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Abstract. Software size – often measured in the source lines of code (SLOC) –
fundamentally determines the software development effort. Realistic estimates of
software size are, therefore, crucial for project planning. However, even though soft-
ware size is influenced by both functional requirements (FRs) and non-functional
requirements (NFRs), NFRs have been largely neglected in previous SLOC estima-
tion studies. This study conducts an initial investigation of the impact of NFRs on
early SLOC estimation by focusing on security-based NFRs related to data entry
validations. First, the IFPUG software non-functional assessment process (SNAP)
is used to calculate SNAP points for data entry validations (SPDEV). Then, SPDEV
is used along with specially adjusted analysis class diagram (ACD) metrics to build
and validate an early SLOC estimation model using an industrial dataset. Finally,
the proposed model is compared with two existing size estimation models. Results
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indicate that our proposed model outperforms both models in terms of estimation
accuracy.

Keywords: Early software size estimation, information systems, IFPUG SNAP,
linear regression, model validation, security non-functional requirements

1 INTRODUCTION

The importance of thorough planning in delivering software projects cannot be de-
nied. Preparing a realistic and thorough project plan, however, depends largely ex-
tent on the availability of accurate estimates of project effort at the time of project
inception. Accuracy of early effort estimates, in turn, relies on the accuracy of early
estimates of software size, which is often measured using source lines of code (SLOC).
This is precisely why software size estimates are a vital input of many algorithmic
software efforts and cost estimation models [1, 2, 3, 4]. It may be reasoned that to
reduce the chances of software failure, there is a compelling need for an accurate
early SLOC estimation method.

Estimates of software size are primarily influenced by its functional require-
ments (FRs) and its non-functional requirements (NFRs). FRs and NFRs are the
integral part of the software requirements specification (SRS) document for a soft-
ware project. In ISO/IEC/IEEE 24765 [5], FR is defined as a requirement that
describes what the software shall do to provide functional tasks and services to
its users. On the other hand, NFR is defined as a requirement that describes not
what the software will do for its users, but how the software will do it to provide
functional tasks. NFRs include software quality attributes, technology constraints,
design constraints, system constraints, etc [6].

One of the main reasons for the large difference between estimates of software
size obtained at the project inception and measurements of actual size obtained at
the project closure is not incorporating NFRs into early software size estimation [7].
In the existing literature, many methods [8, 9, 10, 11, 12] have been proposed for
early SLOC estimation. However, to the best of our knowledge, none of these
methods uses NFRs to estimate software size. This research attempts to fill in this
gap. However, since this study conducts an initial exploration, its scope is limited to
focusing on the influence of only one type of NFRs i.e. security-based NFRs related
to data entry validations.

A lot of management information systems (MIS) use structured query language
(SQL) for accessing and managing data in a relational database. SQL injection
is one of the most serious security threats to these systems [13]. One of many
causes of SQL injection attacks is the lack of data entry validations in these systems
that allows attackers to enter malicious statements through input fields which, in
turn, causes the execution of illegal queries resulting in unauthorized access to the
database, data loss, misuse of sensitive data, and damage to the functionality and
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confidentiality of the system [13]. Data entry validations are security-based NFRs
that are often related to the FRs of the system. Software developers, thus, write
SLOC for validation of input data, thereby increasing the size of the source code.
This factor motivated us to incorporate security-based NFRs related to data entry
validations into early SLOC estimation.

Daud and Malik [14] presented and empirically validated a new set of metrics
called analysis-to-design adjustment factors (ADAFs). These metrics quantitatively
capture the difference between the analysis class diagram (ACD) and the design class
diagram (DCD) for four basic metrics i.e. number of classes (NOC), number of rela-
tionships (NOR), number of methods (NOM), and number of attributes (NOA). In
the follow-up study [12], Daud and Malik used four ADAF-adjusted ACD metrics –
ADAF-adjusted NOC (ANOC), ADAF-adjusted NOR (ANOR), ADAF-adjusted
NOM (ANOM), and ADAF-adjusted NOA (ANOA) – to build and validate early
SLOC estimation models. These models showed significant improvement in the esti-
mation accuracy vis-à-vis to the existing relevant state-of-the-art SLOC estimation
models.

In this study, we use software non-functional assessment process (SNAP) [15]
sub-category 1.1 “data entry validations” to calculate SNAP points for data entry
validations (SPDEV) for a dataset comprising 11 real-life industry MIS projects.
We use SPDEV along with ADAF-adjusted ACD metrics to build and validate our
proposed early SLOC estimation model. Moreover, we conduct a comparison of the
estimation accuracy between the proposed model and two existing SLOC estimation
models [12]. These existing models are constructed using the same dataset; however,
they do not incorporate security-based NFRs pertaining to data entry validations.
The results demonstrate that our proposed model exhibits significantly superior
performance in terms of estimation accuracy, outperforming both existing models.

The remaining paper is structured as follows: Section 2 presents some previous
work related to exploring and quantifying the relationship between NFRs and soft-
ware size. Section 3 provides a brief summary of the prerequisite concepts necessary
to understand this work. Section 4 elucidates the research methods utilized to carry
out this study. Section 5 shows and discusses the results of model construction,
assessment, validation, and comparison. Section 6 provides a practical demonstra-
tion, highlighting how practitioners can effectively apply our proposed model in
real-world scenarios. Section 7 highlights the possible threats to the validity of this
study. Finally, in Section 8, the main findings of the study are presented along with
suggestions for future work.

2 NON-FUNCTIONAL REQUIREMENTS AND SOFTWARE SIZE

We have conducted a thorough literature review of English language conference pa-
pers or journal publications from 2005 to 2021. Our selection criteria focused on
papers involving quantification methods, models, techniques, or approaches related
to security-based NFRs or those based on quantifying NFRs using SNAP. The fol-
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lowing paragraphs summarize the related research on quantifying NFRs and their
impact on software size.

The earliest work on quantifying NFRs and measuring their impact on software
size using functional size measurement (FSM) methods was reported by Kassab
et al. [16, 17, 18]. Kassab et al. [17] quantified NFRs using the common soft-
ware measurement international consortium (COSMIC) FSM method [19]. They
illustrated the security, availability, and performance NFRs of a credit card sys-
tem as operationalizing soft goals [19, 20] and then calculated the functional size in
COSMIC function points (CFP) of these NFRs using the COSMIC FSM method.
However, the usefulness of this technique is not empirically validated using real-life
industry projects.

In another study, Kassab et al. [18] illustrated the quantification of performance
requirements related to four basic functional processes of a mobile email system using
the COSMIC FSM method. They discovered that after integrating performance
requirements, the functional size increased by 117%. However, this study lacks
validation regarding the practical utility of the proposed approach through real-life
industry projects.

Fellir et al. [21] proposed a hybrid technique that combines the COSMIC FSM
method with case-based reasoning (CBR) [22] for including NFRs and their asso-
ciations with FRs in the early estimation of software size and effort. However, no
case study is employed to validate the effectiveness of the proposed technique.

Ochodek and Ozgok [23] investigated the relationships between the functional
size measured by international function point users group (IFPUG) function point
analysis (FPA) [24] and the non-functional size measured by SNAP [15] using three
software applications. They discovered that the likelihood of a correlation between
the non-functional size of transactional functions and their functional size is rather
low.

Mansoor and Ochodek [25] used the SNAP to calculate the size of NFRs as-
sociated with the usability of user interfaces in web applications. They developed
a prototype tool to calculate SNAP points (SP) for SNAP sub-category 2.1 “user
interfaces” by taking input (i.e. HTML and CSS files) available later in the SDLC
(after all the screens of an application are implemented). They tested the tool using
only three web pages. However, this tool is sensitive to HTML and CSS errors and
is not validated using real-life industry projects.

Ungan et al. [26] presented a method to measure the security-based quasi-NFRs
by using FSM patterns [27] and the COSMIC FSM method. They applied FSM
patterns to a small case study involving a course registration system and identified
that the final functional size (after including security-based NFRs) is increased by
136% as compared to the functional size measured in the initial phase of SDLC.
However, only two basic functional processes are used to validate the proposed
approach.

Meridji et al. [28] put forward a requirements model that relies on interna-
tional standards to quantify security NFRs (i.e. availability, confidentiality, and in-
tegrity) using the COSMIC FSM method. Subsequently, in another study, Meridji
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et al. [29] introduced a framework for system security measurement based on stan-
dards. This framework enables the measurement of security NFRs such as availabil-
ity, confidentiality, and integrity at the service level and the function level. They
they illustrated measuring security requirements for an automated teller machine
(ATM) system. However, only one small case study validates the proposed frame-
work.

Al-Sarayreh et al. [30] presented a security framework for early identification
and quantification of the functional and non-functional security requirements. They
applied this framework to incorporate eight functional processes of an ATM sys-
tem. The resulting total functional size was 41 CFP, comprising 30 CFP for the
measurement of functional security measures and 11 CFP for non-functional secu-
rity measures. However, the proposed framework is experimented with only using
the withdrawal process for an ATM system. Table 1 summarizes and compares the
related studies based on NFRs quantification methods, types of NFRs, number of
projects (data points (DPs)) used to validate the research and their limitations.

3 PREREQUISITE CONCEPTS

The following sections briefly describe the three main concepts used in this research.
A high-level understanding of these concepts is a prerequisite for grasping the content
of this research.

3.1 SNAP Sub-Category 1.1 “Data Entry Validations”

SNAP is a method proposed by IFPUG to calculate the non-functional size of a soft-
ware system using SNAP points (SP) [15]. It categorizes NFRs into 4 categories
(Data operations, Interface design, Technical environment, and Architecture) and
14 sub-categories that are used to measure the non-functional size of a system.
We use SNAP sub-category 1.1 “data entry validations” (that comes under Data
operations) to calculate SPDEV.

The process to calculate the SPDEV of a software system has the following
steps:

1. Analyze and identify NFRs related to sub-category 1.1 “data entry validations”.

2. Identify SNAP counting units (SCUs). “The SCU is a component, a process
or an activity, in which complexity and non-functional size are assessed” [15].
The SCU for SNAP sub-category 1.1 “data entry validations” is the elementary
process (EP). EP is the smallest unit of activity that is self-contained, meaningful
to the user, and represents a complete transaction [15]. For instance, “customer
orders products” is an EP for an online retail store system.

3. Calculate SPDEV for each SCU considering two complexity parameters i.e. the
number of data elements types (DETs) (unique and non-repeated fields used for
validations) and the number of nesting levels (number of conditional validations
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in the longest chain of validation). As shown in Table 2, first, the complexity
(i.e. low, average, or high) of the SCU is identified based on the number of
nesting levels. Then, SPDEV is calculated by multiplying a constant factor by
the maximum number of DETs of that particular SCU.

4. Add the SPDEV of all SCUs to get the final SPDEV of the software system.

Nesting Level Complexity

Low Average High
1–2 3–5 6+

SPDEV = 2 ∗#DETs 3 ∗#DETs 4 ∗#DETs

Table 2. SPDEV calculation (adapted from [15])

In this current research, we have used the aforementioned process to calculate
the SPDEV values of all projects in our industrial dataset.

3.2 ADAF-Adjusted ACD Metrics

In this section, we summarize the steps for calculating ADAF-adjusted ACD met-
rics [14]. First, four basic metrics (i.e. NOC, NOR, NOM, and NOA) were calculated
from the ACD of a project. Second, these same four metrics were automatically ex-
tracted from the DCD using a software tool called Understand [31]. Third, ADAF
for each metric was calculated using the formula given in Equation (1), where values
of x fall in the range of 1 to 4, representing the four basic metrics. DM is a DCD
metric and AM is the same metric obtained from the ACD of a project i. Fourth,
the mean ADAF (MADAF) for each metric was calculated using the formula given
in Equation (2), where n represents the total number of instances (projects) in
a dataset. Finally, each ACD metric (AM) was multiplied by the MADAF of that
metric to obtain the ADAF-adjusted ACD metric (AAM) as shown in Equation (3).

ADAFxi =
DMxi

AMxi

, (1)

MADAFx =
1

n

n∑
l=1

ADAFxi, (2)

AAMxi = MADAFx ∗ AMxi. (3)

The values of the four ADAF-adjusted ACD metrics (i.e. ANOC, ANOR,
ANOM, and ANOA) for each project in the industrial dataset were determined
in our earlier research [14]. These same values were used in this current research.
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3.3 Objective Class Points

Kim et al. [32] presented a metric called objective class points (OCP) that can be
easily calculated utilizing the information available in an ACD. It aggregates size
metrics (i.e. NOC, NOM, and NOA) and structural complexity metrics (i.e. the
number of generalization relationships (NOGen), the number of dependency rela-
tionships (NODep), the number of association relationships (NOAssoc), the num-
ber of aggregation relationships (NOAgg), the number of composition relationships
(NOComp), and the number of realization relationships (NORR)). The formula for
calculating OCP is given in Equation (4).

OCP = NOGen + NODep + NOAssoc + NOAgg

+ NOComp + NORR + NOM + NOC + NOA. (4)

Like the values of the four ADAF-adjusted ACD metrics, the OCP values for
projects in the industrial dataset were also determined in our earlier research [12].
These same values were used in this current research.

4 RESEARCH METHOD

We conducted a case study to assess the influence of the security-based NFRs (re-
lated to data entry validations) on early SLOC estimation using the steps described
by the following sections. Sections 4.1–4.6 are based on the guidelines provided by
Yin [33].

4.1 Research Questions

We answered the following research questions (RQs) for this study:

RQ1: How successful is our proposed model in accurately estimating software size
measured in SLOC?

RQ2: Does incorporating security-based NFRs (related to the data entry valida-
tions) improve the estimation accuracy of the proposed model vis-à-vis the two
existing early SLOC estimation models (i.e. ADAF-adjusted ACD metrics-based
model and OCP-based model)?

4.2 Case and Units of Analysis

This research employed a single-case study design [33]. The case under investigation
involved a well-established software house located in Lahore, which is a recognized
member of the Pakistan software houses association for IT and ITeS (P@SHA) [34].
The units of analysis were 11 completed MIS projects [12, 14] implemented in
VB.NET at the case software house. We selected these projects because these
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projects belonged to the same category and were developed in the same environ-
ment. Moreover, we also had access to all the required artefacts (documentation
and user manuals).

4.3 Data Collection

Daud and Malik [12, 14] determined the values of four ADAF-adjusted ACD met-
rics (ANOC, ANOR, ANOM, and ANOA), OCP, and software size (SLOC) for each
project in the industrial dataset. The steps for calculating ADAF-adjusted ACD
metrics are described in detail in Section 3.2. The SLOC of a project was auto-
matically extracted using the tool Understand. In this current study, we calculated
SPDEV (using NFRs available in the SRS document) for each project (Section 3.1).
We used SPDEV along with ADAF-adjusted ACD metrics to build and validate an
early SLOC estimation model. Table 3 shows the SPDEV, ANOC, ANOA, ANOM,
ANOR, OCP, and software size (i.e. non-comment and non-blank physical SLOC)
values for each project in our dataset. Table 4 illustrates the descriptive statistics
for all metrics in our dataset.

Sr.
#

Project
Code

SPDEV ANOC ANOA ANOM ANOR OCP SLOC

1 p1 869 205 1404 1897 226 526 31 138
2 p2 1 127 250 2 894 2 101 343 839 46 085
3 p3 1 021 246 2 488 2 142 310 765 53 125
4 p4 1 269 262 2 581 2 703 320 842 66 481
5 p5 1 251 250 2 813 2 244 301 830 55 529
6 p6 1 271 275 2 975 2 448 428 911 67 448
7 p7 1 181 303 3 503 3 284 423 1 090 64 919
8 p8 1 253 308 3 695 3 764 390 1 164 104 611
9 p9 875 287 3265 3346 348 1 035 65 204

10 p10 1 379 308 3 428 2 856 489 1 050 73 075
11 p11 1 285 357 4 605 4 243 526 1 409 98 489

Table 3. Metrics’ values for dataset (adapted from [12])

Metric Minimum Median Maximum Mean Std. Deviation

SPDEV 869 1 251 1 379 1 161.91 170.72
ANOC 205 274.7 357 277.31 41.01
ANOA 1404 2 975.4 4 605 3 059.24 809.94
ANOM 1897 2 703 4 243 2 820.76 756.39
ANOR 226 347.8 526 373.01 88.31
OCP 526 911 1 409 951 233.92
SLOC 31 138 65 204 104 611 66 009.45 21 184.67

Table 4. Descriptive statistics for all metrics
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4.4 Model Construction and Validation Methods

Pearson correlation coefficient method [35] investigates the degree and direction of
linear association between two variables. The value of this coefficient lies between
−1 and +1. For two variables, a value in close proximity to −1 indicates a near-
perfect negative linear relationship, while a value near +1 indicates a near-perfect
positive linear relationship between them. We used this coefficient to effectively
identify the metrics that serve as significant predictors of SLOC.

We used linear regression[36, 37] to construct models for estimating SLOC of
a software system. The rationale behind selecting this modeling method is that it
is widely employed and has demonstrated superior performance compared to other
methods in existing literature on software size estimation. [9, 12]. Linear regression
involves two variables: dependent variable (a.k.a. response variable) and indepen-
dent variable (a.k.a. predictor).

Simple linear regression (SLR) is used to predict the value of a dependent vari-
able (y) using only one predictor (x). The formula for an SLR model is given in
Equation (5).

y = β0 + β1x+ ϵ. (5)

Multiple linear regression (MLR) is used to predict the value of a dependent
variable (y) using two or more predictors. The formula for an MLR model is given
in Equation (6).

y = β0 + β1x1 + β2x2 + · · ·+ βmxm + ϵ, (6)

where “x1 . . . xm” are predictors”, “β0” is the intercept of the line, “β1 . . . βm” are
regression coefficients, and “ϵ” represents the error. The quality of the linear mod-
els was assessed by using the coefficient of determination (R2) [36]. It shows the
percentage of variation in the dependent variable explained by the predictor(s).
Stepwise MLR [12, 37] was used which builds a model by selecting the most suitable
combination of statistically significant predictors based on the R2 value.

Before applying statistical tests (i.e. Pearson correlation coefficients analysis
and regression analysis), we made sure that the dataset had no outliers and that all
variables followed the normal distribution. Cook’s distance [38] was used to identify
and remove outliers from our dataset. An instance in a dataset is identified as
an outlier if its Cook’s distance is greater than 4/n, where n is the total number
of instances. We used the Shapiro-Wilk test [10] to examine the distribution of all
variables. The null hypothesis for the Shapiro-Wilk test is that a variable is normally
distributed in some population. We can reject the null hypothesis of population
normality if the p-value of a variable is less than 0.05 (i.e. the variable is not normally
distributed).

We used the leave-one-out cross-validation (LOOCV) technique [12, 39] to vali-
date our proposed model. In this method, the numbers of iterations are equal to the
number of instances in the dataset. It works by randomly choosing one instance as
validation data and all the remaining instances as training data. Therefore, every
instance in a dataset gets a chance to be used as validation data. For each iteration,
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the errors are measured and, after the final iteration, the results are averaged. The
rationale for using the LOOCV technique is that it provides a more robust, reliable,
and unbiased estimate of model performance since each instance in a dataset can
validate a model built using all other remaining instances. Moreover, it is the most
widely used validation method in software size estimation studies [12].

In this research, we performed the statistical tests using the IBM SPSS statistical
tool [40, 41]. The R programming language [42] was used to assess and validate the
early software size estimation model.

4.5 Model Evaluation Criteria

To evaluate the estimation accuracy of the proposed early SLOC estimation model,
we used Pred(25) (the number of predictions that are within 25% of the actual) [12],
mean magnitude of relative error (MMRE) [12], and median magnitude of relative
error (MdMRE) [12] which are calculated based on magnitude of relative errors
(MREs) (Equation (7)), where i denotes an instance (project) in a dataset, yi de-
notes the actual size measured in SLOC, and ŷi denotes the estimated size measured
in SLOC. MMRE is recognized as an unreliable performance measure in the liter-
ature [42] since it is biased towards underestimation or overestimation due to the
presence of outliers. To overcome this limitation, we used other accuracy measures –
mean of absolute residuals (MAR) [12], sum of squared error (SSE) [12], and mean
squared error (MSE) [12]. MAR is the average of the absolute differences between
the actual SLOC and the predicted SLOC. SSE is calculated by adding together
the squared differences between the actual SLOC and the predicted SLOC. MSE is
calculated by taking the mean of the squared differences between the actual SLOC
and the predicted SLOC.

MRE i =
|yi − ŷi|

yi
. (7)

4.6 Steps of the Proposed Method

The major steps of our proposed method are listed below:

1. Analyze the dataset for outliers and variable distribution.

2. Use Pearson correlation coefficients to investigate the relationship between
SPDEV and software size (SLOC).

3. Construct an early SLOC estimation model using stepwise MLR based on
SPDEV and ADAF-adjusted ACD metrics.

4. Validate the proposed model using the LOOCV technique.

5. Compare the proposed model with two existing early software size estimation
models (i.e. ADAF-adjusted ACD metrics-based model and OCP-based model).
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5 RESULTS AND DISCUSSION

This section presents the results obtained after executing each of the five major steps
(Section 4.6) of our proposed method.

5.1 Dataset Analysis for Outliers and Variable Distribution

Cook’s distance threshold for our dataset was 4/11 = 0.364. Only one project’s
(p8’s) Cook’s distance (0.49548) was greater than the threshold value. Therefore,
p8 was treated as an outlier and removed from our dataset. After removing the
outlier, we used the Shapiro-Wilk test to examine the distribution of all metrics in
our dataset. The p-values for SPDEV, ANOC, ANOA, ANOM, ANOR, OCP, and
SLOC are 0.17, 0.869, 0.674, 0.334, 0.738, 0.674, and 0.635, respectively. Since all
the metrics’ p-values are greater than 0.05, we cannot reject the null hypothesis that
all the metrics in our dataset are normally distributed.

5.2 Pearson Correlation Analysis

We studied the correlation between the predictors (SPDEV, ANOC, ANOA, ANOM,
ANOR, and OCP) and the SLOC using the Pearson correlation method, as shown
in Table 5. We found a significant positive correlation (p-value < 0.05) between all
metrics and SLOC. Notably, SPDEV exhibited a strong and statistically significant
correlation with SLOC, making it a promising candidate for predicting the SLOC
of a software system.

SPDEV ANOC ANOA ANOM ANOR OCP

Pearson’s r 0.613 0.951 0.912 0.883 0.878 0.934
p-value 0.03 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 5. Pearson correlation between predictors and SLOC (adapted from [12])

5.3 Model Construction

First, SLR was used to investigate the predictive strength of each of the potential
predictors in our dataset. Since outliers can significantly distort any regression
model, we used Cook’s distance to identify and remove an outlier from our dataset
(Section 5.1). The results obtained from SLR are shown in Table 6. It is observed
that SPDEV is the weakest standalone predictor of SLOC because its R2 value is
the lowest compared to other predictors.

Later, we used stepwise MLR to build a software size estimation model using
SLOC as the dependent variable and SPDEV, ANOC, ANOA, ANOM, and ANOR
as independent variables. We observed the proposed MLR-based model’s statistics
(i.e. R2, F-test [12], t-test [12], signs of estimated coefficients, and variance inflation
factor (VIF) [8, 43]) to evaluate its quality.
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Sr. # Predictors R2

1 SPDEV 0.376
2 ANOC 0.904
3 ANOA 0.831
4 ANOM 0.779
5 ANOR 0.77
6 OCP 0.872

Table 6. SLR results

Sr.
#

Model NI R2 ANOVA VIF Outlier

p-value

1
SLOC = −35 820.07

+ 18.93 ∗ANOM
+ 40.21 ∗ SPDEV

10 0.927 < 0.001
ANOM = 1.082
SPDEV = 1.082

p8

2
SLOC = −48 501.71

+ 403.41 ∗ANOC [12]
10 0.904 < 0.001 ANOC = 1.000 p8

3
SLOC = −3 548.213

+ 70.665 ∗OCP [12]
10 0.872 < 0.001 OCP = 1.000 p8

Table 7. Size estimation models before and after incorporating SPDEV

Table 7 lists the models obtained using stepwise MLR on our industrial dataset.
Model #1 represents our proposed SLOC estimation model. The other two mod-
els – Model #2 and Model #3 – are from our earlier work [12]. Model #2 was
constructed using only ADAF-adjusted ACD metrics (i.e. ANOC, ANOR, ANOM,
and ANOA) as potential predictors. Model #3 was constructed using only OCP as
a predictor.

The proposed model (Model #1) was built using SPDEV and ADAF-adjusted
ACD metrics as potential predictors. It has the highest R2 value (i.e. 0.927) which
indicates that 92.7% of the variation in SLOC can be explained by the predictors
ANOM and SPDEV. This model is significant on the basis of the F-test since its
analysis of variance (ANOVA) p-value (i.e. 0.000103) is much less than the signifi-
cance level (α = 0.05). The p-values of ANOM and SPDEV are 0.000164 and 0.007,
respectively. Since the p-values of both predictors are less than the significance level
(α = 0.05), this implies that both predictors are significant and the proposed linear
model is a good fit to the data according to the t-test. VIF values for the predictors
of this model are close to 1 which shows that multicollinearity between the predic-
tors is very low. The positive estimated coefficients of ANOM and SPDEV show
that software size (SLOC) is expected to increase when the ANOM and SPDEV
increase. More specifically, the value of SLOC is expected to increase by almost 19
units for a unit of increase in ANOM and by almost 40 units for a unit of increase
in SPDEV.
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Figure 1 depicts information about the standardized residuals for our proposed
model. An essential assumption of the regression method is that the residuals are
normally distributed (i.e. 95% of values of standardized residuals lie between −3
and +3) [38]. The standardized residuals for our proposed model are normally
distributed (Figure 1). Figure 2 shows the relationship between actual SLOC and
estimated SLOC captured using our proposed model.

Figure 1. Histogram of standardized residual

5.4 Model Assessment and Validation

We utilized the LOOCV method to evaluate the accuracy of our proposed model,
employing various accuracy metrics i.e. MMRE, MdMRE, Pred(25), MAR, SSE,
and MSE. The values of these accuracy metrics for our proposed model can be
found in Table 8 (refer to Column 3). These findings indicate that our proposed
model demonstrates predictive capabilities, as both the MMRE and MdMRE values
are below 0.20. Furthermore, the Pred(25) value falls within an acceptable range
(greater than 0.75). In accordance with prior research [44, 45], the outcomes of our
proposed model are considered good. Therefore, in response to RQ1, we can confi-
dently state that our proposed model achieves a high level of accuracy in estimating
software size measured in SLOC.
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Figure 2. Linear regression line for the proposed model

5.5 Comparison with Existing Models

Table 8 also presents a comparison of the estimation accuracy of the proposed model
(Model #1) with the two existing early software size estimation models (Model #2
and Model #3) developed without incorporating security-based NFRs related to
data entry validations.

All models perform identically with respect to Pred(25). However, as is evi-
dent from the Table 8, the proposed model is significantly superior to the existing
two models with respect to all other accuracy measures. It achieves significant im-
provement in the estimation accuracy compared to Model #2 (i.e. ADAF-adjusted
ACD metrics-based model) with respect to MMRE (18% reduction), MdMRE (18%
reduction), MAR (21% reduction), SSE (25% reduction), and MSE (25% reduc-
tion). Since our proposed model attains reduced values for these accuracy metrics,
it signifies an improved fit, primarily due to the integration of security-based NFRs
associated with data entry validations in the proposed model.
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Accuracy
Metric

Formula
Proposed
Model

(Model #1)
Model #2 Model #3

MMRE MMRE = 1
n

∑n
i=1MRE i 0.065 0.079 0.086

MdMRE MdMRE = MEDIAN i=1,n[MRE i] 0.054 0.066 0.074

Pred(25)
Pred(25) =

1
n

∑n
i=1

{
1, if MRE i ≤ 25

100 ,
0, otherwise,

1 1 1

MAR MAR = 1
n

∑n
i=1 |yi − ŷi| 3 613 4 576 5 017

SSE SSE =
∑n

i=1 (yi − ŷi)
2 206 651 110 273 765 731 365 546 841

MSE MSE = 1
n

∑n
i=1 (yi − ŷi)

2 20 665 111 27 376 573 36 554 684

Table 8. Comparison summary

Additionally, our proposed model (Model #1) significantly enhances the accu-
racy of estimation compared to Model #3 (OCP-based model) by reducing MMRE
by 24%, MdMRE by 27%, MAR by 28%, SSE by 43%, and MSE by 43%.

Since our proposed model outperforms both existing early software size estima-
tion models by achieving a significant reduction in errors, it can be said in response
to RQ2 that the incorporation of security-based NFRs related to the data entry
validations in the proposed model brings the significant improvement in estimation
accuracy vis-à-vis the two existing early software size estimation models.

6 WORKED-OUT EXAMPLE

This section provides guidance to practitioners on utilizing our proposed model
for early estimation of SLOC in a new software project, using a practical exam-
ple.

Let us consider a scenario where the project manager of a software company is
assigned the task of overseeing a new software project, specifically the development
of a hospital management system (HMS), using the VB.NET programming language
from the ground up. To estimate the SLOC for this project, the project manager
can employ our proposed model, which was developed based on industrial VB.NET
projects (refer to Table 7, Sr. #1).

Initially, the project management team provides the project manager with the
initial documentation and the ACD for the HMS. From this ACD, the project man-
ager can easily extract the NOM. Let us assume the NOM for the HMS is 240. The
MADAF for NOM, which is 10.2 in this case, is also provided to the project man-



1250 M. Daud, A.A. Malik

ager. The MADAF is calculated using historical data maintained by the software
company, following the steps mentioned in Section 3.2.

Next, the project manager can calculate the ANOM using Equation (3), as
demonstrated in Table 9, Step 1. Additionally, by analyzing the documentation
of the HMS, the project manager can calculate the SPDEV specific to the HMS,
following the steps outlined in Section 3.1. Let us assume the SPDEV for the HMS
is determined to be 1271.

Finally, these values, i.e., ANOM = 2448 and SPDEV = 1 271, can be entered
into the proposed early SLOC estimation model (refer to Table 7, Sr. #1). Conse-
quently, the estimated SLOC for this HMS is approximately 61 600, as illustrated
in Table 9, Step 2.

Step 1. Collect/Calculate Input Metrics

ADAF-adjusted NOM (ANOM) = NOM ∗MADAF(NOM)
ANOM = 240 ∗ 10.2
ANOM = 2448
SPDEV = 1271

Step 2. Calculate the Estimated Software Size

SLOC = −35 820.07 + 18.93 ∗ANOM+ 40.21 ∗ SPDEV
SLOC = −35 820.07 + 18.93 ∗ 2 448 + 40.21 ∗ 1 271
SLOC = 61 628

Table 9. Software size estimation based on the proposed model

7 THREATS TO VALIDITY

We used four criteria (i.e. internal validity, construct validity, external validity, and
reliability) provided by Yin [33] to discuss the threats to the validity of this study.

In the case of the dependent variable, the construct validity threat related to
the software size (SLOC) was reduced by calculating SLOC automatically using
a reliable tool called Understand. Moreover, SPDEV values of projects were first
calculated by the first author of this paper and then reviewed and validated by
experienced collaborators from the relevant software house. To mitigate the threat
related to the internal validity of this study, we assessed the estimation accuracy
of the proposed model using a variety of accuracy metrics obtained through the
LOOCV method.

Since this study was conducted using a relatively small dataset provided by
a single software house, the potential for generalization of the results is limited.
However, we used adequate statistical methods to perform this study and obtained
promising results which are statistically significant. We believe that these results
shed adequate light on the importance of the use of NFRs in software size estimation.
Nonetheless, to facilitate other researchers and practitioners, we have also provided
a generic repeatable approach which can be applied to any other dataset. Finally,
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to improve reliability (which refers to the degree to which the research data and
findings are independent of researchers i.e. same results would be obtained when
repeating the study [33]), the data and steps of this study were all reviewed by
a collaborator.

8 CONCLUSIONS AND FUTURE WORK

Past research has explored the quantification of NFRs in terms of functional size
measures such as COSMIC FSM. Some researchers have also looked at the impact
of some NFRs such as performance and usability on software size. However, no
previous work has focused on exploring the use of security-based NFRs related to
data entry validations for estimating the physical size (i.e. SLOC) of a system at an
early stage (i.e. project inception). Similarly, most previous work lacks validation
of the proposed approaches using a data set comprising real-life industrial projects.
Validations reported in the literature use case studies comprising only a few (no
more than 3) projects. This research attempts to fill these gaps by evaluating the
impact of security-based NFRs on early software size estimation. For this purpose,
first security-based NFRs related to data entry validations were utilized to calculate
SPDEV for a dataset comprising 11 real-life MIS projects. These SPDEV values were
then used along with ADAF-adjusted ACD metrics to build and validate an early
SLOC estimation model.

This model was assessed, validated, and compared (concerning the estimation ac-
curacy) with two existing early software size estimation models (i.e. ADAF-adjusted
ACD metrics-based model and OCP-based model) built using the same industrial
dataset. Results have shown that this model outperforms the existing models and
significantly reduces errors. This evidence suggests that including security-based
NFRs in an early software size estimation model can lead to a significant improve-
ment in estimation accuracy.

Even though the results of this initial investigation are promising, the dataset
currently used in this study is relatively small and is collected from a single software
development organization. In the future, a bigger dataset comprising more real-
life projects developed in different languages and environments may be utilized to
undertake a more thorough investigation of the impact of security-based NFRs on
early SLOC estimation. Moreover, the effect of other categories of NFRs on early
SLOC estimation may also be investigated empirically.
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