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Abstract. Hot-rolled steel strip plays an important role in the field of industrial
manufacturing. In addition, defects on its surface affect the aesthetics of the subse-
quent products and their corrosion resistance, wear resistance, and fatigue strength.
However, the existing methods are difficult to learn or capture discriminative fea-
ture representations, resulting in poor detection performance. Therefore, its surface
defect detection faces two main challenges: one is the insufficient ability to extract
local features, and the other is the limited ability to detect multi-scale targets. To
address the above issues, we propose a Residual Deformable Convolution and Dou-
ble LayerNorm Swin Transformer and Channel Expansion Feature Pyramid Net-
works (RTCN) multi-scale hot-rolled strip surface defect detection model, which
adopts Double LayerNorm Swin Transformer (DLST) and as Residual Deformable
Convolution Block (RDCB) its backbone network to increase the sensitivity of the
model’s detection of small and irregular defects. In addition, we adopt Channel
Expansion Feature Pyramid Networks (CEFPN) to introduce more feature dimen-
sions to better capture the structure and semantic image information. Ultimately,
we assess the proposed model using the publicly available NEU-DET dataset. Our

∗ Corresponding author

https://doi.org/10.31577/cai_2024_6_1352


Improved Hot-Rolled Strip Defect Detection Model Based on Swin-T 1353

comprehensive testing shows that the model developed in this paper beats the most
advanced approach by 1.1% to 7.2% in mAP.

Keywords: Object detection, Swin transformer, NEU-DET, multi-scale targets

1 INTRODUCTION

Hot-rolled strip generally refers to coiled steel with a thickness of 1mm to 20mm
and a width of 600mm to 2 000mm, which is widely used in industries such as auto-
motive, electric motors, chemicals, and shipbuilding. However, due to factors such
as processing methods, design inadequacies, equipment failures, and harsh operating
conditions, hot-rolled strips and their products are prone to surface defects. Defect
categories include rolled scale (RS), patches (Pa), cracks (Cr), pitted surface (PS),
inclusions (In), and scratches (Sc), etc. Hot-rolled strip surface defect detection
techniques now in use can be categorized into two categories: computer vision-
based techniques and conventional techniques. Traditional surface defect detection
methods for hot-rolled steel include manual detection [1], eddy current testing [2],
infrared testing [3, 4], and magnetic flux leakage testing [5], etc. The manual de-
tection method refers to the judgment of surface defects on hot-rolled strip made
by detectors based on personal experience or evaluation criteria. Eddy current test-
ing detects the presence of defects within a test object by utilizing the principle
of electromagnetic induction, which involves detecting changes in the induced eddy
currents. Infrared testing is a method based on the principle of infrared radia-
tion, which scans and records temperature changes on the target surface to detect
defects. Magnetic flux leakage testing uses the high magnetic conductivity of the
strip surface to detect surface defects. However, these detection methods have dis-
advantages such as being susceptible to subjective influences, strict environmental
requirements, low detection efficiency and false detection rate. In recent years, with
the application of Charge Coupled Device (CCD) cameras and the development of
computer vision technology, deep learning-based methods have emerged as preferred
alternatives for defect detection in hot-rolled strip due to its high accuracy and fast
speed [6, 7].

Because of their inductive bias, current mainstream deep learning target detec-
tion algorithms usually use Convolutional Neural Networks (CNNs) for feature ex-
traction, which excel at capturing local patterns. But convolutional neural networks
often fail to effectively extract global information, by introducing global informa-
tion, the model can locate and identify the target more accurately. The self-attention
mechanism introduced in Transformer [8] has been widely adopted by computer vi-
sion tasks to address the limitations of convolutional neural networks. It effectively
captures long-range pixel relationships, emphasizes interconnections among differ-
ent image regions, and integrates global image information [9, 10, 11]. Transformer-
based methods have significantly enhanced object detection performance, but chal-
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lenges in computer vision remain, including:

1. The performance of detecting minor defects is suboptimal, and the ability to
collect local information is weak.

2. Transformer-based methods are mainly used for image classification and have
lower accuracy in multi-scale object detection.

To address the above issues, Liu et al. [11] proposed the Swin Transformer, a ver-
satile backbone network for computer vision. It restricts self-attention computation
to non-overlapping local windows through sliding windows while also allowing cross-
window connections, effectively improving detection efficiency and reducing compu-
tational complexity. Although the Swin Transformer has performed well in the area
of computer vision, it still has limitations in capturing features of smaller targets,
which is the problem that needs to be solved to detect defects in hot-rolled strip.
Therefore, in this study the Swin transformer is used as the backbone network for
improvement.

Hence, we propose a multi-scale RTCN surface defect detection model for hot-
rolled strip. By incorporating the Residual Deformable Convolution Block into the
Swin Transformer model, the improved RDCDLST model can extract a substantial
amount of local information in the picture, better adapt to the target shape changes
in the picture, and avoid information loss. Furthermore, to improve the performance
of the model to detect defects of multi-scale, this paper also designs CEFPN, which
increases the number of channels and introduces more dimension of features to better
capture both structural and semantic features in the picture.

The most important contributions of this research are as follows:

1. In this paper, we propose the Double LayerNorm Swin Transformer (DLST),
which normalizes the input features by using LayerNorm (LN) layers before the
(S)W-MSA module and the MLP module, so that the input distributions in
each layer have similar means and standard deviations. Reducing the bias of
the input distribution reduces the risk of overfitting the model.

2. The backbone network proposed in this paper, called Residual Deformable Con-
volution and Double LayerNorm Swin Transformer (RDCDLST), cleverly in-
tegrates the advantages of deformable convolution and Swin Transformer, and
combines RDCB with DLST to increase the adaptability and flexibility of the
model, which is able to better capture the contextual information of the image,
adapt to the geometric changes, and reduce the spatial bias.

3. This paper proposes the CEFPN network framework, which improves the ex-
pressive ability of the network by increasing the dimension of the feature map.
By using cross-layer connections, it combines low-level detailed features with
high-level semantic attributes to improve the detection accuracy of the model
for targets at different scales.
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2 RELATED WORK

2.1 Object Detection Method Based on Convolutional Neural Network

The methods for the detection of objects on the basis of the CNN can be classified
into two types [12]. One is the two-stage detection method, and the R-CNN family of
models exemplifies the advantages of this approach. These models first use a Region
Proposal Network (RPN) to generate candidate regions, and subsequently classify
and recognize these candidate regions [13]. The other one is the one-stage detection
method represented by YOLO [14] and SSD [15], which avoids preliminary candidate
regions and only needs one feature extraction to achieve object detection. Although
the detection speed of the one-stage detection method is higher than that of the
two-stage counterparts, the detection accuracy has decreased.

Wu et al. [16] used an improved Faster RCNN network to detect defects.
Through the introduction of deformable convolution module, FPN multi-scale fea-
ture fusion module and CBAM attention module, the detection accuracy was ef-
fectively improved. Ye et al. [17] used the ChostNet network to replace the origi-
nal feature extraction network in YOLOv4, which improves the feature extraction
capability and reduces the model complexity at the same time. Chen et al. [18]
used an improved SSD network to detect targets in different layers, demonstrating
commendable robustness and adaptability. He et al. [19] proposed DDN (Defect
Detection Network), which integrates multiple layers of features to determine de-
fect class and position, enabling complete surface defect recognition on steel strip.
Ding et al. [20] designed suitable anchor boxes through K-means clustering and
introduced Feature Pyramid Network to enhance the fusion of low-level structural
information, improving the detection accuracy of small defects. Dai et al. [21] pro-
posed Deformable Convolutional Networks (DCN), which address the limitations of
fixed shape sampling by adding an offset to the position of each sampling point in
the convolutional kernel.

2.2 Transformer-Based Object Detection Method

Vaswani et al. [8] introduced the Transformer network model in 2017, based on the
self-attention mechanism, which was subsequently implemented in natural language
processing. Through its unique self-attention mechanism, the Transformer can effec-
tively establish connections between distant targets, thus extracting more efficient
feature information. End-to-end object detection with transformers proposed by
Carion et al. [10] pioneered the application of Transformers in object detection. By
inferring the relationship between pixels and combining with global image infor-
mation, it directly and parallelly outputs the predictions. The Deformable DETR
model proposed by Zhu et al. [22] combines DETR with deformable convolutions
to make its self-attention module focus only on key sampling points, alleviating the
slow convergence speed and high complexity issues of DETR. Vision Transformer
(ViT) proposed by Dosovitskiy et al. [9] applies Transformer to image classifica-
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tion tasks successfully by dividing the image into multiple non-overlapping 16× 16
patches and inputting them into the Transformer while trying to adhere to the
original Transformer architecture as much as possible. However, this self-attentive
mechanism, which is based within a fixed window, lacks information communica-
tion between different windows and can only be computed within a single window,
severely limiting its performance. To solve this problem, the Swin Transformer [11]
presented by Liu et al. segments the input image according to a fixed-size win-
dow, and performs the self-attention computation only in the divided local window,
which effectively reduces the model complexity. In addition, Swin Transformer in-
troduces a unique mechanism for computing self-attention in different windows,
which establishes connections between windows and enhances the model’s ability to
perceive.

3 METHODS

The RTCN model consists of Residual Deformable Convolution and Double Lay-
erNorm Swin Transformer (RDCDLST) and Channel Expansion Feature Pyramid
Networks (CEFPN). The model inputs the image to the RDCDLST backbone net-
work for feature extraction. After generating feature maps, they are channeled into
the CEFPN for feature fusion. Finally, the model classifies the feature maps and
then performs bounding box regression.

3.1 Residual Deformable Convolution and Double LayerNorm
Swin Transformer

This paper proposes the RDCDLST network, which adds the residual deformable
convolution module in each Swin Transformer Block and adds LayerNorm layers
after W-MSA, SW-MSA, and MLP to increase the convergence speed during model
training and to improve the accuracy of the feature extraction network for irregularly
shaped defects. The RDCDLST network consists of Patch Merging layer, Residual
Deformable Convolutional Module, and DLST module. The overall structure is
shown in Figure 1.

The Swin Transformer starts by partitioning an input image of size of H×W×3
RGB into multiple non-overlapping patches of equal size through the Patch Partition
module, where each adjacent 4× 4 pixels form a patch. The partitioned patches are
flattened along the channel dimension. This operation results in a feature dimension
of 48 for each patch (4 × 4 × 3 = 48). Therefore, after passing through the Patch
Partition module, the image size changes from H ×W × 3 to H/4×W/4× 48. The
Linear Embedding module then projects the dimension to any dimension C. The
Swin Transformer Block then receives the processed data. The first Block keeps the
input size unchanged and forms Stage 1 together with the Linear Embedding layer.
To generate hierarchical representations, as the depth of the network increases, each
group of adjacent patches of size 2× 2 is concatenated through the Patch Merging
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Figure 1. RDCDLST network model

module. This operation halves the resolution of each patch, while the dimension
of each patch becomes four times larger. Thereafter, the dimension is reduced to
2C through a fully connected layer. The first Patch Merging module and Swin
Transformer Block jointly form Stage 2. Repeating the process of Stage 2 multiple
times yields Stage 3 and Stage 4. Each stage changes the dimension of the output,
forming a hierarchical expression.

3.1.1 Residual Deformable Convolution Block

The Swin Transformer adopts a unique sliding window mechanism, but there is
still a problem of missing defect information when extracting irregular-shaped fea-
tures. Therefore, this paper introduces the Residual Deformable Convolution Block
(RDCB) to adaptively handle the shape changes of target objects through de-
formable convolutions, thereby enhancing the model’s perception of irregular objects
and improving the network’s capacity to learn from local correlations and irregular
defects. In this study, the recognition accuracy of irregular defects is improved by
inserting the RDCB into the Swin Transformer Block. The design of the RDCB is
demonstrated in Figure 1.
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The input image to the convolutional neural network is a three-dimensional
tensor with a fixed size, i.e., the input size is (H,W,C). Where W and H denote
the width and height of the image, and C indicates channel counts. In contrast,
the Swin Transformer takes a two-dimensional tensor as in (H ×W,C). Therefore,
before inputting to RDCB for feature extraction, the output of the previous stage
needs to be transformed into a three-dimensional tensor. Assuming that the input
data has a two-dimensional tensor of dimensions (H × W,C), it is first converted
to a three-dimensional feature map of dimensions (H,W,C). It is then fed into two
3 × 3 deformable convolution layers. To achieve fusion, the extracted features are
combined with the input feature map via residual connections. Finally, the fused 3D
feature maps are adjusted to a 2D tensor and fed into the next stage of the feature
extraction module.

Deformable convolution includes two steps: 1) sampling on the feature map x
using a fixed-size grid R, 2) performing a weighted sum of the sampled values. The
grid R defines the size of the receptive field. For each position y0 on the output
feature map p0:

y(p0) =
∑
pn∈ℜ

w(pn) · x(p0 + pn), (1)

where pn represents R the sampling position on the feature map.
Deformable convolution adjusts the sampling position by adding a position offset

vector△pn to the calculation formula of standard convolution {△Pn|n = 1, 2, . . . , N ;
N = |ℜ|}. Substituting into formula (1), it is obtained that:

y(p0) =
∑
pn∈ℜ

w(pn) · x(p0 + pn +△pn). (2)

The structure of deformable convolution is shown in Figure 2, where the input
feature map extracts the offset of the deformable convolution through a convolutional
layer. To elaborate, the number of input feature map channels is changed from N to
2N by a convolution operation, where the magnitude of the offset is denoted by N ,
and 2N denotes the offsets in both x and y directions needed to perform a translation
in the plane. During the training process, the convolutional kernels that generate
output features and those that generate offsets are learned concurrently, while the
offsets are obtained through the backward propagation of the linear interpolation
algorithm.

3.1.2 DL Swin Transformer Block

RDCB is added before the Swin Transformer Block in this paper, but RDCB has
a notably high computational complexity. Therefore, in this paper, an LN layer is
added after the W-MSA/SW-MSA and MLP layers to enhance the convergence rate
of the model. In addition, the improved module ensures a consistent distribution
of input features, reduces differences between different samples, making it easier for
the model to perform effective feature extraction, improve the model’s generalization
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ability, and prevalent training challenges such as gradient vanishing and exploding.
Its formula is as follows:

Ẑ l = LN
(
W −MSA

(
LN

(
Ẑ l−1

)))
+ Z l−1, (3)

Z l = LN
(
MLP

(
LN

(
Ẑ l

)))
+ Ẑ l, (4)

Ẑ l+1 = LN
(
SW−MSA

(
LN

(
Ẑ l−1

)))
+ Z l, (5)

Z l+1 = LN
(
MLP

(
LN

(
Ẑ l+1

)))
+ Ẑ l+1, (6)

where Z l and Z l+1 represent the outputs of W-MSA/SW-MSA and MLP in the
layer l.

3.2 Channel Expansion Feature Pyramid Networks (CEFPN)

In neural networks, deep feature maps usually contain richer global semantic in-
formation, commonly useful for detecting large targets, while shallow feature maps
contain more local texture and structural information, pivotal for detecting smaller
targets. Due to the receptive field of each convolutional layer in a convolutional
neural network has a fixed size, detecting objects of different sizes effectively is dif-
ficult. Therefore, effective processing of multi-scale targets is a challenging problem
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in defect detection. A common practice to address this is to add a neck structure
between the backbone network and the prediction layer to help integrate the flow
of information [23]. Feature Pyramid Network (FPN) [24] is the most commonly
used neck structure in the field of object detection. FPN constructs a top-down
multi-scale feature pyramid, providing rich semantic information to capture target
information at different scales. However, FPN introduces a certain degree of blur-
ring or resolution reduction during the sampling operation, resulting in the loss of
details and edge clarity. To address the issue of information loss, the CEFPN de-
signed in this paper expands the dimensions of features at different levels, making
the output feature maps of each level have the same number of channels to improve
the utilization of shallow features. It also uses a bottom-up structure to fuse features
of different scales to avoid information loss caused by upsampling.

Figure 3 shows the detailed structure of CEFPN, where Cij represents the jth

dimension expansion of the input Oi. For input Oi with size [H/4,W/4, N ], af-
ter dimension expansion through C11, C12, C13 and C14, the feature map channel
count expands to 8 times the input channel count, and the final output size is
[H/4,W/4, 8N ]. For input O2 with a size of [H/8,W/8, 2N ], first, the four outputs
of O2 and O1 through C11, C12, C13 and C14 are fused, and then they are sent to C21,
C22 and C23 to expand the dimensions to 8N. The final output size is [H/4,W/4, 8N ].
O3, O4 is similar to O2. The output of the previous stage is fused with O3 and O4

and separately fed into C31, C32 and C41 for dimension expansion, yielding output
sizes of O3 and O4 are [H/16,W/16, 8N ] and [H/32,W/32, 8N ], respectively.
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Figure 3. Structure of CEFPN
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3.3 Residual Deformable Convolution and Double LayerNorm
Swin Transformer and Channel Expansion Feature
Pyramid Networks (RTCN)

In this paper, the combination of RDCDLST and CEFPN is proposed as the RTCN
model for the detection of defects on the surface of hot-rolled steel strip, and the
structure of the model is shown in Figure 1. The input of this model is an RGB
image with dimensions H × W × 3, where H is the height of the image, W is the
width, and the input image encompasses 3 channels. First, the image is reduced to
1/2 its original size by block partitioning using Patch Partition. Subsequently, the
Linear Embeding layer is used to linearly transform the channel data of each pixel,
and the number of channels changes from 48 to C. Then the feature map is input
into Block1, which includes a residual deformable convolution module and a DL
Swin Transformer module. Before inputting into the residual deformable convolu-
tion module, the [H/4×W/4, C] 2D tensor needs to be reshaped into [H/4,W/4, C]
feature map. The feature map is then input into the residual deformable convo-
lution module, and the output feature map is restored to its initial 2D tensor size
before progressing to the DL Swin Transformer module. After the feature maps
pass through the DLST and the residual deformable convolution module proposed
in this paper, the size of the feature maps does not change, so the final output size of
Block1 is [H/4,W/4, C]. In contrast to Block1, Block2 module just replaces Linear
Embedding layer in Block1 to Patch Merging layer. Patch Merging takes pixels at
the same position in each 2× 2 neighbour image and gets four outputs. These four
outputs are then concatenated in the channel direction and the outputs are then
processed using a LayerNorm. Finally, the depth of the feature map is changed
from C to C/2 by making a linear change in the depth direction through a fully
connected layer. Therefore, after the Patch Merging layer, the height and width of
the feature map are halved, while the depth becomes twice as before, resulting in an
output size of [H/8,W/8, 2C] for Block2. Block3 and Block4 have the same struc-
ture as Block2, except that Block3 contains six consecutive DL Swin Transformer
modules. The four output features of Block1 to Block4 are obtained separately.
Through the neck structure CEFPN proposed in this paper, the output features
are fused at multiple scales to obtain four outputs. The sizes of the output feature
maps are [H/4,W/4, 8C], [H/8,W/8, 8C], [H/16,W/16, 8C], [H/16,W/16, 8C]. Fi-
nally, these four feature maps are directed to four detection heads for the detection
process.

4 EXPERIMENTS AND RESULTS ANALYSIS

4.1 Dataset Introduction

The experimental data for surface defect detection in hot-rolled strip used in this
paper are taken from the NEU surface defect database (NEU-DET) dataset [25,
26, 19], which was provided by Professor Song Kechen of Northeastern University.
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Six different types of surface defects are included in this dataset: RS, Pa, Cr, PS,
In, and Sc. There are a total of 1 800 defect images, as there are 300 images in
each defect category, each 200 by 200 in size. There is an 8:1:1 split between the
training, validation, and test sets. In addition, data quality techniques such as
random cropping and horizontal mirroring are employed to increase the sample size.
Some of the data are shown in Figure 4.

Figure 4. Structure of CEFPN

4.2 Evaluation Indicators

The primary evaluation indicator for network model performance in this paper is
mean average precision (mAP). The relevant indicators that affect the mAP value
are defined and calculated as follows.
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As shown in formula (7), IoU or the intersection over union ratio between the
predicted box and the ground truth box indicates the degree of overlap between the
predicted box and the actual ground truth bounding box.

IOU =
A
⋂
B

A
⋃

B
. (7)

TP (True Positive) refers to the number of positive samples predicted as posi-
tive. FP (False Positive) represents the number of negatives predicted as positive.
If the IoU between the ground truth box and the predicted box is greater than 0.5,
it is considered as TP; otherwise, it is considered as FP. FN (False Negative) repre-
sents the number of positives predicted as negatives. TN represents the number of
negatives predicted as negative class.

P (Precision) represents the proportion of accurately predicted bounding boxes
out of all the predicted boxes. It can be calculated using the formula (8) as follows:

P =
TP

TP + FP
. (8)

R (Recall) is defined as the ratio of correctly predicted bounding boxes to all
ground truth bounding boxes, and can be expressed using formula (9):

R =
TP

TP + FN
. (9)

By plotting precision on the y-axis and recall on the x-axis, we can obtain the
precision-recall curve, abbreviated as P-R curve. AP is the area bounded by the
P-R curve and the axis of coordinates. Its calculation formula is shown as (10):

AP =

∫ 1

0

P (R)dR. (10)

mAP represents the average value of all category APs, and a higher value for the
mAP indicates a better detection performance of the model. Its formula is shown
as (11):

mAP =
1

n

n∑
i=1

(AP )i. (11)

4.3 Experimental Settings

Throughout the experiment, a computer equipped with an Intel i5-13490F CPU
and an NVIDIA GeForce RTX 4070 (12G) GPU serves as the hardware platform.
PyTorch is employed as the deep learning framework, within a compilation envi-
ronment consisting of Python 3.9.16 and PyTorch 1.13.1. In this paper, several
classical object detection methods are used, including Faster R-CNN, YOLO V3,
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SSD, RetinaNet, etc. In addition, Resnet-50, the Swin Transformer and RDCDLST
backbone network are used.

4.4 Ablation Experiment

To verify the impact of each component of the proposed method on the model
performance, ablation experiments are conducted in this paper. This paper uses
the NEU-DET dataset as the training data. The specific experimental content is as
follows.

Indeed, the optimizer plays a crucial role in the experiments. This paper first
conducts the experiments to investigate the choice of optimization parameters and
learning rate. We consider common optimizers in computer vision, such as SGD [27]
and AdamW [28]. The framework for this experiment is SSD, the backbone network
of SSD is replaced by Swin-T, and the SGD and AdamW optimizers were used
for the tests to find out the optimizer parameters that would lead to the highest
performance of the model. To investigate the effect of the learning rate parameter
set at the beginning of training the optimizer on the experiments, in this paper
the same learning rate parameter is set for both the SGD and AdamW to validate
the performance of the optimizers. To investigate the impact of parameters on the
experiment, the learning rate before starting training is set as 0.0020, 0.0025, and
0.0030 for comparative experiments. The specific results of the experiments are
described detail in Table 1.

Method Opt LR mAP mAP50 mAP75

0.0020 19.8 48.8 11.3
SGD 0.0025 29.0 61.7 23.8

Swin-T 0.0030 26.9 59.7 19.0
0.0020 24.6 56.5 15.6

AdamM 0.0025 24.2 55.2 16.3
0.0030 13.8 37.1 7.2

Table 1. Opt and LR ablation experiment results

Table 1 shows that SGD has better performance than AdamW. By changing
the optimizer, mAP can be improved by more than 4.4%. The model achieved its
highest level of detection accuracy when SGD was used for optimization and the
initial learning rate was adjusted to 0.0025. Therefore, in this experiment, the SGD
optimizer is used for model training with an initial learning rate of 0.0025 to ensure
that Swin Transformer achieves better performance in detecting surface defects on
hot-rolled strip.

In this work, the SSD serves as the main structure into which Swin-T and
RDCDLST are inserted. Comparative experiments are then performed on the
data set to confirm the effectiveness of the model in detecting hot-rolled steel
strip.
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Method Backbone Neck Structure mAP mAP50 mAP75

ResNet50 – 23.2 54.6 13.3
Swin-T – 29.0 61.7 23.8

SSD Swin-T CEFPN 31.4 65.3 25.7
RDCDLST CEFPN 32.8 67.6 25.9

Table 2. mAP for comparative experiments with different strategies (%)

Table 2 shows that within the SSD framework, using Swin Transformer and
RDCDLST as backbone networks has significantly improved the experimental re-
sults on various indicators compared to traditional convolutional neural network
models. In particular, when compared with ResNet50, the experimental results
using Swin-T as the backbone show a remarkable 5.8% increase in mAP, high-
lighting the effectiveness of Swin Transformer. In addition, this paper introduces
and compares the CEFPN neck structure to RDCDLST and Swin-T, respectively.
Experimental results show that RDCDLST improves the ability to detect small
defects: mAP increases by 0.8%, mAP50 increases by 2.3%, mAP75 increases by
0.2%.

Figure 5 shows partial results of the recognition of superficial defects on hot-
rolled strip using three backbones: ResNet50, Swin-T, and RDCDLST. Compared
with traditional CNN networks, Swin Transformer focuses more on learning global
features, especially the detection ability of large-scale defects has been significantly
improved. Experimental results show that ResNet50 has issues such as low confi-
dence and ineffective defect detection when detecting surface defects on hot-rolled
strips. Swin Transformer demonstrates effective defect detection within the same
detection area, resulting in increased confidence in detecting large-scale defects. Af-
ter introducing the neck structure CEFPN proposed in this paper, the number of
detected defects has increased, and the confidence in detecting defects of different
scales has simultaneously improved. The proposed RDCDLST emphasizes the local
features while at the same time giving due consideration to the global features, and
differs from the Swin Transformer in this respect. Figures 11 c) and d) show that
RDCDLST improves the ability to detect small defects, increases the number of
defects detected, and significantly improves the confidence level of defect detection
compared to the other method.

4.5 Experimental Model Evaluation

By comparing the model designed in this paper with commonly used object detection
methods in the same dataset and experimental environment, Table 3 and Table 4
show the comparative experiment data.

To evaluate the detection performances of the method proposed in this paper,
the RTCN model is evaluated against other widely used object detection methods
(Faster RCNN, YOLOv3, SSD, and RetinaNet) using the NEU-DET dataset, and
the experimental results are shown in Table 3. The proposed RTCN model achieves
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Figure 5. Prediction results

Model Backbone mAP mAP50 mAP75

Faster RCNN ResNet50 25.6 54.9 21.8
YOLOv3 Darknet53 26.8 57.2 21.3
SSD ResNet50 23.2 54.6 13.3
RetinaNet ResNet50 26.7 61.0 19.4
This Paper EDCDLST 32.8 67.6 25.9

Table 3. Comparison of Mean Average Precision (mAP) of different models (%)

good detection results on the NEU-DET dataset, with mAP improved by 6.0% to
9.6%.

In addition, this paper also compares the mAP of five models under six defects,
and the experimental results of different models under six types of defects are dis-
played in Table 4. In contrast to the other methods of object detection that are used
in this paper, the proposed RTCN model achieves good performance improvement
in multiple defect detection tasks, especially in the detection task of crazing, with
a mAP accuracy improvement of 11.3%.

5 CONCLUSIONS

The surface defect detection task for hot-rolled strip is an important research area
for industrial development and it has great potential for use in a wide range of
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Model crazing inclusion patches pitted surface rolled-in scale scratches

Faster RCNN 7.6 66.3 80.7 68.7 28.6 77.7
YOLOv3 15.3 54.5 79.3 68.7 43.7 82.0
SSD 22.2 57.4 79.2 72.3 33.4 62.9
RetinaNet 29.7 68.1 87.4 75.5 51.5 53.6
This Paper 41.0 69.7 87.8 72.4 55.1 79.5

Table 4. Comparison of Mean Average Precision (mAP) for comparative experiments with
different strategies (%)

industrial scenarios. Firstly, we introduce Swin Transformer for detecting surface
flaw on hot-rolled steel strip. Secondly, this paper improves swin transformers in
accordance with the strengths and weaknesses of transformers and convolutional
neural networks. Finally, this study designs the CEFPN network for the fusion of
features of different scales for the improvement of the recognition accuracy. On
the basis of the NEU-DET dataset, the following experimental conclusions may be
drawn:

1. According to the experiment, the model with RDCDLST as the backbone has
improved by 3.8% in mAP, 5.9% in mAP50, and 1.9% in mAP75.

2. By innovative combination of the strengths of convolutional neural networks
(CNN) and transformers in the local and global acquisition of information, the
accuracy of the detection of small targets is significantly increased.

The research results show that the RTCN model provides a surface defect detection
solution for hot-rolled strip that precisely meets industrial needs and has consider-
able application prospects for surface defect detection. However, the research that
has been done in this paper to improve and increase the speed at which the model
infers is not comprehensive. In the research work ahead, our focus will be on the
elimination of the above limit.
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