
Computing and Informatics, Vol. 43, 2024, 1256–1284, doi: 10.31577/cai 2024 5 1256

DOES A ROBOT’S GAZE BEHAVIOR AFFECT
ENTRAINMENT IN HRI?

Jay Kejriwal

Institute of Informatics
Slovak Academy of Sciences
Bratislava, Slovakia
&
Faculty of Informatics and Information Technology
Slovak Technical University
Bratislava, Slovakia
e-mail: kejriwal.jay@gmail.com

Chinmaya Mishra

Furhat Robotics AB
Stockholm, Sweden
&
Max Planck Institute for Psycholinguistics
Nijmegen, Netherlands
e-mail: chinmaya.mishra@mpi.nl

Gabriel Skantze

Furhat Robotics AB
Stockholm, Sweden
&
KTH Royal Institute of Technology
Stockholm, Sweden
e-mail: skantze@kth.se

Tom Offrede

Institut für deutsche Sprache und Linguistik
Humboldt-Universität zu Berlin
Berlin, Germany
e-mail: offredet@hu-berlin.de

https://doi.org/10.31577/cai_2024_5_1256


Does a Robot’s Gaze Behavior Affect Entrainment in HRI? 1257
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Abstract. Speakers tend to engage in adaptive behavior, known as entrainment,
when they reuse their partner’s linguistic representations, including lexical, acoustic
prosodic, semantic, or syntactic structures during a conversation. Studies have
explored the relationship between entrainment and social factors such as likeability,
task success, and rapport. Still, limited research has investigated the relationship
between entrainment and gaze. To address this gap, we conducted a within-subjects
user study (N = 33) to test if gaze behavior of a robotic head affects entrainment of
subjects toward the robot on four linguistic dimensions: lexical, syntactic, semantic,
and acoustic-prosodic. Our results show that participants entrain more on lexical
and acoustic-prosodic features when the robot exhibits well-timed gaze aversions
similar to the ones observed in human gaze behavior, as compared to when the
robot keeps staring at participants constantly. Our results support the predictions
of the computers as social actors (CASA) model and suggest that implementing
well-timed gaze aversion behavior in a robot can lead to speech entrainment in
human-robot interactions.
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1 INTRODUCTION

Entrainment in spoken interaction is a ubiquitous and multi-faceted phenomenon ob-
served in Human-Human Interaction (HHI), whereby people adjust their speaking
behavior in response to the speech patterns of their interlocutors. Several stud-
ies have examined this phenomenon using diverse approaches and referred to it
with various names, such as alignment [1], accommodation [2], ’the Chameleon
Effect’ [3], convergence [2, 4], coordination [5], coupling [6, 7], mimicry [8], mir-
roring [9], priming [10], and synchrony [11], among many more. According to the
psycholinguistic literature, entrainment happens on various linguistic dimensions,
such as acoustic-prosodic features [12], lexical choice [13], syntactic structure [14],
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or semantic [15, 16]. A comprehensive discussion on the types of entrainment, clas-
sification criteria, and terminology can be found in [17]. All these approaches assess
the level of similarity of different linguistic features and attribute the similarities to
internal (social) cognitive mechanisms or external social factors.

Entrainment in HHI has been studied extensively, and several theories have been
proposed to explain it. The Interactive Alignment Model (IAM) [1] and Communica-
tion Accommodation Theory (CAT) [18] are two major theoretical frameworks that
address entrainment. CAT suggests that speakers dynamically adapt their communi-
cation behaviors based on their interaction with their partner. This process involves
either converging toward their interlocutors’ communication behaviors to reduce so-
cial distance or diverging from them to increase it. On the other hand, IAM suggests
that entrainment is an automatic process triggered by a priming mechanism that
operates on linguistic representations and is based on a direct link between percep-
tion and production in conversation. Although differing in their perspectives, both
models agree that entrainment plays a crucial role in HHI. The theories suggest that
social processes and automatic cognitive mechanisms can coexist and vary in sig-
nificance across individuals, which may help explain why speakers exhibit different
degrees of entrainment.

The development of spoken dialogue systems (SDS) that can accurately recog-
nize and understand social cues and behaviors is a complex and ongoing process.
Despite significant progress, researchers have not yet been able to satisfactorily
model the intricate dynamics involved in human conversations. One line of research
in this domain is to explore the application of entrainment findings from HHI to
HMI. Entrainment functionality at various linguistic levels has shown the poten-
tial to improve the naturalness and effectiveness of SDS, which could increase the
number of potential applications. Several studies have reported encouraging results,
such as [19], who proposed a model for lexical entrainment that uses a data-driven
approach to identify the most appropriate terms for system prompts, leading to im-
proved SDS performance. Similarly, [20] reported accuracy improvements in speech
recognition through speech rate induction, and [21] reported students’ increased
knowledge gains when a tutoring SDS entrained to their pitch and intensity. Simi-
larly, in [22], authors found that adjusting the conversational agent’s mean pitch to
match that of its human interlocutor resulted in more rapport and natural commu-
nication. This suggests that advanced methods of implementing entrainment may
improve the efficiency and effectiveness of HMI.

Researchers have also investigated the relationship between entrainment and
various social factors. They found that entrainment is associated with different so-
cial aspects of a conversation, such as naturalness [23, 24], rapport [25, 22], task
success [26], liking [27], and cooperation [28]. Further, researchers have explored
non-verbal aspects of communication. Eye gaze behavior, such a non-verbal cue
and the focus of this paper, has proven vital in facilitating smooth communication.
Studies have explored the relationship between gaze and various social factors in
HHI, such as conversational feedback [29], trust, rapport and shared attention [30],
and turn-taking [31]. It has been observed that lack of eye contact during video-
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conferencing can negatively impact turn-taking efficiency [32]. In addition, the pres-
ence of eye contact during spoken interaction can significantly enhance performance
in word acquisition tasks [33]. However, the relationship between gaze and enter-
tainment in HMI has received less attention. In a recent study conducted by [34],
speech entrainment was analyzed by measuring the mean pitch of speech collected
from 33 participants subjected to two modes of robot’s gaze behavior (fixed vs.
variable) described in [35]. However, the results indicated no significant differences
between the two conditions.

In this work, we extend the study in [34] by focusing on other linguistic dimen-
sions, i.e., lexical, syntactic, and semantic levels. Further, at the acoustic-prosodic
level, we extend the entertainment analysis to eight acoustic-prosodic features: mean
and max pitch, mean and max intensity, jitter, shimmer, noise-to-harmonics ratio
(NHR), and speech rate, which in previous studies showed entrainment in HHI. The
current study thus aims to investigate entrainment in Human-Robot Interaction
(HRI) on four linguistic levels (lexical, syntactic, semantic, and acoustic) under two
different gaze conditions. Entrainment was measured using the entrainment met-
rics proposed by [36] for acoustic-prosodic features and [16] for text-based features
extracted from transcripts.

The contributions of this work can be summarized as follows:

• It explores the relationship between gaze behavior and entrainment in HRI.

• It investigates entrainment in four linguistic dimensions, i.e., lexical, syntactic,
semantic, and acoustic-prosodic.

2 RELATED WORK

The relationship between gaze and social factors in HHI has been extensively stud-
ied. For instance, [31] explored the relationship between interlocutors’ eye gaze
and spoken utterances and how it affects entrainment. They used their own cor-
pus [37], which consisted of three-party conversations, to train data-driven models
to classify turn-taking. The data was annotated with dialogue acts, eye-gaze, and
turn-taking features for analysis. The results showed that combining dialogue act
features with eye-gaze features resulted in higher classification accuracy. Moreover,
the study found that eye-gaze features were more important than speech signals for
turn management. Similarly, [38] explored the relationship between visual cues and
speech entrainment by investigating whether speakers entrain more when they see
each other as opposed to when they only hear each other. In an interactive search
task, pairs of participants were given a set of keywords to say repeatedly. While
one half could only hear each other, the other half could see and hear each other.
The study results indicated that the speakers entrained more towards each other
when they could see each other, suggesting that visual information enhances speech
alignment.

[39] conducted a study to explore the relationship between gaze and gestural
alignment during face-to-face interactions. The latter was operationalized as a de-
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gree of similarity between adjacent representational hand gestures from two inter-
locutors in terms of finger and palm orientation, handedness, gesture type, and hand
shape. They used the InSight Interaction Corpus [40], which consists of 15 record-
ings of face-to-face conversations that last about 20 minutes each. The study re-
vealed that the listener’s gaze significantly affects gestural alignment, whereas the
speaker’s gaze does not significantly impact gestural alignment. It was also found
that individuals tend to mimic similar gestures in their next turn when they con-
centrate their visual attention on the speaker’s movements. The study highlights
the importance of gaze behavior in gestural alignment. In a recent study [41], the
authors investigated the characteristics of gaze and its relation to speech behavior
during video-mediated face-to-face interactions between parents and their children.
The study involved 81 parent–child dyads who interacted with each other in two
scenarios, namely, cooperative and conflictive family topics.

The study’s findings showed that children spoke more in the cooperation sce-
nario, whereas parents spoke more in the conflict scenario. Additionally, parents
gazed slightly more at their children’s eyes in the conflict scenario compared to the
cooperation scenario. Both parents and children looked more at the other’s mouth
region while listening than speaking. Overall, this study contributes to the literature
on the importance of non-verbal communication cues in HHI.

When it comes to HRI, however, studies exploring the relationship between gaze
and social factors are limited. Few researchers have started addressing this gap. For
example, in a recent study [35] examined the relationship between robot and human
gaze behavior. The study involved a within-subjects design where 33 participants
interacted with a Furhat robot in two experimental conditions: Fixed Gaze and Gaze
Aversion. In the Fixed Gaze condition, the robot maintained constant eye contact
with the participant; in the Gaze Aversion condition, it produced gaze aversions
throughout the conversations, more similar to how humans behave. The study
found that participants tended to avert their gaze more often and for longer when
the robot maintained constant eye contact than when it produced gaze aversion.
This shows the significance of incorporating well-timed gaze aversions in robotic
conversational agents. If robots do not exhibit gaze aversions, then users may have
to put in extra effort to avoid frequent mutual gaze with the robot, which can
make the interaction more difficult. On the contrary, the same study also reported
subjective evaluations of the perceived interaction, where participants preferred the
robot under the fixed gaze condition to be more human-like. In subsequent work,
[34] utilized data collected in [35] and explored the relationship between gaze and
speech entrainment. PRAAT toolkit was employed to extract mean pitch values
of the participants’ and robots’ speech at each turn exchange. It was found that
speakers tend to entrain to the mean pitch of the robot. However, no significant
differences in mean pitch entrainment between the Fixed Gaze and Gaze Aversion
conditions were reported.

This work aims to add to the existing studies on speech entrainment and gaze be-
havior in HRI by adopting a more comprehensive approach. While previous work [34]
measured entrainment on the mean pitch, entrainment may have happened on other
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features. Empirical evidence on speech entrainment has shown that speakers en-
train and dis-entrain on different prosodic features [36, 42, 43, 44, 45]. Thus, more
acoustic-prosodic features should be examined to assess speech entrainment. Fur-
ther, the linear regression models used in the previous study did not consider the
order effect – the sequence in which the conditions were presented to the participants
(Fixed Gaze followed by Gaze Aversion or vice versa). This could have influenced
the results and should be taken into account. Additionally, the study only investi-
gated prosodic entrainment. We believe that a more comprehensive understanding of
speech entrainment can be achieved by complementing the acoustic-prosodic eval-
uation of entrainment with also analyzing text-based features extracted from the
transcripts at different linguistic levels, such as lexical, syntactic, and semantic. We
expand the scope of the original study by examining eight acoustic-prosodic features
and four linguistic dimensions, including lexical, syntactic, semantic, and acoustic-
prosodic. Furthermore, we use linear mixed-effect models to compare entrainment
in two different gaze conditions while considering the order effect and its interaction
with the gaze condition. Our study thus provides a comprehensive understanding of
entrainment in HRI and how gaze behavior affects entrainment on various linguistic
levels.

3 HYPOTHESIS

The computers are social actors (CASA) theory [46] suggests that humans interact
with media and computers as if they were real individuals. This theory proposes
that individuals subconsciously apply scripts for interacting with humans to social
interactions when they detect social cues of humanity. While this may no longer
apply to old technology such as desktop computers, as per a recent study [47], the
authors conclude that the CASA theory would apply to emergent technologies. We
argue that HRI is one such emergent technology to which the CASA theory would
apply. When a robot exhibits human-like behavior, it is perceived by humans as
having agency, which in turn encourages them to treat the robot as a social ac-
tor/agent. Few studies further support this observation. For instance, when a robot
exhibits appropriate emotions, it tends to be perceived as more intelligent [48] and
trustworthy [49].

Entrainment is a phenomenon that reflects the degree of social closeness among
speakers during an interaction. It suggests that the closer speakers get, the lesser
the social distance between them [2]. In the context of HRI, research has shown that
people tend to avert their gaze less when a robot exhibits well-timed gaze aversion
behavior [35]. It indicates that human-like gaze aversion behavior in robots can
have a positive influence on overall experience and ease of communicating with the
robot. We assume that speech entrainment might be one of the computationally
accessible indicators that can, in part, inform us about the cognitive states of the
human interlocutors and their perceived agency of the robot. We thus expect that
human-like gaze behavior by a robot during HRI would also have a positive influ-
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ence on the entrainment exhibited by human interlocutors. Although the original
study [34] examining only a single feature of the mean pitch did not find support for
this expectation, entrainment has been established as a complex and multi-faceted
phenomenon [17, 50]. Therefore, we believe that employing comprehensive features
and extensive analysis could shed additional light on the relationship between speech
entrainment and gaze behavior. Hence, in a similar experimental setup, as the one
used in [35], we hypothesize that participants will entrain more with the robot when
it exhibits well-timed gaze aversions during an interaction (H1).

4 METHOD

In this section, we provide a brief overview of the study design, procedure, and data
collection. A more detailed description of the method can be found in [35].

Participants interacted with two robot characters in a within-subjects design
under two experimental conditions: Fixed Gaze (FG) and Gaze Aversion (GA).
The robot was a Furhat robot [51], which has a back-projected face capable of
exhibiting human-like gaze behaviors. In the FG condition, the robot maintained
a fixed gaze at the participant, while in the GA condition, the robot averted its gaze
away at appropriate timings using the GCS proposed in [52], mimicking human-like
gaze behavior. This gaze aversion behavior was designed to emulate conversational
gaze cues related to turn-taking, intimacy regulation, and joint attention. The order
in which the conditions were presented to the participants (Order 1: FG → GA; and
Order 2: GA → FG) were alternated. For instance, if Participant 1 was presented
with Order 1; then Participant 2 was presented with Order 2. The participant’s
speech, eye gaze behavior, and subjective perception of the conversation with the
robot were recorded during the study.

4.1 Participants

The study involved 33 participants assigned male at birth, with ages ranging be-
tween 21 and 56 years (M = 30.55; SD = 8.07). Most participants were L2 speakers
of English, with only five being L1 speakers of English. Based on their LexTALE
language proficiency scores [53], 16 participants were classified at the C1 to C2
level, 15 at B2, and two at B1. Each participant in the study was compensated with
a voucher valued at 100 SEK.

4.2 Procedure

The robot began by introducing itself and explaining the purpose of the conversation,
see Figure 1. It then asked the participant six questions, giving the participant as
much time as needed in between questions. The robot also answered its own question
after the participant had finished answering it, before asking the next question. This
made the conversation feel more interactive rather than a one-sided interview. The
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procedure was the same for both conditions. After each interaction, the participant
completed a questionnaire regarding their perception of the interaction with the
robot. They also completed the [54]’s version of the Big Five personality inventory
and the LexTALE English proficiency test [53] between the experimental conditions,
which served as a distractor task.

Figure 1. Snapshot of the data collection setup where a participant interacts with the
Furhat robot

4.3 Data Collection

We recorded three types of data during the study: gaze data, speech data, and
subjective responses. The gaze behavior of the participants during the interactions
was recorded using a Tobii Pro Glasses 2 eye-tracker. Audio recordings of the
conversation between the participants and the robot were made using a Zoom H5
multi-track microphone. Finally, the subjective responses to a 9-point Likert scale
questionnaire about the participants’ perception of their interaction with the robot
were collected at the end of each interaction. The participants were informed about
the data being collected and gave their informed consent at the beginning of the
experiment. The study was approved by the Ethics Committee of the Faculty of
Language, Literature and Humanities of the Humboldt-Universität zu Berlin.

5 MEASURES AND ANALYSIS

Hypothesis H1 proposed that the participants would entrain more towards the robot
when it exhibits human-like gaze aversions (GA condition) as compared to the FG
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condition. To test this, we investigated entrainment on four different linguistic
dimensions: lexical, syntactic, semantic, and acoustic-prosodic. Textual data ex-
tracted from the audio data was used to assess the entrainment at the lexical,
syntactic, and semantic levels. Various acoustic-prosodic features were extracted
from the audio data to analyze entrainment at each of the extracted feature levels.
The following subsections discuss the feature extraction process, the measures of
entrainment used in this study, and the annotation and analysis of the data.

5.1 Feature Extraction

We extracted lexical, syntactic, semantic, and acoustic features from each turn. As
a first step for text-based features, we pre-processed each utterance by removing
numbers, punctuation, and other special symbols.

Lexical and syntactic features: We utilized the methodology proposed in the
ALIGN toolkit [55], an entrainment analysis tool, to extract both lexical and
syntactic features from each utterance in the dialog. The tool employs n-gram
sequences to extract these features. For lexical feature extraction, we first tok-
enized each word in every utterance and then converted them into their lemma
form using the Stanza toolkit [56]. By doing so, we were able to reduce all
inflectional and derived forms of words to a common base form. Subsequently,
we measured the term frequency (TF) for each lemmatized word in the text
and generated vectors for each turn based on the TF of every lemmatized word.
Lastly, each utterance was encoded into 512 one-dimensional lexical features.

To extract syntactic features from utterances, we tokenized each word and trans-
formed them into their respective parts of speech (POS) tags using the Stanza
toolkit [56]. The POS tagging process helps to classify words in an utterance
based on their associated parts of speech (e.g., noun, verb, adjective), which is
essential for understanding their grammatical structure and meaning. We then
converted POS sequences into bi-gram units for each utterance, as these units
contain crucial information about the grammatical structure and the relationship
between adjacent words in an utterance. The frequency of the bi-gram sequence,
representing syntactic units within each turn, was calculated and represented as
a vector with 512 one-dimensional syntactic features.

We also utilized CASSIM (ConversAtion level Syntax SImilarity Metric) [57] to
extract syntactic features. This tool allowed us to compare structural differences
utilizing parse trees. We generated parse trees for each utterance using CASSIM
and measured conversational syntax similarity using edit distance1.

Semantic features: We utilized a neural network-based DistilBERT model (ms-
marco-distilbert-base-v4) [58] pre-trained on the MS MARCO (Microsoft Ma-
chine Reading Comprehension) dataset. The dataset comprises a large-scale

1 A lower edit distance indicates closeness, while a greater distance indicates the oppo-
site.
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information retrieval corpus based on real user search queries using the Bing
search engine. Each turn in the dialog was encoded into a set of fixed-length
vectors known as embeddings. Each turn is represented by 768 one-dimensional
semantic features, which enables us to capture the meaning and context of the
conversation efficiently.

Acoustic features: Using the PRAAT toolkit [59], we extracted eight acoustic-
prosodic features for each turn, namely the mean and max pitch, the mean
and max intensity, jitter, shimmer, the noise-to-harmonics ratio (NHR), and the
speaking rate. The speaking rate was computed by counting the number of syl-
lables per second from the orthographic transcriptions of the data. Additionally,
we normalized all the extracted features by the speaker using the z-score.

5.2 Quantifying Entrainment

Various entrainment metrics have been proposed by researchers that capture dif-
ferent aspects of entrainment and employ different methodologies (for a review,
see [17, 50]). For measuring entrainment in acoustic and textual features, we em-
ployed two different metrics.

We utilized the approach suggested in [36] to measure acoustic-prosodic prox-
imity. To determine the entrainment distance between dyads, we measured the
absolute distance between each adjacent turn of the speakers on each feature, as
shown in Equation (1):

Entacoustic = |SpeakerAfeat − SpeakerB feat|. (1)

Here, feat denotes the corresponding speaker’s feature and Entacoustic computation
was performed 8 times, separately for each prosodic feature. Entrainment distance
represents the similarity of a prosodic feature over these adjacent turn transitions
uttered by speakers A and B in a conversation. A lower distance indicates closeness,
while a greater distance indicates the opposite.

To measure entrainment on the text-based features (i.e., at the lexical, syntactic,
and semantic levels), we used cosine similarity as a distance measure. Specifically,
we calculated the cosine similarity between a speaker’s embedding2 and the adjacent
embedding of their interlocutor, as shown in Equation (2):

Ent text−based = cos(A⃗, B⃗) =
A⃗ · B⃗
|A⃗||B⃗|

. (2)

Here, Ent text−based computation was performed 3 times, separately for each tex-
tual feature. In contrast to acoustic-prosodic entrainment distance, a greater textual
entrainment distance indicates closeness, while a lower distance indicates the oppo-
site.

2 Embeddings are dense numerical representations of textual/acoustic features ex-
pressed as vectors in a low-dimensional space.
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5.3 Annotation

The beginning and end of the turns of each speaker (human and robot) were anno-
tated manually using Praat [59]. Text transcription of the audio signal for each turn
was automatically obtained using the fairseq model facebook/mms-1b-all by [60].

5.4 Analysis

The analysis compared entrainment on four linguistic dimensions, i.e., lexical, syn-
tactic, semantic, and acoustic. This analysis aimed to determine on which linguistic
levels speakers are closest to each other under different gaze conditions. Entrainment
distance was measured from each session at each linguistic level using Equations (1)
and (2). We analyzed entrainment distance across four distinct linguistic levels, with
separate linear mixed models (LMMs) developed for each linguistic feature, using
the lmerTest R package [61]. Specifically, we trained eleven models, eight for each
acoustic-prosodic feature and three for the lexical, syntactic, and semantic features,
respectively. Each model considers entrainment distance as a dependent variable.
The fixed effects for each model included

• the experimental condition (Fixed Gaze, FG, and Gaze Aversion, GA),

• the order in which the conditions were presented to the participants, and

• the interaction between condition and order.

We included participant as a random effect variable. Formula (3) was used to fit each
model. We fit each LMM by REML t-tests and used Satterthwaite approximations
to determine the degrees of freedom. Finally, the p-values were derived from the
output of each model. The post-hoc testing of each model was carried out by
adjusting multiple comparisons using Tukey’s Multiple Contrasts (part of R package
“emmeans”) [62].

Entrainment distance ∼ condition + Order + condition ∗Order + (1 | Participant).
(3)

6 RESULTS

6.1 Text-Based Entrainment Models

Figure 2 shows the mean entrainment distance (see Section 5.2) of participants in the
two experimental conditions GA and FG for a) lexical, b) syntactic, and c) semantic
linguistic levels. Table 1 summarizes the results of the LMM fits for all three levels
and post-hoc comparison for the significant models.

In lexical entrainment, the results indicated no significant main effect of the
experimental condition on the entrainment of the participant towards the robot.
However, a significant main effect of the order was observed, indicating that speakers
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a) Lexical level
Fixed effects:

Variable Estimate SE df t p

(Intercept) 0.276 0.017 50.243 16.244 < .001
ConditionFG 0.034 0.023 52.656 1.443 0.155
Order 2 0.055 0.023 53.713 2.367 0.022
ConditionFG:Order 2 −0.085 0.041 31.495 −2.066 0.047

Post-hoc comparison:

Contrast β t ratio p

ConditionGA Order 1–Order 2 −0.055 −2.367 0.022
ConditionFG Order 1–Order 2 0.029 1.25 0.217

Order 1 GA–FG −0.034 −1.44 0.155
Order 2 GA–FG 0.051 2.173 0.034

b) Syntax level
Fixed effects:

Variable Estimate SE df t p

(Intercept) 0.549 0.010 50.516 56.964 < 0.001
ConditionFG −0.016 0.013 54.400 −1.161 0.251
Order 2 0.008 0.013 53.281 0.572 0.57
ConditionFG:Order 2 0.004 0.023 28.336 0.168 0.868

c) Semantic level
Fixed effects:

Variable Estimate SE df t p

(Intercept) 0.205 0.011 68.976 19.472 < 0.001
ConditionFG 0.037 0.015 73.682 2.529 0.014
Order 2 −0.027 0.015 76.141 −1.818 0.073
ConditionFG:Order 2 −0.052 0.024 33.079 −2.206 0.034

Post-hoc comparison:

Contrast β t ratio p

ConditionGA Order 1–Order 2 0.027 1.818 0.073
ConditionFG Order 1–Order 2 0.079 5.415 < 0.001

Order 1 GA–FG −0.037 −2.528 0.013
Order 2 GA–FG 0.016 1.06 0.293

Table 1. LMM model output comparing entrainment at the lexical, syntactic, and seman-
tic levels in two different conditions with Gaze Aversion (GA) condition as the reference
value. Significant p-values are shown in bold with p < 0.05 with post-hoc comparisons for
significant models.
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a) Lexical level b) Syntax level

c) Semantic level

Figure 2. Entrainment in two different gaze conditions, Fixed Gaze (FG) and Gaze Aver-
sion (GA), and two orders, i.e., Order 1 (FG → GA) and Order 2 (GA → FG) at lexical,
syntactic, and semantic features

entrained more in Order 2, i.e., (GA → FG). The significant interaction and its
subsequent post-hoc analysis revealed that the greater lexical entrainment in Order 2
is driven by the significantly higher lexical entrainment for the GA. This implied
that speakers entrained lexically more under the GA condition only in Order 2.
This partially supports hypothesis H1, which predicted that participants would
entrain more under the GA condition. At the semantic level, we found a main
effect of the experimental condition whereby speakers entrained more in the FG
condition as compared to the GA condition. Further, the significant interaction and
its subsequent analysis showed that greater semantic entrainment in Order 1, i.e.,
(FG → GA), is only significant for the FG condition and that speakers entrained
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semantically more under the FG condition only in Order 1. This finding does not
support H1.

We did not find any significant main effects of experimental conditions or the or-
ders on syntactic entrainment using the ALIGN toolkit. However, previous empirical
studies have demonstrated that the choice of methodology can significantly influ-
ence entrainment results [50]. In measuring syntactic entrainment, two commonly
used methods include n-gram sequence [55] and parse-tree comparison [57]. To fur-
ther test the degree of syntactic entrainment, we used CASSIM (ConversAtion level
Syntax SImilarity Metric) [57] (section 5.1) and compared syntactic entrainment
distance in both experimental conditions using the LMM model. Table 2 shows the
results where we found no significant difference across both conditions, order, and
their interactions, which indicates that participants used similar syntactic structures
in both conditions.

a) Syntax (CASSIM)
Fixed effects:

Variable Estimate SE df t p

(Intercept) 0.564 0.009 49.226 56.969 < 0.001
ConditionFG −0.005 0.013 52.903 −0.43 0.669
Order 2 0.017 0.013 51.108 1.315 0.194
ConditionFG:Order 2 −0.017 0.023 31.470 −0.752 0.457

Table 2. LMM model output comparing entrainment at syntactic level using CASSIM in
two different gaze conditions and order with Gaze Aversion (GA) condition as the reference
value

6.2 Acoustic-Prosodic Based Entrainment Models

Figure 3 shows the mean entrainment distance of participants under the two experi-
mental conditions: GA and FG for a) Mean pitch and b) NHR. It needs to be kept in
mind that for acoustic-prosodic features, the lower the mean entrainment distance
the more the entrainment (see Section 5.2). We observed that only the LMM models
for mean pitch and NHR, out of the eight models fit for acoustic-prosodic features,
showed significant effects. The outcomes of the LMM fits and post-hoc comparisons
for these two features are summarized in Table 3.

For the mean pitch model, we found a main effect of the experimental condition
whereby speakers aligned significantly more on mean pitch with the robot in the GA
condition as compared to the FG condition. This supported hypothesis H1. For the
NHR model, we observed significant main effects of both experimental conditions
and order. Participants entrained significantly more in the GA condition, which was
in line with H1. Additionally, it was observed that participants entrained more in
Order 1, where they interacted with the robot under the FG condition first followed
by the GA condition. Since the interaction yielded the p-value of 0.051, we also
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a) Mean pitch b) NHR

Figure 3. Entrainment in two different gaze conditions, Fixed Gaze (FG) and Gaze Aver-
sion (GA), and two orders, i.e., Order 1 (FG → GA) and Order 2 (GA → FG) on mean
pitch and NHR

a) Mean pitch
Fixed effects:

Variable Estimate SE df t p

(Intercept) 1.056 0.075 50.317 14.081 < 0.001
ConditionFG 0.224 0.106 52.866 2.116 0.039
Order 2 0.041 0.106 54.079 0.387 0.701
ConditionFG:Order 2 −0.227 0.185 30.903 −1.229 0.228

b) NHR
Fixed effects:

Variable Estimate SE df t p

(Intercept) 0.828 0.061 73.411 13.558 < 0.001
ConditionFG 0.324 0.087 78.741 3.726 < 0.001
Order 2 0.255 0.088 82.338 2.91 0.039
ConditionFG:Order 2 −0.28 0.138 31.528 −2.036 0.051

Post-hoc comparison:

Contrast β t ratio p

ConditionGA Order 1–Order 2 −0.251 −2.113 0.039
ConditionFG Order 1–Order 2 0.022 0.188 0.851

Order 1 GA–FG −0.032 −2.68 0.009
Order 2 GA–FG −0.044 −0.371 0.712

Table 3. LMM model output and post-hoc comparisons for significant acoustic-prosodic
models mean pitch and NHR in two different gaze conditions and order with Gaze Aversion
(GA) condition as the reference value. Significant p-values are shown in bold with p < 0.05
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performed a post-hoc analysis. It was observed that people entrained more in GA
condition only in Order 1, further supporting H1.

7 DISCUSSION

Based on the gaze behavior of the robotic interlocutor, entrainment was measured
in two different experimental conditions (FG & GA) to examine how participants
aligned on lexical, syntactic, semantic, and acoustic-prosodic levels. Potential dif-
ferences (or the lack thereof) in entrainment under the two different gaze conditions
of the robot can inform us about the underlying relationship between gaze and
entrainment during HRI. We predicted that the participants would exhibit more en-
trainment towards the robot in the GA condition as compared to the FG condition,
across different linguistic levels (H1). Significant differences between conditions
were observed across lexical, semantic, and acoustic-prosodic levels. We found that
participants entrained more in GA condition at the lexical and acoustic-prosodic lev-
els (specifically at mean pitch and NHR), which was in line with H1. Additionally,
we found that the order of the experimental conditions to which the participants
were exposed had a significant effect on entrainment at the lexical level. This meant
the participants lexically entrained more with a robot depending on whether they
first interacted under the GA or FG conditions.

We observed no significant differences between the experimental conditions, or-
der, or interactions at the syntactic level using both the bi-gram and parse-tree
methodologies. This might be because of the specific role assigned to the partic-
ipants, where they always had to answer the open-ended questions asked by the
robot across both conditions. This restricted the syntactic structure of the partici-
pants’ responses to be similar across the conditions, as answering questions entails
a similar syntactic structure. Since participants’ responses lacked variability, this
might have resulted in similar syntactic entrainment distance in both gaze condi-
tions. On the other hand, if the conversation were free-flowing, interlocutors would
freely alternate between asking questions and answering. It might result in more
variability in the syntactic structure of the interlocutors’ responses. The lack of
a free-flowing conversation with a robot, thereby, the restricted syntactic structure
of the responses by the participants across the conditions, might have led to finding
no significant differences between the conditions at the syntactic level.

Contrary to our predictions, it was observed that participants entrained more in
the FG condition as compared to the GA condition at the semantic level. This may
have arisen due to the erratic gaze behavior by the robot under the GA condition as
reported in [35]. It was observed that during the GA condition, the robot directed its
gaze away from the participants even when they were seated in front of them until the
confederate initiated the interaction. This unnatural robot gaze behavior could have
negatively influenced the perception of the robot’s abilities by the participants (the
robot could have been perceived as having less agency). As a result, in subjective
evaluations of the perceived interaction outlined in [35], participants rated the robot



1272 J. Kejriwal, C. Mishra, G. Skantze, T. Offrede, Š. Beňuš

in the FG condition as more human-like than the GA condition, which aligns with
the semantic entrainment results obtained in our study. This could suggest that the
perception of a robot’s capabilities could have a direct influence on the entrainment
at the semantic level during an HRI.

Secondly, we examined acoustic-prosodic entrainment on eight prosodic features
across the two experimental conditions. We found that only two features, mean
pitch, and NHR, displayed significant differences in entrainment across conditions.
We observed that speakers entrained more with the robot when in the GA condition
as compared to the FG condition. Mean pitch is often related to naturalness and
rapport [25, 22] between interlocutors. Since participants entrained significantly
more on the mean pitch in the GA condition, we can infer that the robot is per-
ceived as more natural and has a better rapport with the participants. Further, we
also found that the order of gaze conditions significantly affected NHR, where par-
ticipants interacted more acoustically with the robot under the GA condition when
they first interacted with the robot under the FG condition. This could highlight
that the participants were able to perceive the difference in the gaze behavior of the
robot across the conditions. The more human-like gaze aversion behavior in the GA
condition after being exposed to the unnatural fixed gaze had a positive influence on
the entrainment in the NHR level. Empirical evidence on acoustic-prosodic entrain-
ment suggests people entrain and dis-entrain on different acoustic-prosodic features
depending on a variety of social factors such as gender and personality of the inter-
locutors [63], the emotional state of the speaker [64], the relationship between the
speakers [65], the context of the conversation, and the interaction between all these
factors [42]. Therefore, we only found a significant difference in entrainment in two
acoustic-prosodic features.

The current study does not corroborate results in [34], where we found no sig-
nificant difference across conditions on the mean pitch. There are two potential
reasons for distinct results. First, the mean pitch extracted in [34] was not z-score
normalized. Second, we used different entrainment metrics. For instance, [34] used
metrics proposed by [66], whereas, in the current study, we utilized the methodology
proposed by [36]. Empirical evidence has shown entrainment results are affected by
utilizing different methodologies [42, 50]. Further, our analysis included the Order
effect. We observed this effect on lexical and acoustic-prosodic levels, with different
orders showing varying degrees of entrainment. Specifically, participants entrained
more in Order 2 at the lexical level and Order 1 at the NHR level. We are unable
to explain this finding at present, and further research is needed. Lastly, our re-
sults show that human-like gaze aversion facilitates entrainment on the acoustic and
lexical levels, whereas the semantic level shows the facilitatory effect of the FG con-
dition. We speculate that lexical and acoustic-prosodic levels might be considered
more “automatic” or low-level when it comes to priming-based entrainment ([1]). On
the other hand, the semantic level can be construed as more high-level and poten-
tially affected more by various social and attitudinal factors. Thus, various aspects
of the assumed robot’s agency might affect entrainment at linguistic dimensions
differently.
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To sum up, the current study’s findings suggest that people entrain more at
lexical and acoustic-prosodic levels in the GA condition compared to the FG condi-
tion. This finding of the current study is in line with the computers are social actors
(CASA) theory proposed by [46] as described in Section 3. In the GA condition,
the robot’s gaze behavior emulated human-like gaze aversion behavior, which made
the participants feel more comfortable during the interaction. This suggests that
endowing human-like behavior in robots can be beneficial in HRI.

8 LIMITATIONS AND FUTURE WORK

The results reported in the paper should be interpreted with caution. Among sev-
eral limitations, we mention four. Firstly, we utilized neural network-based BERT
models to extract semantic features from each utterance. These models are trained
explicitly on a conversational corpus that allows us to assess semantic entrainment.
Our previous study [16] demonstrated that using different neural-based models can
influence the results. We compared entrainment behavior in the Columbia games
corpus [67] using BERT [68], trained explicitly on conversational data, and the Uni-
versal Sentence Encoder (USE) model [69], trained on multiple languages. Our
findings indicate that the utilization of features extracted from BERT and USE has
a significant impact on the results of entrainment. It is worth noting that USE does
not offer any insights into the dataset it is trained on, whereas BERT is trained
specifically on the English language dataset. Secondly, we employed Facebook’s fair
sequence model for extracting text transcriptions. However, as with all speech-to-
text (STT) models, errors can occur during the process of extracting textual features
from speech. High word error rates can negatively impact entrainment results. To
address this, manual annotation with inter-annotator agreement can be used as
a solution. Thirdly, scarcity of data may affect entrainment results. In the current
study, participants were asked 6 questions, each in two different conditions. If there
were several turn-exchanges in HRI, then the accuracy of the entrainment analysis
could be strengthened. Lastly, the robot’s speech was fixed across conditions. As the
robot’s questions and responses were pre-determined and fixed, there was no vari-
ation in the interaction between each participant, which might affect entrainment
outcomes.

We utilized two different entrainment measures, i.e., absolute distance and cosine
similarity, for measuring entrainment at acoustic and textual levels, respectively.
Hence, only an indirect comparison between acoustic and textual entrainment is
possible. In future work, auditory features can be extracted from each turn using
TRIpLet Loss network (TRILL) [70], and entrainment distance can be measured
using cosine similarity. Since all four entrainment distances will be identical, i.e.,
measured using cosine similarity, we can further compare the entrainment distance
across different linguistic levels more directly by constructing a single (LMM) model.
It can allow us to determine which linguistic levels speakers are closest to each other
under different gaze conditions.
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9 CONCLUSION

Our study analyzed entrainment across four linguistic dimensions in HRI with
a Furhat robot and revealed interesting findings. Our study found that speakers
entrained more in the Gaze Aversion and Fixed Gaze conditions at the lexical and
semantic levels, respectively. Furthermore, we observed that the order of interaction
had a significant effect on lexical entrainment. At the acoustic level, speakers en-
trained more in the GA condition on mean pitch and NHR. The results suggest that
entrainment can be influenced by various factors, such as the robot’s gaze behavior,
the order of the robots one interacts with, and linguistic dimensions. Overall, this
study provides valuable insights into the nature of entrainment in HRI and highlights
the importance of considering multiple factors in understanding the phenomenon.
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a) Max pitch b) Mean intensity

10 APPENDIX

Figure 4 shows the mean entrainment distance of participants under the two ex-
perimental conditions: GA and FG for a) Max pitch, b) Mean intensity, c) Max
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c) Max intensity d) Jitter

e) Shimmer f) Speech rate

Figure 4. Entrainment in two different gaze conditions, Fixed Gaze (FG) and Gaze Aver-
sion (GA), and two orders, i.e., Order 1 (FG → GA) and Order 2 (GA → FG) on Max
pitch, Mean and Max intensity, Jitter, Shimmer, and Speech rate

a) Max pitch
Fixed effects:

Variable Estimate SE df t p

(Intercept) 1.085 0.075 52.993 14.435 < .001
ConditionFG 0.174 0.106 55.828 1.638 0.107
Order2 0.124 0.107 57.226 1.164 0.249
ConditionFG:Order2 −0.308 0.184 31.365 −1.676 0.104
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b) Mean intensity
Fixed effects:

Variable Estimate SE df t p

(Intercept) 1.027 0.081 48.916 12.667 < 0.001
ConditionFG 0.109 0.114 51.357 0.953 0.345
Order2 0.078 0.115 52.509 0.677 0.501
ConditionFG:Order2 −0.142 0.200 30.334 −0.707 0.485

c) Max intensity
Fixed effects:

Variable Estimate SE df t p

(Intercept) 1.253 0.084 46.676 14.950 < 0.001
ConditionFG −0.161 0.118 48.616 −1.367 0.178
Order2 −0.081 0.118 49.457 −0.681 0.499
ConditionFG:Order2 0.165 0.212 31.887 0.777 0.443

d) Jitter
Fixed effects:

Variable Estimate SE df t p

(Intercept) 0.915 0.065 66.502 14.021 < 0.001
ConditionFG 0.029 0.093 70.851 0.311 0.757
Order2 0.103 0.093 73.399 1.107 0.272
ConditionFG:Order2 0.148 0.152 32.875 0.973 0.338

e) Shimmer
Fixed effects:

Variable Estimate SE df t p

(Intercept) 1.016 0.064 76.009 15.787 < 0.001
ConditionFG 0.124 0.091 81.553 1.354 0.18
Order2 0.019 0.092 85.340 0.204 0.839
ConditionFG:Order2 0.023 0.144 32.298 0.159 0.875

(f) Speech rate
Fixed effects:

Variable Estimate SE df t p

(Intercept) 0.942 0.086 70.439 10.915 < 0.001
ConditionFG −0.042 0.122 75.137 −0.340 0.734
Order2 0.121 0.123 77.963 0.980 0.33
ConditionFG:Order2 −0.088 0.200 33.952 −0.443 0.661

Table 4. LMM model output for insignificant acoustic-prosodic models Max pitch, Mean
and Max intensity, Jitter, Shimmer, and Speech rate in two different gaze conditions and
orders with Gaze Aversion (GA) condition as the reference value
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intensity, d) Jitter, e) Shimmer, and f) Speech rate. Table 4 summarizes the results
of the LMM fits for the models that were not significant.
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Kemner, C.—Hessels, R. S.: Gaze and Speech Behavior in Parent–Child
Interactions: The Role of Conflict and Cooperation. Current Psychology, Vol. 42,
2023, No. 14, pp. 12129–12150, doi: 10.1007/s12144-021-02532-7.

[42] Weise, A.—Levitan, R.: Looking for Structure in Lexical and Acoustic-Prosodic
Entrainment Behaviors. Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), 2018, pp. 297–302, doi: 10.18653/v1/N18-2048.

[43] Reichel, U.D.: CoPaSul Manual – Contour-Based Parametric and Superpositional
Intonation Stylization. CoRR, 2016, doi: 10.48550/arXiv.1612.04765.

[44] Ostrand, R.—Chodroff, E.: It’s Alignment All the Way Down, But
Not All the Way Up: Speakers Align on Some Features But Not Others
Within a Dialogue. Journal of Phonetics, Vol. 88, 2021, Art. No. 101074, doi:
10.1016/j.wocn.2021.101074.

[45] Patel, S. P.—Cole, J.—Lau, J. C.Y.—Fragnito, G.—Losh, M.: Verbal En-
trainment in Autism Spectrum Disorder and First-Degree Relatives. Scientific Re-
ports, Vol. 12, 2022, No. 1, Art. No. 11496, doi: 10.1038/s41598-022-12945-4.

[46] Nass, C.—Steuer, J.—Tauber, E.R.: Computers Are Social Actors. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’94), ACM,
1994, pp. 72–78, doi: 10.1145/191666.191703.

[47] Heyselaar, E.: The CASA Theory No Longer Applies to Desktop Computers.
Scientific Reports, Vol. 13, 2023, No. 1, Art. No. 19693, doi: 10.1038/s41598-023-
46527-9.

[48] Gonsior, B.—Sosnowski, S.—Mayer, C.—Blume, J.—Radig, B.—
Wollherr, D.—Kühnlenz, K.: Improving Aspects of Empathy and Subjective
Performance for HRI Through Mirroring Facial Expressions. 2011 RO-MAN, IEEE,

https://aclanthology.org/P11-2020
https://aclanthology.org/P11-2020
https://doi.org/10.1068/p7071
https://doi.org/10.1017/langcog.2015.22
https://doi.org/10.1007/s10579-014-9283-2
https://doi.org/10.1007/s12144-021-02532-7
https://doi.org/10.18653/v1/N18-2048
https://doi.org/10.48550/arXiv.1612.04765
https://doi.org/10.1016/j.wocn.2021.101074
https://doi.org/10.1038/s41598-022-12945-4
https://doi.org/10.1145/191666.191703
https://doi.org/10.1038/s41598-023-46527-9
https://doi.org/10.1038/s41598-023-46527-9


Does a Robot’s Gaze Behavior Affect Entrainment in HRI? 1281

2011, pp. 350–356, doi: 10.1109/ROMAN.2011.6005294.

[49] Cominelli, L.—Feri, F.—Garofalo, R.—Giannetti, C.—Meléndez-
Jiménez, M.A.—Greco, A.—Nardelli, M.—Scilingo, E. P.—
Kirchkamp, O.: Promises and Trust in Human–Robot Interaction. Scientific
Reports, Vol. 11, 2021, No. 1, Art. No. 9687, doi: 10.1038/s41598-021-88622-9.

[50] Kruyt, J.—de Jong, D.—D’Ausilio, A.—Beňuš, Š.: Measuring Prosodic En-
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