition, the transition for jum is named
jump transition. Moreover, there may be one or more statements corresponding
to the operations ret of a function, and the transitions for ret are named exit
transitions. As the example in Figure 2 d), a transition ta models asi of the
assignment operation a := b+ 2 of a = b+ 2. And G(ta) = true can be ignored
when checking whether ta is enabled. Then, the occurrence of ta in a binding
shall express the action asi for a = b+ 2.

2. The PDNet structure for the branching operation. Branching operations
if(w) or while(w) could produce two possible subsequent executions. And ac-
tions tcd and fcd could update the current location to two successor locations de-
termined by the evaluated result [[w]]m under a memory state m. Thus, we con-
struct two branch transitions to represent tcd and fcd for a branching operation.
As the example in Figure 2 d), ti1 models tcd and ti2 models fcd of if(a > 0).
Concretely, G(ti1) = [a > 0] represents the condition [[a > 0]]m = true of tcd ,
and G(ti2) = [a ≤ 0] represents the condition [[a ≤ 0]]m = false of fcd under m.
Then, the occurrence of ti1 shall express action tcd , and the occurrence of ti2
shall express action fcd . Here, we call ti1 and ti2 as branch transitions.

There is a control place and a execution place constructed for a transition. The
reason behind these structures is that whether the statement gets the domination
condition from the control-flow dependencies and the execution order condition from
the control-flow structure are represented by different input places of the transition
corresponding to this statement. That is, the control place represents the control-
flow dependencies condition, and the execution place represents the execution order
condition of assign, jump, exit or branch transitions. This is the key difference
of our PDNet structures from the traditional CPN modelling [8]. For instance,
a control place ca and an execution place fa are connected to ta by a control arc
(ca, ta) and an execution arc (fa, ta). Whether ca obtains a token means the control-
flow dependencies execution condition of ta, and whether fa obtains a token means
the execution order condition of ta in Figure 2 d). M(ca) and M(fa) are main
representing the token that the place can obtain. E(ca, ta) and E(fa, ta) are main
meaning the function they belong to.
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4.2.2 Function Call Operations

As shown in Table 1, there are two actions call and rets of the operations in calls .
We propose two kinds of PDNet structures for two actions of function call operations
as follows.

1. The PDNet structure for the call site operation. call represents the action
of the call site operation updating the current location to a successor location.
Thus, we construct a call transition to represent this action. As the example in
Figure 2 e), a transition tj models the call transition of the function fun. A place
cj with an arc (cj, tj) models the execution condition of tj. An arc (tj, cb) (named
enter arc) models the execution from function main to the called function fun.
Here, cb constructed in Figure 2 c) is the entry place of function fun.

2. The PDNet structure for the return site operation. rets represents the
action of the return site operation updating the current location to a successor
location. Thus, we construct a return transition to represent this action. As
the example in Figure 2 e), a transition tk models the return transition of fun.
A place ck with an arc (ck, tk) models the execution condition of transition tk.
An arc (ce, tk) (named exit arc) models the execution from the called function
fun to main. Here, ce constructed in Figure 2 c) is the export place of function
fun. Moreover, a variable place vr models the return value of fun. The last
component of I(vr) is fun to identify the function it belongs to.

Absolutely necessary, an arc (tj, ck) in Figure 2 e) should be constructed to
identify the return side operation after the called function returns. Actually, it is
unnecessary to construct control places (or arcs) and execution places (or arcs) for
call and return transitions. That is, the places connected to call and return tran-
sitions belonging to control place set and execution place set represent the control-
flow dependencies condition as well as the execution order condition. For example,
cj ∈ Pc ∧ cj ∈ Pf represents the domination condition and the execution order
condition of tj in Figure 2 e). And (tj, cb) ∈ Fc ∧ (tj, cb) ∈ Ff represents the call
condition according to control-flow dependencies and the execution order condition
according to the control-flow structure in Figure 2 e). In the same way, ck belonging
to Pc and Pf , and (cj, tj), (ck, tk) and (ce, tk) belonging to Fc and Ff in Figure 2 e)
are designed for these PDNet structures.

4.2.3 POSIX Thread Operations

As shown in Table 1, there are six actions acq , rel , sig , wa1, wa2 and wa3 for the
operations in syncs . We propose four kinds of PDNet structures for six actions of
POSIX thread operations as follows. A place vm represents mutex ℓ and a place vc
represents a condition variable γ in Figures 2 f) and 2 g).

1. The PDNet structures for ⟨lock, ℓ⟩. From the previous explanation, acq of the
operation ⟨lock, ℓ⟩ could acquire ℓ and update the current location to a successor
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location. Thus, we construct a lock transition to represent the action acq . If ℓ is
held by other thread, the current thread could be blocked. Thus, we construct
an arc connected the place of ℓ to the lock transition to model this blocked
state. As the example in Figure 2 f), a transition tl models the lock transition.
An arc (vm, tl) models the blocked condition if ℓ is held by other thread. And
a place cl with an arc (cl, tl) models the execution condition of tl. M(cl) are thr
representing the token that the place can obtain. E(cl, tl) and E(vm, tl) are thr
meaning the function they belong to.

2. The PDNet structures for ⟨unlock, ℓ⟩. From the previous explanation, rel of
the operation ⟨unlock, ℓ⟩ could release ℓ and update the location to a successor
location if ℓ is held by the current thread. Thus, we construct a unlock transition
to represent rel . As the example in Figure 2 f), a transition tu models the unlock
transition. An arc (tu, vm) models ℓ released by the current thread. And a place
cu with an arc (cu, tu) models the execution condition of tu. M(cu) are thr
representing the token that the place can obtain. E(cu, tu) and E(tu, vm) are
thr meaning the function they belong to.

3. The PDNet structures for ⟨signal, γ⟩. From the previous explanation, sig of
⟨signal, γ⟩ could notify a thread waiting for the notification on γ and update the
current location to a successor location. Thus, we construct a signal transition
to represent the action sig . As the example in Figure 2 g), a transition ts models
the signal transition. An arc (ts, vc) models the notification on γ by the current
thread. And a place cs with an arc (cs, ts) models the execution condition of ts.
M(cs) are thr2 representing the token that the place can obtain. E(cs, ts) and
are thr2 meaning the function they belong to. E(ts, vc) is NULL meaning it
does not belong to any threads.

4. The PDNet structures for ⟨wait, γ, ℓ⟩. Differently, ⟨wait, γ, ℓ⟩ corresponds
to three actions wa1, wa2 and wa3. wa1 could release ℓ if ℓ is held by the
current thread. Then wa2 could be blocked until the current thread is notified
on γ. Finally wa3 could acquire ℓ if ℓ is not held by other thread and update
the current location to a successor location. Thus, we construct three wait
transitions to represent wa1, wa2 and wa3. As the example in Figure 2 g),
tw1, tw2 and tw3 model wa1, wa2 and wa3, respectively. At the same time,
places cw1, cw2 and cw3 with arcs (cw1, tw1), (cw2, tw2) and (cw3, tw3) model the
execution condition of tw1, tw2 and tw3, respectively. An arc (vc, tw2) models the
current thread notified on γ (action wa2). Unless vc is obtained the token, tw2
is blocked and waiting for the notification on γ. An arc (tw1, vm) models the
current thread releasing ℓ (action wa1), and an arc (vm, tw3) models the current
thread acquiring ℓ (action wa3). (tw1, cw2) and (tw2, cw3) model the execution
orders between wa1, wa2 and wa3. Moreover, M(cw1), M(cw2) and M(cw3) are
thr representing the token that the places can obtain. E(cw1, tw1), E(cw2, tw2),
E(cw3, tw3), E(tw1, vm), E(vm, tw3), E(tw1, cw2) and E(tw2, cw3) are thr1 meaning
the function they belong to. E(vc, tw2) is NULL meaning it does not belong to
any threads.
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Similarly, it is also unnecessary to construct control places (or arcs) and ex-
ecution places (or arcs) for lock , unlock , signal and wait transitions. For exam-
ple, cl ∈ Pc ∧ cl ∈ Pf represents the domination condition and the execution
order condition of tl, and (vm, tl) ∈ Fc ∧ (vm, tl) ∈ Ff represents the lock con-
dition according to control-flow dependencies and the execution order condition
according to the control-flow structure of tl in Figure 2 f). Thus, cu, cs, cw1,
cw2, cw3 and cw1 belonging to Pc and Pf , (cl, tl), (cu, tu), (tu, vm), (cs, ts), (ts, vc),
(vc, tw2), (cw1, tw1), (cw2, tw2), (cw3, tw3), (tw1, cw2), (tw2, cw3), (tw1, vm) and (vm, tw3)
belonging to Fc and Ff are designed for these PDNet structures in Figures 2 f)
and 2 g).

5 BASIC FLOWS MODELLING

After constructing the PDNet structures for the operations, we construct specific
arcs for basic flows to complete the control-flow structure.

5.1 Data-Flow of Variable Read and Write

Reading and writing variables could change the memory state in the configuration.
Due to updating the memory state in the configuration, there are variable read or
write in the action asi . And there are variable read in the actions tcd and fcd , when
evaluating the expression under the current configuration. Thus, PDNet arcs for
data-flow of variable read/write are constructed for assign and branch transitions.
As the example in Figure 2 h), variable a and b have been declared in Figure 2 b),
and the PDNet structure for a = b + 2 has been constructed in Figure 2 d). The
read-write arcs (vb, ta) and (ta, vb) model reading the current values of variable b.
And read-write arcs (va, ta) and (ta, va) model writing the evaluating result of b+ 2
to variable a. Note that a pair of read-write arcs is bidirectional arc and their arc
expressions are listed at the bottom of Figure 2 h). Here, E(vb, ta) = E(ta, vb) implies
ta could reference the token of vb corresponding to reading the value of variable b,
and E(va, ta) ̸= E(ta, va) implies ta could update the token of va corresponding to
writing the value of variable a.

5.2 Data-Flow of Parameter Passing

As shown in Table 1, there are the assignments cassign to formal input parameters
of call and the assignments rassign to actual return parameter of rets for parameter
passing. As an example in Figure 2 i), fun has been declared in Figure 2 c), the
PDNet structure for fun(a, 2) has been constructed in Figure 2 e), and the exit
transition te has been constructed for action ret of return s + t according to local
operations modelling. Thus, the read-write arcs (va, tj) and (tj, va) model reading
the current values of variable a. The read-write arcs (vs, tj) and (tj, vs) ((vt, tj) and
(tj, vt)) model the assignment to the formal parameter s (t), and the read-write arcs
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(vr, te) and (te, vr) model the assignment to the return variable r. In the same way,
the residual read-write arcs are constructed to model the parameter passing listed
in the bottom of Figure 2 i).

5.3 Control-Flow Structure

After constructing the operations, the PDNet structures are separated. Thus, we
construct execution arcs to model the execution orders of the control-flow structure.
As an example in Figure 2 j), the PDNet structures for three operations a := 1,
b := 3 and c := 1 have been constructed similarly to a := b + 2 of Figure 2 d). The
execution arcs (tb, f1), (t1, f2) and (t2, f3) model the actual execution order. The
occurrence order is consistent with the actual execution order. E(tb, f1), E(t1, f2)
and E(t2, f3) are main meaning the function they belong to. Therefore, our current
PDNet is a complete control-flow structure and provides the control place interfaces
to describe the control-flow dependencies.

6 MODEL CHECKING BASED ON PDNET

6.1 Model Checking Problem for LTL

Traditionally, the automata-theoretic approach [18] to an explicit model checking
explores all possible executions of the transition systems exhaustively. The model-
checking problem for LTL properties is translated to an emptiness checking problem
as the following steps:

1. translate the negation of the verified property into a Büchi automaton [14],

2. compute a product automaton of the concurrent program by intersecting the
transition system of each thread,

3. synchronize the product automaton and the Büchi automaton in an adequate
way to yield a composed automaton, and

4. check the emptiness of the language of the product automaton.

Among them, step 3. and 4. can be processed with an on-the-fly way, i.e., check-
ing the emptiness while synchronizing, which is called on-the-fly exploration [19].
PDNet can apply this automata-theoretic approach [18]. For the product automaton
of 3., the marking of PDNet could synchronize with the states of Büchi automaton
(i.e., Büchi states) [14] according to Definition 3. That is, the initial product state
is generated by the initial marking of the PDNet and the initial Büchi state, and an
acceptable path starting from the initial product state is extended until reaching an
acceptable product state (i.e., a product state with an acceptable Büchi state) [14].
Thus, all acceptable paths constitute the language accepted by the product au-
tomaton. In the following, the property formula without X operator is denoted by
LTL-X .
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Definition 5 (Semantics of Product Automaton). Let N be a PDNet, ψ be an
LTL-X formula. Büchi automaton corresponding to the negation of ψ is denoted
by A¬ψ. The product automaton synchronizing N and A¬ψ is denoted by N ∩A¬ψ.
The acceptable path of the product automaton is denoted by ϖ. The semantics of
the product automaton:

[[N ∩ A¬ψ]] ::=
⋃

ϖ∈L(N∩A¬ψ)

ϖ. (5)

The semantics is identified by the language of N ∩ A¬ψ. Then, we formalize
our LTL verification task as an emptiness checking problem based on the seman-
tics.

Definition 6 (LTL-X Verification Problem). A PDNet N |= ψ iff the semantic of
the PDNet N synchronized with the Büchi automaton transformed from ψ is empty:

[[N ∩ A¬ψ]] = ∅. (6)

It holds if and only if there exists no acceptable sequence reachable from initial
product state in N ∩ A¬ψ. That is, there exists a counter-example such that the
semantics of this product automaton is not empty (N |=/ ψ).

6.2 Case Study

We address the LTL-X verification problem of concurrent programs using POSIX
threads [16]. Based on Definition 6, we present a case study to illustrate the LTL
model detection method in this paper.

Here, a program with an error location in Line 7 is an example program in
Figure 3 a). An LTL-X formula G ¬error() expresses the safety property of this
program, which means error() does not execute in any case, based on Defini-
tion 3.

We use specific places and arcs for the transition of PDNet in Figure 3 b) (the
labels on all arcs are omitted for simplicity) to distinguish the execution order con-
dition and domination condition of a statement (modelling detail in [12]). The
execution order condition reflects the actual execution syntax and semantics in the
control-flow structure. For instance, f20, (t20, f21) and (f21, t21) characterize the fact
that a = 0 executes after if(a = 1).

For the LTL-X formula G ¬error(), the atomic proposition error() is firstly
translated to is-fireable(t22) of PDNet in Figure 3 b). If a marking enabling t22,
such an atomic proposition is true. For example, t22 is enabled under M10 of Fig-
ure 3 d), and is-fireable(t22) is true in M10. Then, this formula is translated to its
negation form F -fireable(t22), which is further translated to a Büchi automaton [14]
in Figure 3 c). There are three states in the Büchi automaton, where q1 labeled by
is-fireable(t22) can only be synchronizing with the reachable markings enabling t22.
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t20

t20

t21'

t1b

t1bt2b

t1b

t10 t21'

t10

t2bt1b

(a) Example (b) Program Dependence Net (PDNet) (c) Büchi Automaton   

c1b

thr1
t1b

f10

t10

a=1;

f20

t20

f21

t21 t21'
[a=1] [a1]

f22

t22
error();

v0

c1e

c2e

c10

c21

c22

M1: c1b, c2b, v0
0

M2: c10, f10, c2b, v0
0 

M3: c1e, c2b, v0
1 

M4: c1e, c20, f20, c21, v0
1

M5: c1e, c21, f21, v0
0

M10: c1e, c22,  f22, v0
1

M12: c1b, c20, f20, c21, v0
0 

M13: c1b, c21, f21, v0
0

M14: c1b, c2e, v0
0

M15: c10, f10, c2e, v0
0

M7: c10, f10, c20, f20, c21, v0
0

M8: c10, f10, c21, f21, v0
0

(d)

(M1, q0)

(M2, q0)

(M3, q0) (M7, q0)

(M4, q0)

(M5, q0)

(M6, q0)

q0: true

q1: is-
fireable(t22)

q2: true

(M10, q1)

(M11, q2)

(e)

error()error()

is-fireable(t21)is-fireable(t21)

void* main(){

     pthread_t t1, t2;

     pthread_create(&t1,0,thr1,0);

     pthread_create(&t2,0,thr2,0);

     pthread_join(t1,0);

     pthread_join(t2,0);

}

  8

  9

10

11

12

13

2:thr1

5:a=0;

4:thr2

8:if(a=1)

7:error();

Acceptable path:

(M1, q0), (M2, q0), (M7, q0), 

(M8, q0), (M9, q0), (M10, q1), 

(M11, q2)   

Occurrence Sequence:

t1b, t2b, t20, t10, t21, t22

Concurrent program run:

2, 4, 5, 3, 8, 7

int thr1{
    a:=1; 
}

  2
  3

int thr2{
    a:=0;
    if (a=1)
        error(); 
}

  4
  5
  6
  7

error()error()LTL: error()LTL: 

c2b

thr2
t2b

c20

int a=0;  1

t10 t20

M6: c1e, c2e, v0
0

t22

t10

M9: c10, f10, c21, f21, v0
1

t21

M11: c1e, c2e, v0
1

(M8, q0)

(M9, q0)

(M10, q0)

(M11, q0)

a=0;

3:a=1;

b) PDNet converted from this program
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c1b

thr1
t1b

f10

t10

a=1;

f20

t20

f21

t21 t21'
[a=1] [a1]

f22

t22
error();

v0

c1e

c2e

c10

c21

c22

M1: c1b, c2b, v0
0

M2: c10, f10, c2b, v0
0 

M3: c1e, c2b, v0
1 

M4: c1e, c20, f20, c21, v0
1

M5: c1e, c21, f21, v0
0

M10: c1e, c22,  f22, v0
1

M12: c1b, c20, f20, c21, v0
0 

M13: c1b, c21, f21, v0
0

M14: c1b, c2e, v0
0

M15: c10, f10, c2e, v0
0

M7: c10, f10, c20, f20, c21, v0
0

M8: c10, f10, c21, f21, v0
0

(d)

(M1, q0)

(M2, q0)

(M3, q0) (M7, q0)

(M4, q0)

(M5, q0)

(M6, q0)

q0: true

q1: is-
fireable(t22)

q2: true

(M10, q1)

(M11, q2)

(e)

error()error()

is-fireable(t21)is-fireable(t21)

void* main(){

     pthread_t t1, t2;

     pthread_create(&t1,0,thr1,0);

     pthread_create(&t2,0,thr2,0);

     pthread_join(t1,0);

     pthread_join(t2,0);

}

  8

  9

10

11

12

13

2:thr1

5:a=0;

4:thr2

8:if(a=1)

7:error();

Acceptable path:

(M1, q0), (M2, q0), (M7, q0), 

(M8, q0), (M9, q0), (M10, q1), 

(M11, q2)   

Occurrence Sequence:

t1b, t2b, t20, t10, t21, t22

Concurrent program run:

2, 4, 5, 3, 8, 7

int thr1{
    a:=1; 
}

  2
  3

int thr2{
    a:=0;
    if (a=1)
        error(); 
}

  4
  5
  6
  7

error()error()LTL: error()LTL: 

c2b

thr2
t2b

c20

int a=0;  1

t10 t20

M6: c1e, c2e, v0
0

t22

t10

M9: c10, f10, c21, f21, v0
1

t21

M11: c1e, c2e, v0
1

(M8, q0)

(M9, q0)

(M10, q0)

(M11, q0)

a=0;

3:a=1;

c) Büchi automa-
ton
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c1b

thr1
t1b

f10

t10

a=1;

f20

t20

f21

t21 t21'
[a=1] [a1]

f22

t22
error();

v0

c1e

c2e

c10

c21

c22

M1: c1b, c2b, v0
0

M2: c10, f10, c2b, v0
0 

M3: c1e, c2b, v0
1 

M4: c1e, c20, f20, c21, v0
1

M5: c1e, c21, f21, v0
0

M10: c1e, c22,  f22, v0
1

M12: c1b, c20, f20, c21, v0
0 

M13: c1b, c21, f21, v0
0

M14: c1b, c2e, v0
0

M15: c10, f10, c2e, v0
0

M7: c10, f10, c20, f20, c21, v0
0

M8: c10, f10, c21, f21, v0
0

(d)

(M1, q0)

(M2, q0)

(M3, q0) (M7, q0)

(M4, q0)

(M5, q0)

(M6, q0)

q0: true

q1: is-
fireable(t22)

q2: true

(M10, q1)

(M11, q2)

(e)

error()error()

is-fireable(t21)is-fireable(t21)

void* main(){

     pthread_t t1, t2;

     pthread_create(&t1,0,thr1,0);

     pthread_create(&t2,0,thr2,0);

     pthread_join(t1,0);

     pthread_join(t2,0);

}

  8

  9

10

11

12

13

2:thr1

5:a=0;

4:thr2

8:if(a=1)

7:error();

Acceptable path:

(M1, q0), (M2, q0), (M7, q0), 

(M8, q0), (M9, q0), (M10, q1), 

(M11, q2)   

Occurrence Sequence:

t1b, t2b, t20, t10, t21, t22

Concurrent program run:

2, 4, 5, 3, 8, 7

int thr1{
    a:=1; 
}

  2
  3

int thr2{
    a:=0;
    if (a=1)
        error(); 
}

  4
  5
  6
  7

error()error()LTL: error()LTL: 

c2b

thr2
t2b

c20

int a=0;  1

t10 t20

M6: c1e, c2e, v0
0

t22

t10

M9: c10, f10, c21, f21, v0
1

t21

M11: c1e, c2e, v0
1

(M8, q0)

(M9, q0)

(M10, q0)

(M11, q0)

a=0;

3:a=1;

d) The reachability graph of PDNet

Here, true means that q0 and q2 can be synchronizing with any reachable markings
in Figure 3 d).

Then, the reachability graph of PDNet in Figure 3 b) represents the state space
in Figure 3 d). The nodes identify markings expressed as rectangles with place
names, and the edges identify the marking transitions corresponding to the transition
occurrence of PDNet expressed by arrows. That is, a transition labeled to the edge
indicates this transition occurrence to give rise to the marking transition. The
markings are represented by the places marked by tokens currently. For instance,
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t2b

t20

t20
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t1b
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(a) Example (b) Program Dependence Net (PDNet) (c) Büchi Automaton   

c1b

thr1
t1b

f10

t10

a=1;

f20

t20

f21

t21 t21'
[a=1] [a1]

f22

t22
error();

v0

c1e

c2e

c10

c21

c22

M1: c1b, c2b, v0
0

M2: c10, f10, c2b, v0
0 

M3: c1e, c2b, v0
1 

M4: c1e, c20, f20, c21, v0
1

M5: c1e, c21, f21, v0
0

M10: c1e, c22,  f22, v0
1

M12: c1b, c20, f20, c21, v0
0 

M13: c1b, c21, f21, v0
0

M14: c1b, c2e, v0
0

M15: c10, f10, c2e, v0
0

M7: c10, f10, c20, f20, c21, v0
0

M8: c10, f10, c21, f21, v0
0

(d)

(M1, q0)

(M2, q0)

(M3, q0) (M7, q0)

(M4, q0)

(M5, q0)

(M6, q0)

q0: true

q1: is-
fireable(t22)

q2: true

(M10, q1)

(M11, q2)

(e)

error()error()

is-fireable(t21)is-fireable(t21)

void* main(){

     pthread_t t1, t2;

     pthread_create(&t1,0,thr1,0);

     pthread_create(&t2,0,thr2,0);

     pthread_join(t1,0);

     pthread_join(t2,0);

}

  8

  9

10

11

12

13

2:thr1

5:a=0;

4:thr2

8:if(a=1)

7:error();

Acceptable path:

(M1, q0), (M2, q0), (M7, q0), 

(M8, q0), (M9, q0), (M10, q1), 

(M11, q2)   

Occurrence Sequence:

t1b, t2b, t20, t10, t21, t22

Concurrent program run:

2, 4, 5, 3, 8, 7

int thr1{
    a:=1; 
}

  2
  3

int thr2{
    a:=0;
    if (a=1)
        error(); 
}

  4
  5
  6
  7

error()error()LTL: error()LTL: 

c2b

thr2
t2b

c20

int a=0;  1

t10 t20

M6: c1e, c2e, v0
0

t22

t10

M9: c10, f10, c21, f21, v0
1

t21

M11: c1e, c2e, v0
1

(M8, q0)

(M9, q0)

(M10, q0)

(M11, q0)

a=0;

3:a=1;

e) The explored product automaton of PDNet

Figure 3. Case study

M6 is a marking, where places c1e, c2e and v0 are marked by tokens. M1
t1b−→ M2

is a marking transition from M1 to M2 by firing t1b. Particularly, the superscripts
of places v0 indicate the variable value in markings. For instance, symbol v00 in
M6 represents a value is 0. Moreover, arcs of M6 and M11 pointing to itself are
added as dotted arrows because LTL model checking problem is based on infinite
paths.

Finally, the product states are explored in Figure 3 e) for the first counter-
example with an on-the-fly way [14]. For instance, (M10, q1) is a product state
synchronizing a marking M10 in Figure 3 d) and a state q1 in Figure 3 e) because
t22 is enabled in M10. The execution 2, 4, 5, 3, 8, and 7 corresponding to the oc-
currence sequence t1b, t2b, t20, t10, t21 and t22. It can be identified by the marking
sequence (M1, q0), (M2, q0), (M7, q0), (M8, q0), (M9, q0), (M10, q1), and (M11, q2) · · ·
of Figure 3 e) is an acceptable path in this example concurrent program in Fig-
ure 3 a). As a result, the example program in Figure 3 a) violates the safety property
G ¬error().

Thus, we can apply our formal modelling methods to construct a formal model
as a verifiable finite model to verify an LTL property.

7 RELATED WORK

At present, the existing tools for software model checking usually adopt a formal
model based on automata, i.e., control flow automata (CFA). At present, CFA-
based model only describes execution order of sequence programs or concurrent
programs. In addition, most software model checking tools combine predicate ab-
straction [20] to convert program into a Boolean program, which has the problem
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of ignoring data flow. The automata model constructs state transition relation-
ship of programs through state and arc, while Petri nets model can describe ba-
sic structure and flow relationship of variable resources through transition, place
and arc. The compression of each transition may reduce multiple states, and com-
pression of each place can reduce all states, which can achieve better effect than
automata.

Therefore, Petri nets model has more advantages in model checking. Multi-
thread net [21] is a model to describe shared read and synchronous lock, which is
used to detect concurrent errors (such as deadlock, data race). CNet [22] is an ex-
tended Petri net model, which introduces variable places and read/write arcs and
can describe the interaction between implicit relationship between data, operations
and resources of programs. But it lacks the corresponding firing rules. At present,
these modelling methods based on Petri nets do not target a particular type of the
code specification nor propose any formal modelling methods.

8 CONCLUSION

The existing modelling approaches either do not target a particular type of code
specification or do not propose formal modelling methods. But the formal model
construction of a verifiable finite model is still an urgent problem and a challenging
task. In this paper, we define the formal operational semantics by a labeled transi-
tion system for concurrent programs with a function call and POSIX threads. Then,
we propose the basic PDNet structure based on the formal operational semantics to
formalize the executed statement, and a corresponding formal modelling method to
build a basic flow to simulate the execution of concurrent programs. Finally, we give
the model checking problem based on PDNet to illustrate the practical application
of our formal modelling methods.

In the future, we will combine the advantage of LLVM compilers to improve the
scalability of our formal modelling approach.
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