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Abstract. Ultrasound examination is of great significance in the clinical diagnosis
of diseases. Processing and analyzing ultrasound images through artificial intelli-
gence technology and providing assistance in decision-making has been a hot topic
of research for several years. However, since most medical images exist in the form
of pictures, the current processing methods for ultrasound images basically continue
to adopt the technical achievements related to static medical image processing not
considering the characteristics reflected by the dynamically changing ultrasound
images thus resulting in a missed diagnosis of diseases. To this end, this paper
proposes an innovative multi-feature extraction and fusion method for ultrasound
dynamic image classification which first extracts various types of underlying fea-
tures such as texture, edge, and shape of salient targets in medical images that
apply to dynamic images. Then, the feature frequency-inverse image frequency
(FF-IIF) multi-feature fusion algorithm is used to generate an adaptive combined
feature classification. In the experiments, the effects of the proposed algorithm are
verified for three ultrasound examination items respectively. The experimental re-
sults show that the features extracted by the multi-feature fusion algorithm using
FF-IIF still maintain a certain degree of fault tolerance and stability under the dy-
namic changes of ultrasound probe position and orientation. The computation time
of the algorithm is moderate and perfectly adapted to the real-time examination of
ultrasound medicine.

Keywords: Ultrasound dynamic image, medical image features, video features,
features extraction, features fusion, feature frequency-inverse image frequency
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1 INTRODUCTION

Medical Imaging (MI) refers to digital medical images and videos obtained by dig-
ital medical imaging devices or other equipment [1], including X-ray Radiography
(X-Ray Radiography), Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), Pathological Image (PI), Endoscopy (EC), Ultrasound (US), etc. [2]. Unlike
medical images such as X-ray Radiography, Computed Tomography, and MRI, ul-
trasound images are digital video files that display and store the echo values of sound
waves in different tissues and organs of the body through digital medical devices [3].
In the same ultrasound examination, the doctor can collect the image information of
several human tissues and organs such as liver, gallbladder, spleen and pancreas by
moving the probe and detect the specific health condition of the tissues and organs
from different positions and angles by tilting, rotating, arranging and pressing the
probe [4]. For this reason, it is necessary to select features with high specificity and
invariance to accurately describe the various tissues and organs of the human body
in ultrasound dynamic images [5].

Image features are the basic semantic concepts formed by the human eye through
the abstraction of intuitive feelings after the observation of images, and currently
commonly used image features include color features, texture features, shape fea-
tures, etc. [6]. Because ultrasound medical images are grayscale images, color fea-
tures are generally not used. Texture features reflect the properties of the surface
structure organization arrangement of the object surface with slow changes or pe-
riodic changes and are suitable for medical image processing. There are two types
of representations of shape features, area features and contour features (edge fea-
tures) [7]. The area feature mainly reflects the regularity of the change of the value
of the pixel points in the internal area of the whole shape, with certain geometric
characteristics, and has certain invariance in rotation, translation, and expansion,
which is especially suitable for dynamic scenes [8]. Contour features are mainly con-
cerned with the outer boundaries of the object, and contour features are those sets
of pixels in the image where there are discontinuities in the distribution of features
such as color (gray scale) and texture, and where there are step changes or roof-like
changes in the characteristics around the image [9]. At present, more underlying
features have been applied in medical image processing, but how to extract the
representative underlying features in medical dynamic images is the focus of this
paper [10].

After acquiring multiple features of medical images, it is necessary to generate
adaptive combined feature components using multi-feature fusion algorithms, and
currently algorithms such as Principal Component Analysis (PCA), Backward Fea-
ture Elimination (BFE), and Dynamic Causal Model (DCM) are commonly used
to calculate effective combinations of feature components [11]. Several combination
algorithms have been applied to combine the underlying features of medical images,
but it is still challenging to select and combine the appropriate medical dynamic
image feature components [12].
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Aiming at the problems of extracting the representative underlying features of
medical dynamic images and selecting and combining appropriate multi-feature com-
ponents of medical dynamic images, this paper proposes a self-adaptive multi-feature
fusion algorithms to select and combine various feature components to achieve ef-
fective classification of various human tissues and organs. The major contributions
of the article are summarized as follows:

1. The current status of research on the underlying features of ultrasound organ
characterization is analyzed, the characteristics of various underlying features
are comprehensively compared, and calculation formulas for various representa-
tive features of self-adaptive combination and fusion methods are provided.

2. The FF-IIF algorithm was proposed to calculate the weight values of the underly-
ing features of tissues and organs in medical examination projects. A threshold
was used to filter out redundant or even useless underlying features, and the
feature components and weight values were merged and provided to the classifi-
cation module. The FF-IIF algorithm has a moderate computational time and
is fully suitable for real-time ultrasound medical examination.

3. A multi-feature extraction and fusion method for ultrasound dynamic image
classification is proposed which extracts the underlying features of prominent
targets in medical images. This method maintains a certain degree of fault tol-
erance and stability in extracting features under dynamic changes in the position
and direction of ultrasound probes.

The rest of the paper is organized as follows: Section 2 presents a review of
related works, Section 3 introduces some techniques and methods of how to carry
out the experiments, and results are displayed and visualized in Section 4. Section
5 summarizes the research process and prospects for future directions.

2 RELATED WORKS

2.1 The Underlying Characteristics of the Image

2.1.1 Texture Characteristics

The texture characteristics of different organs in ultrasound dynamic images have
some variability, for example, the texture of the liver is smoother and can be seen as
a stable brightness variation over the whole area, while the texture of the kidney is
full of abrupt changes and can be seen as a brightness variation that contains some
kind of repetitive streaking pattern. Specifically, Gray-level Co-occurrence Matrix
(GLCM) and Tamura texture features are selected [13].

Grayscale co-occurrence matrix: The grayscale covariance matrix of the image
is described by defining a second-order joint probability distribution, the main
features of the grayscale co-occurrence matrix are Contrast, Autocorrelation,
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Dissimilarity, Energy, Entropy, Homogeneity, Variance, Sumvariance and Cor-
relation coefficient.

Tamura texture features: Tamura texture feature is a property proposed in the
psychological study of human visual perception of texture, and generally uses
contrast, orientation, and roughness for texture feature recognition.

Rogers et al. used serialized computed tomography texture features to achieve
an effective and accurate image classification function [14]. Feng et al. used the
underlying features of bilateral texture filtering to achieve efficient and accurate
computed tomography and MRI image fusion [15]. Santos et al. proposed a method
based on a hybrid depth and texture feature space for classifying the minimal change
disease (MCD) and glomerulosclerosis (GS) on pathological images [16]. Kawashima
et al. designed a texture analysis algorithm to extract 33 texture features from
ultrasound images, and 19 texture features were found to have good sensitivity and
specificity for classifying malignant tumors by evaluation [17].

2.1.2 Invariant Moment Characteristics

Invariant moment functions are widely used in the fields of object representation,
pattern recognition and image analysis because of their rotation, translation and
expansion invariance. The lower order moments reflect the main overall informa-
tion of the image, and the higher order moments reflect the detailed information
of the image. The various invariant moments not only describe the global char-
acteristics of the object shape in the image, but also provide a large amount of
information about different geometric features of the object, such as size, position,
orientation and shape. Since ultrasonography quickly switches between human or-
gans by moving the probe, more stable geometric abstraction characteristics are
generally used to describe its features. The description methods for target abstrac-
tion features based on regional features mainly include Hu Moments (HM), Polar
Radius Moment (PRM), Complex Moment (CM), orthogonal invariant moments,
and improved regional invariant moments proposed by Hu.

Li et al. used an improved adaptive moment estimation to optimize the con-
jugate gradient algorithm to efficiently achieve the reconstruction work on medical
images [18]. Singh and Bala proposed a brain MRI image segmentation method
based on Local Zernike Moment (LZM), a feature with good invariance [19].

2.1.3 Edge Characteristics

There is some variability in the marginal features of different organs in ultrasound
dynamic images, for example, the uterus is generally an oval structure, the thy-
roid is generally butterfly or horseshoe shaped, and the spleen has a triangular
vertebral shape. Currently, edge detection methods can be broadly classified into
two categories: gradient-based lookup methods and zero crossing-based methods.
The gradient-based lookup method requires finding the pixel points in the image
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that have the maximum and minimum values on the first-order derivative (gradi-
ent), and usually the pixel points in the direction with the largest gradient are
used as boundary points. The first-order differential edge operator, also known
as the gradient edge operator, is used for edge detection by exploiting the step-
wise nature of the image at the edge, i.e., the property that the image gradient
achieves a great value at the edge, specifically by selecting the widely used Sobel
operator. The zero-crossing based method requires calculating the second order
derivative of the image and detecting the boundary by whether the second order
derivative is zero crossing or not, specifically by selecting the widely used Canny
operator [20].

Qiao et al. proposed a robust edge extraction method based on edge-aware fil-
tering and improved local binary pattern (EF-ALBP), which can handle CT images
with more noise, blurred details and low contrast [21]. Elmi and Elmi proposed
an edge detection method with a set hysteresis threshold that can be effectively
applied for tracking and matching targets in colonoscopy detection [22]. Jie et al.
proposed a salient structure based on the edge extraction operator XDoG for de-
tecting gradients and energies of non-significant information in medical images of
different modalities and fusing them into one medical image [23].

2.2 Feature Fusion

2.2.1 PCA Algorithm

PCA is a common data analysis method. PCA transforms the original data into a set
of linearly independent representations of each dimension by linear transformation,
which can be used to extract the main feature components of the data and is often
used for dimensionality reduction operations of high-dimensional data. PCA works
by sequentially finding a set of mutually orthogonal axes from the original space,
and the choice of new axes is closely related to the data itself. The first new axis
is chosen in the direction of the largest variance in the original data, the second
new axis is chosen in the plane orthogonal to the first axis that makes the largest
variance, and the third axis is in the plane orthogonal to the first, second axis that
makes the largest variance. By analogy, n such axes can be obtained as the new axis
system, so that only the dimensional features containing most of the variance are
retained, while the dimensional features containing almost zero variance are ignored,
and the dimensional reduction fusion of data features is realized.

2.2.2 TF-IDF Algorithm

The TF-IDF algorithm uses keywords to assess the importance in an article or a doc-
ument. The importance of a keyword increases with the frequency of its occurrence
and also decreases inversely with the frequency of its occurrence in the corpus. Term
Frequency (TF) represents the frequency of keywords appearing in the document.
Inverse Document Frequency (IDF) is the inverse of the keyword’s occurrence in-
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side all documents. For a document set or corpus, the fewer documents containing
a word, the larger the value of IDF, and the stronger and more important the word’s
distinguishing power. The TF-IDF is calculated as: TF-IDF = number of occur-
rences of a word or phrase in a document/total number of words or phrases in the
document ∗ log(number of documents/(number of documents containing the word
or phrase) + 1).

Ding et al. designed an invariant subspace and subspace combination method to
achieve robust multimodal medical image fusion [24]. Chen et al. proposed a pyrami-
dal network model combining local edge features and global edge features to achieve
automatic recognition of the central room of CT images [25]. Gudadhe et al. clas-
sified CT images of intracranial hemorrhage in stroke patients by combining Grey
Level Co-occurrence Matrix (GLCM) features, Discrete Wavelet Features (DWT)
and Discrete Cosine Features (DCT) [26]. Kuwil proposed the FE mines (Feature
Extraction Based on Region of Mines) method to extract effectively combined fea-
tures in MRI images for effective brain tumour identification [27].

3 METHODS

During an ultrasound examination, with the movement of the probe, a variety of
human tissues and organs are detected at different angles in the form of dynamic
images displayed in the screen, and since the images have multiple features, different
features contribute differently to the description of the images. As shown in Figure 1,
several major examinations of ultrasound medicine were selected as the focus of this
paper, with the categories liver, gallbladder, spleen, pancreas for PCA, prostate,
testes for FF-IIF, and uterus, ovaries for TF-IDF.

This article analyzes the differences in texture, edge, and shape underlying fea-
tures in human organ images collected by ultrasound medicine, and designs a model
framework for ultrasound medical image classification based on multiple feature ex-
traction and fusion, as shown in Figure 2. Firstly, various underlying features such
as texture, shape, and edge of prominent targets in medical images are extracted.
Then, an adaptive composite feature classification is generated using the FF-IIF
multi feature fusion algorithm, aiming to adapt to the dynamic changes in the po-
sition and direction of the ultrasound probe and maintain a certain degree of fault
tolerance and stability in the extracted features. Finally, a classification model is
established to learn and analyze the underlying composite image feature compo-
nents, forming an abstract high-level feature representation, achieving the goal of
accurately, quickly and automatically analyzing various human tissues and organs
in ultrasound medical images.

3.1 Initialization Data

The N tissues and organs appearing in the ultrasound dynamic image are classes,
and the set of classes is {CLiver,CGallbladder,CSpleen,CPancreas}, and the spe-
cific object corresponding to the class is extracted accordingly for each class in
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Figure 1. Schematic diagram of switching to different tissues and organs at the same
ultrasound examination

the image set, as shown in Figure 1, CLiver class corresponds to the extraction
of {Liver1,Liver2,Liver3, . . . ,Liveri}, CGallbladder class corresponds to the extrac-
tion of {Gallbladder1,Gallbladder2,Gallbladder3, . . . ,Gallbladderi}, CSpleen class
corresponding to the extraction of {Spleen1, Spleen2, Spleen3, . . . , Spleeni}, CPan-
creas class corresponding to the extraction of {Pancreas1,Pancreas2,Pancreas3, . . . ,
Pancreasi}.

For each object separately, the values of the various characteristic components
of its various angular forms are calculated as:

Gallbladder1

{
(C111, C211, . . . , Cm11) , (C112, C212, . . . , Cm12)
(C113, C213, . . . , Cm13) , (C11j, C21j, . . . , Cm1j)

}
Gallbladder2

{
(C121, C221, . . . , Cm21) , (C122, C222, . . . , Cm22)
(C123, C223, . . . , Cm23) , (C12j, C22j, . . . , Cm2j)

}
Gallbladder3

{
(C131, C231, . . . , Cm31) , (C132, C232, . . . , Cm32)
(C133, C233, . . . , Cm33) , (C13j, C23j, . . . , Cm3j)

}
...

Gallbladderi

{
(C1i1, C2i1, . . . , Cmi1) , (C1i2, C2i2, . . . , Cmi2)
(C1i3, C2i3, . . . , Cmi3) , (C1ij, C2ij, . . . , Cmij)

}
.

(1)
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Figure 2. Framework diagrams of multiple features extraction and fusion method for ul-
trasound dynamic images
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M is the initial number of adopted feature component dimensions, N is the
number of all instance objects for the class, and Q is the number of various angular
forms of instance objects, where m ≤ M , i ≤ N , and j ≤ Q. The initial input data
is obtained by unifying the various angles by means of the mean value method as
follows:

Cmi =

∑Q
j=1Cmij

Q
. (2)

Gallbladder1 (C11, C21, . . . , Cm1), Gallbladder2 (C12, C22, . . . , Cm2),
Gallbladder3 (C13, C23, . . . , Cm3), . . . , Gallbladderi (C1i, C2i, . . . , Cmi).

3.2 Related Definitions

Definition 1 (Frequency). Cm represents the feature component of the mth object,
and Cmi represents the ith feature component value of the mth object. The Cmi

values of all tissue and organ objects are mapped to linear coordinates, and the
mean mid =

∑X
i=0 Cmi of all feature component values is calculated. The feature

component value Cmi frequency is the number of feature components other than
itself in the range of Cmi − mid

2
< x < Cmi +

mid
2
.

Definition 2 (Feature Frequency). The adjacent values of a feature component
value in the same tissue-organ object; the more adjacent values, the more relevant
the feature component value is to the feature representation of this tissue-organ
object.

For example, the distribution of the Cli feature components of Gallbladder in
various types of Gallbladder is shown in Figure 3. Then, for the range of C11 values
of Gallbladder 1 can be matched to the C12 values of Gallbladder 2, so the value of
FF of Gallbladder 1 is 1, and the value of FF of Gallbladder 2 is 2, the value of FF
of Gallbladder 3 is 1, and the value of FF of Gallbladder 4 is 0.

Gallbladder

1C11=20

Gallbladder

2

C12=30

Gallbladder

3

C13=50

Gallbladder

4

C14=100

Middle 

Point

=50

Gallbladder 1C11Match line

Gallbladder2C12Match line

Gallbladder3C13Match line

Gallbladder 4C14Match line

0 2010 30 40 50 60 70 1009080 110 120 130

Figure 3. Schematic diagram of similar frequency calculation

Definition 3 (Inverse Image Frequency). The values of a feature component value
adjacent to each other in different tissue-organ object matches; the more values
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adjacent to each other, the less distinguishing ability of that feature component
value.

For example, if an experimental data includes 100 sample data, and the feature
component value Cm1 appears 10 times in different tissue-organ object matches, and
another feature component value Cm2 appears 1 time in different tissue-organ object
matches, then Cm2 has better discrimination than Cm1.

The FF-IIF value for each feature component value is calculated using the above
concept, using Equation (3):

FF-IIF(Cmi) = ffj (Cmi)× log

[
N

iif (Cmi)

]
, (3)

where
∫∫

j
(Cmi) denotes the frequency of occurrence of the characteristic component

value Cmi in the same tissue-organ object; N denotes the total number of all tissue-
organ objects in the set of tissue-organ objects; iif (Cmi) denotes the frequency
of the current feature component values occurring in different tissue organ object
collections. By analyzing each feature component value in the tissue organ object
collection as described above, the FF-IIF value of each feature component value for
each tissue organ object is obtained, and then the value is used to build a vector
model for each tissue organ object separately as the classification criteria of the
features and the correlation test for each dimension.

3.3 Calculation Method

Since the situation discussed in this paper requires high compatibility of the charac-
teristic components of tissue and organ objects is not very numerically sensitive and
different ultrasound equipment may have different resolutions, it does not require
too complicated calculation and refinement problems. From the initial feature com-
ponent value C ′

mi, representing the ith initial feature component value of the mth

object in the ultrasound examination, the feature component value Cmi, represent-
ing the ith feature component value of the mth object, is calculated by taking the
absolute value and logarithm of the feature component according to Equation (4).

Cmi = log |C ′
mi|. (4)

After the pre-processing of the feature component values is completed the FF-
IIF value of each feature component value of each tissue organ object in the whole
tissue organ object collection needs to be calculated, and the FF-IIF value of each
feature component value of the tissue organ object is expressed as a vector, and the
similarity of the tissue organ object is calculated. This vector is high-dimensional
and extremely sparse. According to information theory, the IIF value is actually
the cross entropy of the probability distribution of feature component values under
a particular condition, while FF is used to increase the weight of the feature com-
ponent values to better characterize the data of the feature component values in the
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tissue organ object. Therefore, a number of important feature component values can
be selected from each tissue organ object as a way to characterize the tissue organ
object to ensure that the dimensionality of the tissue organ object feature vector
representation can be minimized without affecting the tissue organ object feature
extraction. This is done by ranking the FF-IIF values of the feature component
values in each tissue organ object. The feature component value from which the
FF-IIF value is greater than the elimination threshold P (percentage) is selected as
the key feature component value. This key component value is used as the feature
representation of the tissue object, and the efficiency of the algorithm is greatly
improved due to the dimensionality reduction operation.

After obtaining the key feature component values for each tissue and organ ob-
ject, it is then necessary to consider how to determine the calculation of the weight
of the feature component values for a particular category of ultrasound examina-
tion. Since the feature component values represent the most important features in
a tissue-organ object, the feature component value weights of ultrasonography can
be derived statistically from the feature component value weights of tissue-organ
objects, and the feature component value weights of a certain class of ultrasonog-
raphy are converted into a statistical work on the feature component value weights
of tissue-organ objects. In addition, since each tissue and organ object has different
types of features, the dimensions of the feature component weights characterizing
the ultrasound examination are not the same, and these effects must be eliminated
so that the feature component weights of a certain type of ultrasound examination
satisfy the feature types of each tissue and organ object.

Let wi, wj be the distribution of the feature component value weights of two
different tissue organ objects, wi = {w1i, w2i, . . . , wmi}, wj = {w1j, w2j, . . . , wmj},
where M is the number of all feature component values, m ≤ M .

If there are more feature component values that are more similar to each other
in two tissue organ objects and the higher the proportion of FF-IIF values accounted
for by the feature component values in the respective tissue organ objects – it means
that these feature component values are more reflective of their importance in the
tissue organ objects, so the weights are calculated based on the proportion of FF-IIF
values of key feature component values that satisfy the similarity threshold condition
in the key feature component values in the sum of FF-IIF values of the whole tissue
organ objects. The specific calculation formula is given by Equation (5).

wi,j = 1 + avg(i, j)×
[√

avg(i, j)− avg(i, j)
]
, (5)

avg (i, j) =
1

2

[∑
k∈Λi

FF-IIF (Cik)∑M
k=1 FF-IIF (Cik)

+

∑
l∈Λj

FF-IIF (Cjl)∑M
l=1 FF-IIF (Cjk)

]
, (6)

where FF-IIF(Cik) denotes the FF-IF value of the key feature component value Cik,
∧i is the set of key feature component value weights wjl whose similarity exceeds
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the similarity threshold µ set by the user.

∧i =

{
k : 1 ≤ k ≤ m, max

1≤l≤n
{arg(i, j)} ≥ µ

}
. (7)

This feature component vector weight value is calculated as follows:

wf =

∑M
i=1

∑N
j=1wi,j

M∗N
. (8)

The values of all feature components {wf1, wf2, . . . , wf} are calculated for this
image selection in turn.

The machine learning model receives feature components {wf1, wf2, . . . , wf} as
its input and calculates the predicted classification category as output of different
tissues and organs in the ultrasound examination.

4 EXPERIMENTAL DETAILS

To verify the effectiveness of the FF-IIF algorithm proposed in this paper for the
underlying multi-feature fusion of ultrasound dynamic images, ultrasound dynamic
images of various tissues and organs in PCA, TF-IDF, and FF-IIF were selected for
experiments and discussions, and then the effects of different feature fusions in the
method on the overall framework performance were analyzed.

4.1 Experimental Environment

4.1.1 Experimental Data

The ultrasound dynamic image data used in this paper were provided by the hos-
pital, with a total of 500 dynamic images, and the annotated data were manually
annotated by professional medical field experts organized by the hospital. According
to the guidelines and norms of ultrasound medicine, experts in the medical field de-
fined a total of 10 classifications as: “liver”, “bile”, “pancreas”, “spleen”, “kidney”,
“bladder”, “seminal vesicle gland”, “prostate”, “ovaries”, “uterus”.

4.1.2 Experimental Environment

The hardware environment and software used in this paper are hardware environ-
ment: VM-Ware virtual machine cluster 10, memory 32 GB, 8-core CPU; operating
system: Windows Server 2012; deep learning tools: tensorflow, Keras; algorithm
programming and interface display: Python, JSP, Visual C# 2010.

4.2 Comparison of Underlying Feature Fusion Performance

To verify the effectiveness of the FF-IIF algorithm proposed in this paper for the
fusion of multiple features in the underlying layers of ultrasound dynamic images,
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a total of 36 components in 8 categories of underlying features were selected for
testing, as shown in Table 1.

4.2.1 Visualization of Ultrasound Dynamic Image Features

Figure 4 gives the results of visualizing the characteristics of each tissue and organ
by ultrasonography, where Figure 4 a) is the image frame in the ultrasound dynamic
image, and the labeled rectangular box is the tissue and organ region. Figures 4 b)
and 4 c) are the visualized heat maps of texture and shape regions, respectively, and
Figure 4 d) is the visualized heat map after texture and shape fusion. It can be
seen from the figure that the shape feature regions of the liver and kidney are not
obvious, while the texture features are more obvious; the texture feature regions
of the uterus and gallbladder are not obvious, while the shape regions are obvious.
Compared with the texture and regional features alone, the fused features are closer
to the location of the tissue-organ regions.

4.2.2 Elimination Threshold P-Value

The choice of the elimination threshold P -value directly affects the number of se-
lected features, and the effectiveness of the combined feature component selection.
If the P -value is chosen too large, some contributing feature components will be
sacrificed, and if the P -value is chosen too small, some less obvious feature com-
ponents will be left behind, so the P -value is chosen too large or too small to be
detrimental to the selection of feature components. In this paper, the size of P -value
is determined by comparing the effect of experimental tests.

From Table 2, it can be seen that the recognition performance of the selected
combined feature components is better when the value of P is 0.5 for PCA, and the
final selected combined feature components are 15, the recognition performance of
the selected combined feature components is better when the value of P is 0.6 for TF-
IDF, and the final selected combined feature components are 9, and the recognition
performance of the selected combined feature components is better when the value
of P is 0.5 for FF-IIF, and the final selected combined feature components are 14,
which also shows that the combined feature components have better recognition
performance for FF-IIF.

4.2.3 Similarity Threshold

The size of the similarity threshold µ directly affects the calculation results of the
feature component weights and thus the final recognition rate calculation. In this
paper, the similarity threshold µ in each medical examination item is selected by
means of experiments. As shown by the experimental results in Figure 5, the highest
recognition rate was obtained when the value of µ was 0.8 for PCA, when the value
of µ was 0.7 for FF-IIF, and when the value of µ was 0.6 for TF-IDF. FF-IIF achieves
the best recognition rate.
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a) Original image b) Texture features c) Shape features d) Fusion features

Figure 4. Example of heat map visualization of the underlying features of various organs
in image frames of ultrasound dynamic images

4.2.4 Feature Component Weights

The feature component weight surfaces obtained after the algorithmic process of
PCA, TF-IDF and FF-IIF algorithm are shown in Figure 6. By observation, it
can be seen that the feature component weight fold surfaces of different inspection
items have very significant differences, thus reflecting that the feature components
of different inspection items contribute differently to the recognition of tissue organ
objects in that item.

After the reselection of feature components in the PCA, TF-IDF and FF-IIF al-
gorithm, the results are obtained as shown in Figure 7, which shows that the feature
component weight of FF-IIF algorithm folded surface is relatively smooth, indicat-
ing that the adaptive elimination measures for the feature components can reduce
the personality differences of different feature components and select representa-
tive feature components for combination, which has achieved the best classification
effect.
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0.9 3 0.34 3 0.45 4 0.50
0.8 6 0.48 5 0.51 5 0.53
0.7 8 0.62 7 0.43 7 0.65
0.6 10 0.70 9 0.81 11 0.76
0.5 15 0.90 13 0.71 14 0.79
0.4 16 0.79 15 0.59 17 0.68
0.3 19 0.68 19 0.45 21 0.60
0.2 21 0.58 28 0.39 29 0.54
0.1 34 0.32 33 0.37 34 0.43

Table 2. Comparison table of the number of selected feature components and recognition
rate under different P -values

Figure 5. Schematic diagram of recognition rate influenced by similarity threshold
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a) PCA

b) TF-IDF

c) FF-IIF

Figure 6. Surface display of feature component weights of different inspection items
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a) PCA

b) TF-IDF

c) FF-IIF

Figure 7. Adaptive feature component weight surface display for different examination
items
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4.2.5 Feature Component Time Efficiency

To verify the running time efficiency of the PCA, TF-IDF, FF-IIF multi-feature
fusion algorithm proposed in this paper, the extraction time of each feature was
counted, as shown in Table 3.

Table 3 shows the statistics of the time required for the methods used for fea-
ture extraction, and it can be seen that the computation time for all types of fea-
ture components of the grayscale co-occurrence matrix is less than 1.00E+02ms,
and the average computation time spent is less, and the energy of the grayscale
co-occurrence matrix has the least computation time by log. While the Tamura
texture features have more multiplication operations, so the computation time of
the associated feature variables is more than that of the grayscale coeval matrix.
Hu invariant moment processing requires the calculation of seven moments, while
the polar radius invariant moment only requires the calculation of five, so the polar
radius invariant moment running time is relatively minimal. The average computa-
tion time of the polar radius invariant moments is close to the average computation
time of each type of feature component of the grayscale co-occurrence matrix. Both
complex invariant moments and orthogonal invariant moments are derived from the
Hu invariant moment calculation criterion and therefore they take more time than
the Hu invariant moment calculation. The Canny operator edge feature computa-
tion involves convolution operations, which are larger than the average computation
time of the Sobel operator edge features. The computation time for all types of
feature components is less than 4.00E+02ms, which basically satisfies the computa-
tional requirements of the model. FF-IIF algorithm has the least total computation
time.

Figure 8. Average time share of each type of feature in ultrasound examination items
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Characteristic
Components

Portion
Name

PCA TF-IDF FF-IIF

Contrast ratio (grayscale
co-occurrence)

C1 2.40E+01 1.70E+01 1.50E+01

Autocorrelation coefficient C2 1.30E+01 9.00E+00 8.00E+00
Degree of difference C3 8.00E+00 7.00E+00 6.00E+00
Energy C4 7.00E+00 4.00E+00 5.00E+00
Entropy C5 3.10E+01 2.30E+01 2.10E+01
Homogeneity C6 1.60E+01 8.00E+00 7.00E+00
Variance C7 3.10E+01 1.90E+01 1.80E+01
Covariance and C8 9.00E+00 7.00E+00 7.00E+00
Correlation coefficient C9 4.60E+01 2.90E+01 2.60E+01
Contrast (Tamura) C10 7.30E+01 5.90E+01 5.40E+01
Directionality C11 1.40E+01 7.00E+00 5.00E+00
Roughness C12 4.80E+01 3.40E+01 3.10E+01
Hu invariant moment 1 C13 4.50E+01 1.60E+01 1.40E+01
Hu constant moment 2 C14 8.50E+01 6.50E+01 5.70E+01
Hu constant moment 3 C15 9.20E+01 7.90E+01 7.40E+01
Hu constant moment 4 C16 9.30E+01 8.50E+01 8.00E+01
Hu constant moment 5 C17 1.10E+02 9.90E+01 9.70E+01
Hu constant moment 6 C18 9.80E+01 9.20E+01 8.60E+01
Hu constant moment 7 C19 1.41E+02 1.21E+02 1.10E+02
Radius-invariant moment 1 C20 2.50E+01 1.40E+01 1.20E+01
Radius-invariant moment 2 C21 2.60E+01 1.50E+01 1.20E+01
Constant moment 3 C22 3.00E+01 1.80E+01 1.70E+01
Constant moment 4 C23 3.20E+01 1.90E+01 1.80E+01
Polar radius invariant moment5 C24 3.90E+01 2.50E+01 2.30E+01
Complex constant moment 1 C25 1.56E+02 1.03E+02 9.20E+01
Complex constant moment 2 C26 2.23E+02 1.45E+02 1.23E+02
Complex constant moment 3 C27 3.21E+02 2.03E+02 1.93E+02
Complex constant moment 4 C28 2.56E+02 1.65E+02 1.38E+02
Complex constant moment 5 C29 2.86E+02 1.72E+02 1.56E+02
Complex constant moment 6 C30 2.62E+02 1.71E+02 1.43E+02
Complex invariant moment7 C31 2.61E+02 1.69E+02 1.42E+02
Orthogonal invariant moment C32 3.21E+02 2.19E+02 2.15E+02
Gradient C33 1.21E+02 1.06E+02 9.80E+01
Direction C34 1.09E+02 9.90E+01 9.20E+01
Edge strength C35 3.14E+02 2.95E+02 2.89E+02
Normal vector C36 2.94E+02 2.76E+02 2.65E+02
Total computation time 4.06E+03 2.99E+03 2.75E+03

Table 3. Statistics of the time required for feature extraction (average running time [ms])
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Figure 8 shows the average share of time spent on each ultrasound examination
item for each type of feature in the experiment. On the one hand, it can be seen
that the two types of edge features, orthogonal invariant moments and complex in-
variant moments, occupy a higher share of time due to their higher computational
complexity, but do not exceed 30% of the total time. The other underlying features
have a more equal share of computation time. On the other hand, it is also evident
that the computational time shares of various types of features remain basically the
same in the three different items of ultrasonography, indicating that the computa-
tional workload of FF-IIF algorithm of graph features is relatively stable without
abnormal time-consuming situations.

As shown in Figure 9, the computation time of texture features and Hu-invariant
moments is slightly shortened because the fused features are computed in multi-
threaded parallel simultaneous computation mode, the orthogonal invariant mo-
ments and complex invariant moments are computed on the basis of Hu-invariant
moments, which also shortens the computation time, and the leading formula of edge
features is consistent, which reduces part of the computation time. Combined, the
computation method using fused feature components can be reduced to about 60%
of the time share of independently computed feature components, which reduces
the computation time. The FF-IIF multi-feature fusion algorithm increases the
computation time of weights based on the independent feature computation, so its
computation time is longer than the independent feature computation, but the adap-
tive combination feature component streamlines some of the feature components by
the preliminary computation, especially some higher-order feature components that
consume more time, so its computation time is moderate and fully adapted to the
real-time inspection of ultrasound medicine.

Figure 9. Time share of independent and post-fusion feature components in ultrasound
examination items
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5 CONCLUSION

In this paper, based on the analysis of the current status of research on the selection
of underlying features for ultrasound examination organ characterization, the char-
acteristics of various types of underlying features are introduced and the calculation
formulas for various types of representative features are given. In order to solve the
redundancy and selection problems of various components of multiple features in
the underlying medical dynamic image, an adaptive combination multi-feature fu-
sion method is proposed, and the FF-IIF method is defined to calculate the weight
values of the feature components of tissues and organs in medical examination items.
Firstly, all the feature components are combined together after initialization, then
the FF-IIF value of each object is calculated by the FF-IIF method by sorting the
FF-IIF values of each object, filtering out the redundant or even useless feature
components after thresholding, and finally combining the feature components and
the weight values of the feature components to generate the initial data before clas-
sification. Two thresholds FF-IIF in elimination threshold P-value and similarity
threshold µ were calculated in the experiments, and the FF-IIF algorithm was per-
formed for inspection items.

Future work will focus on two main areas:

1. It is noteworthy that more and more image processing fields are beginning to
employ reinforcement learning to discover more feature components that can
describe and classify images. The future task is to explore more underlying
feature components suitable for ultrasound dynamic images and provide them
to the classification model to achieve better classification results.

2. The multi-feature fusion algorithm we currently use works better for fusing the
underlying features describing tissue and organ lesions in existing ultrasound
dynamic images. However, with the appearance of more underlying features,
it may have some impact on the computational performance and effect of the
algorithm proposed in this paper, so the existing algorithm needs to be further
optimized to achieve a better fusion effect.
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[5] Maqsood, S.—Damaševičius, R.—Shah, F. M.—Maskeliunas, R.: Detection
of Macula and Recognition of Aged-Related Macular Degeneration in Retinal Fun-
dus Images. Computing and Informatics, Vol. 40, 2021, No. 5, pp. 957–987, doi:
10.31577/cai 2021 5 957.

[6] Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. In-
ternational Journal of Computer Vision, Vol. 60, 2004, pp. 91–110, doi:
10.1023/B:VISI.0000029664.99615.94.

[7] Trinh, D. L.—Kim, S. H.—Yang, H. J.—Lee, G. S.: The Efficacy of Shape Ra-
diomics and Deep Features for Glioblastoma Survival Prediction by Deep Learning.
Electronics, Vol. 11, 2022, No. 7, Art. No. 1038, doi: 10.3390/electronics11071038.

[8] Adjailia, F.—Ramdani, M.—Rasamoelina, A. D.—Sincak, P.: Integration
of 2D Textural and 3D Geometric Features for Robust Facial Expression Recog-
nition. Computing and Informatics, Vol. 40, 2021, No. 5, pp. 988–1007, doi:
10.31577/cai 2021 5 988.

[9] He, B.—Liu, J.—Lin, G.—Peng, C.—Xi, W.: Quaternion Fractional-Order
Weighted Generalized Laguerre-Fourier Moments and Moment Invariants for Color
Image Analysis. Signal Processing: Image Communication, Vol. 114, 2023,
Art. No. 116941, doi: 10.1016/j.image.2023.116941.

[10] Liu, R.—Nan, H.—Zou, Y.—Xie, T.—Ye, Z.: LSW-Net: A Learning Scattering
Wavelet Network for Brain Tumor and Retinal Image Segmentation. Electronics,
Vol. 11, 2022, No. 16, Art. No. 2616, doi: 10.3390/electronics11162616.

[11] Calhoun, V. D.—Adali, T.: Feature-Based Fusion of Medical Imaging Data.
IEEE Transactions on Information Technology in Biomedicine, Vol. 13, 2009, No. 5,
pp. 711–720, doi: 10.1109/TITB.2008.923773.

[12] Tran, D. C.—Wu, Z.: A New Approach of Dynamic Clustering Based on Parti-
cle Swarm Optimization and Application in Image Segmentation. Computing and
Informatics, Vol. 36, 2017, No. 3, pp. 637–663, doi: 10.4149/cai 2017 3 637.

https://doi.org/10.3390/electronics10141642
https://doi.org/10.1017/CBO9780511596803
https://doi.org/10.3390/electronics11030466
https://doi.org/10.31577/cai_2020_4_780
https://doi.org/10.31577/cai_2021_5_957
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.3390/electronics11071038
https://doi.org/10.31577/cai_2021_5_988
https://doi.org/10.1016/j.image.2023.116941
https://doi.org/10.3390/electronics11162616
https://doi.org/10.1109/TITB.2008.923773
https://doi.org/10.4149/cai_2017_3_637


Multiple Features Extraction and Fusion for US Dynamic Images Classification 1479

[13] Zhai, Z.—Fan, C.—Ming, Y.: Learned Spatio-Temporal Texture Descriptors for
RGB-D Human Action Recognition. Computing and Informatics, Vol. 37, 2018, No. 6,
pp. 1339–1362, doi: 10.4149/cai 2018 6 1339.

[14] Rogers, W.—Keek, S. A.—Beuque, M.—Lavrova, E.—Primakov, S.—
Wu, G.—Yan, C.—Sanduleanu, S.—Gietema, H. A.—Casale, R.—
Occhipinti, M.—Woodruff, H. C.—Jochems, A.—Lambin, P.: Towards
Texture Accurate Slice Interpolation of Medical Images Using PixelMiner.
Computers in Biology and Medicine, Vol. 161, 2023, Art. No. 106701, doi:
10.1016/j.compbiomed.2023.106701.

[15] Feng, Y.—Wu, J.—Hu, X.—Zhang, W.—Wang, G.—Zhou, X.—Zhang, X.:
Medical Image Fusion Using Bilateral Texture Filtering. Biomedical Signal Processing
and Control, Vol. 85, 2023, Art. No. 105004, doi: 10.1016/j.bspc.2023.105004.

[16] Santos, J. D.—de M. S. Veras, R.—Silva, R. R. V.—Aldeman, N. L. S.—
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