
Computing and Informatics, Vol. 43, 2024, 1219–1233, doi: 10.31577/cai 2024 5 1219

DANGEROUSNESS OF CLIENT-SIDE CODE
EXECUTION WITH MICROSOFT OFFICE

Jean Rosemond Dora, Ladislav Hluchý

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: {jeanrosemond.dora, Ladislav.Hluchy}@savba.sk

Abstract. Gaining unauthorized remote access to an environment is generally done
either by exploiting a vulnerable service, or application that is internet-based; or
by tricking a user into executing malicious codes. The former one is typically more
simple since there is no need for any user interaction. The latter one, however,
requires much more effort on the attackers’ side since they must find a way to incite
the victim into opening a malicious document and interacting with an HTML page
in a web browser. In this paper, we will focus on the latter technique which falls
into the social engineering category, as it will involve the use of a phishing attack.
The reason for this selection is based on the fact that it is challenging to correct
user behavior. Thus, it increases the attackers’ chance of performing a successful
attack, contrary to the former technique, where a simple patch, upgrade, or update
can prevent the adversaries from being successful in their attacks. Since Microsoft
Office is a very trusted and used software by many people (both in personal and
commercial use), we will make use of its features to build our payloads and eventu-
ally to gain a remote code execution to a victim’s system. Performing a successful
phishing attack involves a lot of barriers that often need to be crossed such as
the need for similarity, purchasing domains, the use of encoding, encryption, etc.
Nowadays, companies frequently employ very aggressive antivirus software that will
delete malicious files as soon as they land on their system. Therefore, bypassing the
security protections will need to be taken into account, which will also be addressed
in this paper.

Keywords: Client-side attacks, remote code execution, phishing, vulnerability,
weakness, Microsoft Office macros, information security, cyber-threats, website se-
curity, web application vulnerabilities

https://doi.org/10.31577/cai_2024_5_1219


1220 J.R. Dora, L. Hluchý

1 INTRODUCTION

Nowadays, internet-based applications are very well used worldwide. As of April
2024 [1], statistics show that 5.44 billion internet users worldwide, which is evaluated
to 67.1 percent of the global population, regularly use internet-based applications.
Of this amount, 5.07 billion, or 62.6 percent of the world’s population, were social
media users. Thus, performing attacks against internet users becomes a primary
target. Additionally, trusted software (with a good reputation) can be downloaded
from its legitimate source (e.g., the vendors’ website), yet may offer multiple ways
to attackers for a malicious use, as for example Microsoft Office, some thick-client
applications, etc.

Usually, client-side attacks abuse the trust relationship between a user and the
web applications they visit. In other words, a client-side attack is typically a security
breach that occurs on the client side, not on the server side. This can result from
installing malware on the victim’s device or banking credentials being stolen by
third-party sites. For more information about client-side attacks, please see the
related works [2, 3, 4, 5].

For attackers to initiate a client-side attack, they often deliver a malicious pay-
load, commonly called “Trojan” (usually in the form of a document or a script) to
victims and incites them into running it. For example, to build this kind of powerful
staged payload, it has to rely on a Callback function that listens to the communi-
cation and sends back a connection (session) to the attacker’s machine. This is
a complex scenario since the code should first land on the victim’s environment to
receive that callback. The complexity arises from the fact that the attacker is clue-
less about the security protections that are set and running on the victim’s system.
Therefore, their Trojan should be sufficient enough to evade most of the antivirus
software, endpoint detection and response (EDR), and antimalware scan interface
(AMSI).

One of the offensive security best practices is to run the code from memory. This
will prevent any malicious code from being detected by security protections, since
most of them work by monitoring the hard disk, not the memory. However, for the
phishing activity, the malicious document should be running on the disk, because
we need the user interaction. Thus, we propose to purely embed documents inside
a document (DiD). Please see Section 3 to see how it works. To do that, we need
to use an encryption technique inside our malicious script (our initial script), and
then enhance it by encoding the entire new script. After that, we need to link our
malicious document inside a new document that will be launched in the background
from memory. After all that is done, we embed all of them in a new legitimate
document that will be sent to the victim.

Once this code is executed on the client, a new session will be opened on the
attacker’s machine. Also note that the spiteful code will contain the attacker’s host-
name, IP address, the port used, and domain name, as well as the network protocol
used from the staged payload (for example, windows/x64 . . . /reverse https).



Dangerousness of Client-Side Code Execution with Microsoft Office 1221

The rest of this paper is then structured as follows: Section 2 provides the
definition, and requirements for a successful phishing attack using Microsoft Office
features, different types of attacks are also highlighted. Section 3 focuses on the
attack scenario as follows: the construction of the aggressive Trojan that will by-
pass several well-known Windows security tools (mostly on Windows 10 and earlier
versions). It may also be used on Windows 11. This section also has a focal point on
the execution of the attack and the consequences of such successful and pernicious
activity on the victim. Section 4 briefly provides information on the mitigation tech-
niques that can be applied in real life to escape from this type of abuse. Section 5
provides our future work and concludes the paper.

Note: For privacy reasons, we are obliged to hide some confidential data in the
figures (public address and more), and parts of our code.

2 PHISHING ATTACKS USING MICROSOFT OFFICE FEATURES

Microsoft Office is a very popular tool suite used by a vast majority of organizations.
It comes in two variants:

1. Standalone versions, such as Office 2013, 2016, and 2019, and

2. Office 365, which is continuously updated and utilized for online storage.

There is a useful feature of Microsoft Word document that we can use for program-
ming, and running scripts. It is the Visual Basic for Applications (VBA) Editor by
using the Macros creator.

A macro can contain programs that are embedded in a Microsoft Word document
for example to run a script in the background as soon as the Macros feature is
enabled by an end-user. Macros are persuasive tools that can be easily created by
novice users to greatly improve their productivity. Likewise, it can also be used by
advanced users to create robust Trojans for malicious activities in the real world.
Some of these activities can be: compromising workstations to exfiltrate, extract
sensitive information, etc. Microsoft Office comes with both trusted document and
trusted location functions. Once they are defined, macros in trusted documents or
macros in Microsoft Office files in trusted locations automatically run when the files
are opened. While the appliance of trusted documents is discouraged, when trusted
locations are implemented in a proper, controlled manner, it can allow organizations
to accordingly evaluate both their business and security requirements. In this paper,
we will make use of it to write and run our Trojan.

2.1 Phishing Attacks Definition and Requirements

Generally, an attack can be defined as the exploitation of a vulnerability. Moreover,
it can also be defined as the exploitation of victims’ system caused by their poor



1222 J.R. Dora, L. Hluchý

behavior. We pinpoint this, as there might be no specific vulnerabilities for abuse
to take place, it can only depend on the user’s behavior.

A phishing attack is a social-engineering activity where attackers create a coun-
terfeit communication that looks genuine and appears to come from a trusted source.
Adversaries use seemingly legitimate emails or text messages to dupe victims into
taking actions that will allow them to receive a callback session, and gain unautho-
rized access to their confidential data and/or to their system.
The word ’Phishing’ originally emerged in the 1990s. Since then, adversaries often
use ph to replace f to create new words in the hacker’s community, as they usually
process this attack by phone. Historically, phishing was generated from the fish-
ing word that refers to the act that the attacker appeals to users (victims) to visit
an infected website by sending them malicious e-mails (or instant messages) and
silently obtains victim’s personal information such as user name, password, national
security ID, etc. This information then can be used for future abuse, for example,
identity theft attacks to transfer money from victims’ bank accounts.

However, the description above is technically a type of phishing attack that
falls into the “Deceptive phishing” category, which is different than “Malware-based
phishing”. This second type will be our focus which involves technical subterfuge
schemes that rely on pernicious code (in our case, a .doc or a .docx document)
when users make a single click by enabling macros after opening the document,
then we will obtain a remote code execution (RCE) giving us access to their de-
vice.

One of the main aims of a phishing attack is to dishonestly effectuate fraudulent
financial transactions on behalf of employees from a company for example.

In other to create a malware-based phishing activity, an attacker would need
the following steps:

• Obtaining a genuine email address that will be trusted by the victims. Mostly,
in a penetration testing scenario, this can be obtained easily since the CEO of
the company (or the responsible individuals) should be aware of this activity,
but not necessarily the employees.

• Selection of victims to send the genuine document to, which contains malicious
linked document embedded in.
Note: The encryption and encoding techniques are employed inside the mali-
cious documents.

• Thirdly, the attacker sets up an environment to receive the callback after the
victim receives and opens the sent document.
Note: All the parameters that have been used to create the malicious pay-
load to insert in the pernicious document should be the same as the configured
parameters to listen to the communication to catch the reverse shell.

• The genuine (.doc, .docx) document is created and ready to be sent.

• The malicious document uses a strong encryption technique to bypass several
antivirus software. Afterward, the whole malicious file that contains the at-



Dangerousness of Client-Side Code Execution with Microsoft Office 1223

tacker’s information (hostname, port, IP address) is encoded before attaching it
to the genuine document.

• After sending the document to a selection of users, enough for one of them to
open the document (which will not be caught by most of the antivirus), and
subsequently to enable the Macros.

• Lastly, as soon as the previous step is done by the user, the attackers will receive
a new session that indicates they successfully obtained access to the victim’s
environment (device).

Being now in the victim’s system remotely, the attack has succeeded. The attacker
can proceed by escalating the privilege to obtain a higher role (admin, NT-Authority,
root) and move laterally to compromise other devices and accounts. In a situation
where the compromised device is from an active directory (AD), then the risk be-
comes more serious since several other devices and accounts can be compromised
silently by the attacker.

Figure 1. Malware-based phishing setup

2.1.1 Different Types of Phishing Attacks

In the following lines, we briefly list a few of the most used phishing attacks:

Deceptive Phishing: This is the most common type of phishing attacks. It in-
volves the impersonation of a legitimate company and trying to loot people’s



1224 J.R. Dora, L. Hluchý

personal information and their credentials. Afterward, the attacker blackmails
the users to perform malicious activities.

Spear Phishing: Spear-phishing attacks prioritize quality, while phishing priori-
tize quantity. Spear-phishing emails, texts, or phone calls are highly personal-
ized for a specific target (organization or individual). Spear-phishing attacks
are more likely to deceive victims due to the amount of research and time spent
personalizing messages that appear to be from genuine senders. [6, 7]

Clone Phishing: This type of phishing is one of the phishing attacks that is based
on the adversary’s ability to duplicate a message that the target has previously
obtained. In other words, it is when an attacker takes an existing email and
turns it into a spiteful email, such as changing a genuine link to a pernicious
one.

Whaling: This is a type of phishing in which the attacker aims at the wealthy and
powerful status of the target user. The adversary takes out all the information
of the target using different intermediate such as social media accounts and then
attacks the victim.

Link Manipulation: In this type of attack the attacker sends a link to a spoofed
website. When the victim opens that link, the link opens to the attacker’s
website instead of opening it into the website mentioned in the link. Usually,
viewing the source code can help see the actual address, hence preventing users
from falling into the link manipulation.

Voice Phishing: This is a form of phone criminal attack that is done by telephone
using social engineering to look for financial information for example. This type
of phishing ordinarily referred as vishing.

For more information, please refer to [8, 9].

3 BUILDING A TROJAN USING THE MACRO FEATURE
OF MS OFFICE

This section is based on a high-level perspective for the construction of a robust
Trojan. To build this macro, a good level of Visual Basic for Applications (VBA) is
required. A good knowledge of C-sharp (C#), and Extensible Markup Languages
(XML) is very convenient. Additionally, knowing how to work with some scripting
tools, such as PowerShell will bring a valuable benefit in the process. Refer here [10,
11] for a development of a macro malware.

Before diving into the steps, let us explain shortly what is staged and stageless
payloads.

Difference between non-staged and staged payloads:
Note: Non-staged payloads (stageless) use an underscore in its format while staged
payloads use a simple slash /, as illustrated below:



Dangerousness of Client-Side Code Execution with Microsoft Office 1225

• windows/x64/meterpreter reverse https, −→non-staged,

• windows/x64/meterpreter/reverse https −→staged.

The non-staged payload (usually in a byte[] buff = new byte[random-numbers]{0x4d,
0x5a, . . . , 0xff} format), contains all the code required to open up a meterpreter
reverse shell to the attacker’s machine. The buffer is composed of several assembly
instructions. When they are executed, they call various Windows APIs that con-
nect to the adversary’s C2 (command&control) by exposing a command prompt
(cmd.exe). One of the key differences is that this payload is much heavier in size
(i.e., more bytes) than the staged one.

The staged payload itself contains the essential codes that can perform a call-
back, then fetch any remaining codes and execute them in the memory of the victim’s
computer. While created (with the same parameters as the non-staged, with the
only underscore as a difference), we can realize the size is very much smaller than
the stageless payload. This is a great benefit for us as the attacker, since we may
evade anti-virus software with it. Based on the parameters used during the payload
creation, it may look something like below:
byte[] buff = new byte[random-numbers]{0xfc, 0x48, . . . , 0xd7}

Back on topic, the following lines depict the DiD technique:

• First, we write our .ps1 script and paste inside of it a PowerShell buffer that
contains our local IP address (and/or our VPN IP), the port used to listen to
the communication, and the payload used. Note that, since most users use the
Windows operating system, then it is always a good practice to pick a module
of this kind (whether staged or stageless).

• Secondly, we embed the PowerShell script (file) in our .xml file by forcing the
.ps1 file to be downloaded from memory as soon as it lands on the victim’s
machine. We use this strategy to avoid being detected by antivirus software,
since most of them detect malicious files from the disk, not from memory.

• Having this step done, we now make use of the benefit of the encoding techniques
by encoding the .xml file and pasting it into an HTML Application (.hta) file.
This is considered as the third phase. Reaching this point, we are now ready to
make off of the macro feature of MS Office.

• The fourth step consists of creating a template document and pasting our ma-
licious .hta file (its origin) in the VBA editor.

• The fifth phase consists of creating a genuine .docx document in the format
of a template. Then, we modify its content settings.xml by inserting the re-
cently created document (the template document) inside the target parame-
ter. That is to say, we include it in the origin. E.g.: http://attacker-IP:

port#/templateFile.dot-or.dotm.

• The sixth step is simply archiving all the files and folders as a two-way street, i.e.,
after zipping them, we must convert the zip file back to the “.docx” extension.

http://attacker-IP:port#/templateFile.dot-or.dotm
http://attacker-IP:port#/templateFile.dot-or.dotm


1226 J.R. Dora, L. Hluchý

Figure 2. XML file with malicious .ps1 file embedded

Figure 3. HTML Application file (.hta)

Figure 4. Modification of the settings.xml file from the extracted genuine file



Dangerousness of Client-Side Code Execution with Microsoft Office 1227

In summary, the last step is to be the genuine file that will be sent to the vic-
tim. Whenever landing on any device with an aggressive antivirus (AV) protection
set, it will be complicated for the AV to detect it as malicious. To successfully
send the email to the victim, the template file, the PowerShell file, and the HTML
application file should be located exactly in the same path as the genuine docu-
ment. Additionally, all of these files should be located in the web root server of the
attacker’s backend side (for example, Apache server).

Figure 5. Zipping after changes

For more information about the macro-based attacks, please refer here [12, 13,
14]. Figure 6 depicts our listener that is catching the communication from the
victim’s machine with our attacker’s machine.

Figure 7 represents a simple illustration of how we could easily go to the C-
drive directory of the Windows victim’s environment after obtaining the meterpreter
reverse shell.

To summarize this chapter, as soon as the file is sent, the victim will have to
download it; since it will not be caught easily. Then after opening it and enabling the
macro, the attacker will have access to the victim’s device remotely and can browse
peacefully from directories to directories, and escalate privileges to perform further
exploitations, for example making lateral movements, moving from computers to
computers, from accounts to accounts. See the screenshot file below of a successful
scenario.

4 A SYNOPSIS OF MITIGATION TECHNIQUES

In a real-world scenario, when people receive a Microsoft Word document with
Macros, they often need to enable it to proceed. However, even if the document
appears to be from a trusted source, it does not mean it is fully safe to open it
since attackers can impersonate the trusted origin by taking over their account and
performing malicious activities. The following lines will highlight some required
steps that need to be addressed.

How can someone determine which macros to trust?

Firstly, to use macros within an organization, all macros created by anyone
should be supervised and analyzed by an independent instance before being
approved for use within the company. Typically, when assessing whether macros
are safe to use or not, the following questions should stem from the assessors:



1228 J.R. Dora, L. Hluchý

Figure 6. Phishing attacks successful!



Dangerousness of Client-Side Code Execution with Microsoft Office 1229

Figure 7. Access to the victim’s C-drive directory

• Has the macro been developed or provided by a trusted party, and upon
agreement?

• Is there a business requirement for a precise macro?

• Has the macro been approved by a technically trustworthy skilled instance?

Macros should be disabled for standard users.
This simply means that, the users (employees for example) that do not have
a demonstrated business requirement. Support of this feature should be disabled
across the Microsoft Office suite. This is done by the technical department of
the company. Additionally, all support for trusted documents& locations should
be strictly disabled to prevent users from bypassing macro security features.

By using Group Policy settings, companies can apply macro security controls to
ensure that Microsoft Office users cannot by any means alter the behavior of the
macro security features via the MS Office application’s Trust Center interface.

Only macros from trusted locations are enabled.
Always, there can be some exceptions. However, it should be properly addressed.
If organizations have a business need for macro use, validated macros in MS
Office documents in trusted locations can be authorized to execute. All the other
MS Office applications should have the “support for macros” option disabled.
Using a properly secured network path as a trusted location can help with the
centralized management and control of macros in MS Office documents.

Enable only macros that are digitally signed by trusted publishers.
If, within a company, there is a need for macro use then only macros that are
digitally signed by credible publishers should be allowed to execute. Notwith-



1230 J.R. Dora, L. Hluchý

standing, this option should be applied to only and only particular MS Office
applications for which the business needs are requested. All the other applica-
tions should have their macro support feature set as disabled.

Recommended approaches. In a nutshell, for organizations to apply self-pro-
tection against pernicious macros, they should address one or more of the following
approaches:

• Only macros from trusted locations are allowed.

• Macros are disabled for users that do not have a demonstrated business obliga-
tion.

• Only macros digitally signed by trusted publishers should be approved. Orga-
nizations can of course apply the following security requirements to the recom-
mended ones aforementioned:

• Implement application control to minimize a malevolent macro executing unap-
proved applications.

• Employ the attack surface mitigation rules outlined in the Hardening Microsoft
365, Office 2021, Office 2019 and Office 2016 publication.

• Apply filters, that is to say, email and web content filtering to inspect incoming
MS Office documents for macros, and block or quarantine them accordingly.

• Set up macro execution logging to verify that only validated macros are used.

• Last but not least, ensure users who are authorized to assess the safety of macros
have proper VBA training.

5 CONCLUSIONS

Having a clear understanding of the process of being affected by a phishing attack
already escaped us up to 70%. Since this particular attack requires user interaction,
we should carefully choose which files we will open. We therefore highlight a few
recommended mitigation techniques that should be addressed when it comes to
suspicious emails, and suspicious documents on our computers. We should by now
know that we must not enable any features (request) from a malicious document
without priorly contacting a superior (for example, the department head). In this
paper, we have learned how an attacker can create the Trojan using our proposed
DiD technique using the staged payload. We have also learned how we can remotely
obtain unauthorized access to the victim’s computer simply by abusing a leaked
email along with the target public IP address. Based on the attackers’ choice and
knowledge about the target, they may not need to go through all these steps if they
knew that there was no aggressive EDR/AV/Defender on the victim’s device.

Due to the required size of this paper, we did not dive into the mitigation
techniques in detail. Therefore, we will embrace this topic in our future work.



Dangerousness of Client-Side Code Execution with Microsoft Office 1231

List of abbreviations

VBA: Visual Basic for Applications,

DiD: Documents inside Document,

AV: AntiVirus,

EDR: Endpoint Detection and response,

AMSI: AntiMalware-Scan Interface,

RCE: Remote Code Execution,

CEO: Chief Executive Officer,

AD: Active Directory,

C#: C-Sharp language,

XML: Extensible Markup Language,

HTML: HyperText Markup Language,

HTA: HTML Application,

MS: Microsoft.

Acknowledgement

This work is supported by the project VEGA 2/0131/23 (2023-2025) and by the
Slovak Research and Development Agency under contract No. APVV-23-0430.

REFERENCES

[1] Petrosyan, A.: Number of Internet and Social Media Users World-
wide as of July 2024. 2024, https://www.statista.com/statistics/617136/

digital-population-worldwide/.

[2] Client-Side Attacks. IBM, 2021, https://www.ibm.com/docs/en/snips/4.6.2?

topic=categories-client-side-attacks.

[3] Thompson, P.: Javascript Runtime Explained: All You Need to Know About Client-
Side JS Code Execution. 2023, https://bit.ly/3BOlxaz.

[4] Types of Client-Side Attacks. GeeksforGeeks, 2022, https://www.geeksforgeeks.
org/types-of-client-side-attacks/.

[5] Zabicki, R.—Ellis, S. R.: Penetration Testing. In: Vacca, J. R. (Ed.): Com-
puter and Information Security Handbook. Elsevier, 2017, pp. 1031–1038, doi:
10.1016/B978-0-12-803843-7.00075-2.

[6] Bethany, M.—Galiopoulos, A.—Bethany, E.—Karkevandi, M.B.—
Vishwamitra, N.—Najafirad, P.: Large Language Model Lateral Spear Phish-
ing: A Comparative Study in Large-Scale Organizational Settings. CoRR, 2024, doi:
10.48550/arXiv.2401.09727.

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.ibm.com/docs/en/snips/4.6.2?topic=categories-client-side-attacks
https://www.ibm.com/docs/en/snips/4.6.2?topic=categories-client-side-attacks
https://bit.ly/3BOlxaz
https://www.geeksforgeeks.org/types-of-client-side-attacks/
https://www.geeksforgeeks.org/types-of-client-side-attacks/
https://doi.org/10.1016/B978-0-12-803843-7.00075-2
https://doi.org/10.48550/arXiv.2401.09727


1232 J.R. Dora, L. Hluchý

[7] Gutfleisch, M.—Peiffer, M.—Erk, S.—Sasse, M.A.: Microsoft Office Macro
Warnings: A Design Comedy of Errors with Tragic Security Consequences. Proceed-
ings of the 2021 European Symposium on Usable Security (EuroUSEC ’21), 2021,
pp. 9–22, doi: 10.1145/3481357.3481512.

[8] Panorios, M.: Phishing Attacks Detection and Prevention. Master Thesis. Univer-
sity of Piraeus, 2024, doi: 10.26267/unipi dione/3749.

[9] Yan, J.—Wan, M.—Jia, X.—Ying, L.—Su, P.—Wang, Z.: DitDetector: Bi-
modal Learning Based on Deceptive Image and Text for Macro Malware Detection.
Proceedings of the 38th Annual Computer Security Applications Conference (AC-
SAC ’22), 2022, pp. 227–239, doi: 10.1145/3564625.3567982.

[10] Tai, D.Q.—Gallus, P.—Frantǐs, P.: Macro Malware Development Issuses. 2023
International Conference on Military Technologies (ICMT), IEEE, 2023, pp. 1–6, doi:
10.1109/ICMT58149.2023.10171257.

[11] Ramaswami, S. S.—Swain, G.: Detecting Macro Less and Anti-Evasive Malware in
Malspam Word Attachments Using Anergy Scoring Methodology. 2023 International
Conference on Advances in Intelligent Computing and Applications (AICAPS), IEEE,
2023, pp. 1–8, doi: 10.1109/AICAPS57044.2023.10074267.

[12] Kim, S.—Hong, S.—Oh, J.—Lee, H.: Obfuscated VBA Macro Detection
Using Machine Learning. 2018 48th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), 2018, pp. 490–501, doi:
10.1109/DSN.2018.00057.

[13] Chen, X.—Wang, W.—Han, W.: Malicious Office Macro Detection: Combined
Features with Obfuscation and Suspicious Keywords. Applied Sciences, Vol. 13, 2023,
No. 22, Art. No. 12101, doi: 10.3390/app132212101.

[14] Ravi, V.—Gururaj, S. P.—Vedamurthy, H.K.—Nirmala, M.B.: Analysing
Corpus of Office Documents for Macro-Based Attacks Using Machine Learn-
ing. Global Transitions Proceedings, Vol. 3, 2022, No. 1, pp. 20–24, doi:
10.1016/j.gltp.2022.04.004.

https://doi.org/10.1145/3481357.3481512
https://doi.org/10.26267/unipi_dione/3749
https://doi.org/10.1145/3564625.3567982
https://doi.org/10.1109/ICMT58149.2023.10171257
https://doi.org/10.1109/AICAPS57044.2023.10074267
https://doi.org/10.1109/DSN.2018.00057
https://doi.org/10.3390/app132212101
https://doi.org/10.1016/j.gltp.2022.04.004


Dangerousness of Client-Side Code Execution with Microsoft Office 1233

Jean Rosemond Dora works in the Institute of Informatics,
Slovak Academy of Sciences, Bratislava. He is a penetration
tester, focusing primarily on detecting and exploiting (upon re-
quest) vulnerabilities in a given environment. He holds cer-
tificates among which OffSec Experienced Penetration Tester
(OSEP), Cybersecurity and Infrastructure Security Agency
(CISA) from the U.S. Department of Homeland Security, In-
dustrial Control System (ICS); Certified Ethical Hacker (CEH),
Practical Network Penetration Testing (PNPT), Security Aware-
ness Foundations&Training. He holds his Ph.D. degree obtained

from the Institute of Mathematics, Slovak Academy of Sciences (MUSAV). He has a Mas-
ter’s degree from the Faculty of Electronics and Informatics, Slovak University of Tech-
nology (FEI-STU) in Bratislava. He holds a second master’s degree in computer science
from the Faculty of Education in Ružomberok, Slovak Republic. He is also employed in
Internal/External, Web Applications, and Wireless network assessments in penetration
testing as an independent contractor. Additionally, he is an online instructor, teaching
ethical hacking courses on Udemy, Thinkific, and Teachable platforms.

Ladislav Hluch�y works in the Institute of Informatics, Slovak
Academy of Sciences as a Senior Research Scientist and Manager
with more than 20 years of experience in leading national and
international research projects and teams of 5 to 20 researchers.
He is a competent scientist in the area of high-performance com-
puting, multi-cloud computing, parallel and distributed infor-
mation processing, and knowledge management. His research
also focuses on data flow management through abstract language
mechanisms. In the past, Ladislav Hluchý, Associate Professor,
has participated in several cooperations with industry, which will

be beneficial for transfering the project results into practice.


