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Abstract. According to Hughes phenomenon, the major challenges encountered in
computations with learning models come from the scale of complexity, e.g. the so-
called curse of dimensionality. Approaches for accelerated learning computations
range from model- to implementation-level. The first type is rarely used in its
basic form. Perhaps, this is due to the theoretical understanding of mathematical
insights. We describe a model-level decomposition approach that combines both
the decomposition of the objective function and of data. We perform a feasibility
analysis of the resulting algorithm, both in terms of accuracy and scalability.
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1 INTRODUCTION

Predictive Data Science is the paradigm shift of computational science tightly in-
tegrating numerical simulations with algorithms and techniques having the capa-
bility of extracting insights or useful knowledge from data (also known as learning-
from-examples). Predictive Data Science – revolutionizing decision-making for high-
consequence applications in science, engineering and medicine – aims not only to
reproduce with high-fidelity the real world, but also to predict its behaviour in
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situations for which the numerical simulation has not been specifically validated.
Machine learning (ML) is part of predictive data science, dealing with statistics,
algorithms, and scientific methods used to extract knowledge from data [1, 2]. Vari-
ous types of ML algorithms such as supervised, unsupervised, semi-supervised, and
reinforcement learning exist in the area. In addition, Deep Learning (DL), which
is part of a broader family of machine learning methods, can analyze the data on
a large scale by learning from subtasks. DL has having immense success in the recent
past leading to state-of-art results in various domains (biotechnology, finance, . . . ).
Anyway, the same flexibility that makes DL excellent at modeling diverse phenom-
ena and outperforming other models (which indeed depend on large amounts of
data and computation) also makes it dramatically more computationally expensive.
If the current trend continues, the growing computational cost of DL will become
technical and economically prohibitive [3]. The continuing appearance of research
on distributed learning is due to the progress made by specialized high-performance
architectures. However, the computational needs of DL grow so rapidly that it will
quickly become computationally constrained again.

We present a model-level technique for tackling intensive DL problems which
relies on the ideas of the Kernel decomposition approach. We call Domain Decom-
position Deep Learning – D3L. D3L involves data reduction, localization of the pre-
dictive function and reduction of the error function. The main feature of D3L is that
local error functions are suitably modified, by imposing a regularization constraint
to enforce the matching of their solutions between adjacent subproblems. As a con-
sequence, instead of solving one DL problem, we can solve several smaller problems
by improving the accuracy-per-parameter metric. Most importantly, subproblems
can be solved in parallel, leading to a scalable algorithm where the workers locally
exchange parameter updates via a nearest-neighbourhood communication scheme,
which does not require a fully connected network.

1.1 Related Works

Resource-efficient DL research has vividly been carried out independently in var-
ious research communities including the machine learning, computer arithmetic,
and computing system communities. There are various approaches to compress or
accelerate DL methods with minimal loss of precision [4, 5, 6, 7]. Among them,
the model-level techniques aim at reducing the problem size to fit the DL models to
resource-constrained systems. On the contrary, implementation-level techniques aim
at improving the computational speed of DL operations [8]. These approaches range
from fine to coarse-grained parallelism. The first one corresponds to the standard
fine-grained concurrency of the floating point operations (it exploits concurrency
inside the parts that represent the main computational bottlenecks of the neural
network layers to enhance the overall performance of the whole algorithm). In the
realm of DL, this approach is often referred to as concurrency in operators. To
implement fine-grained parallelism effectively, specialized hardware such as GPUs
and TPUs are commonly used. These hardware accelerators are designed to handle
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a multitude of parallel operations simultaneously, making them well-suited for DL
workloads. Finally, parallel execution techniques such as multiprocessing and multi-
threading are employed to execute parallel operations concurrently. This approach
significantly reduces the training time for deep neural networks, allowing for the
training of larger and more complex models.

The second one is based on the problem decomposition and, in contrast to fine-
grained parallelism introduces concurrency at a coarser level of computation. In
the realm of DL, this approach is known as concurrency in the network, and in-
volves partitioning the computational workload in various ways: by input samples
(data parallelism), by network structure (model parallelism), and by layer (pipelin-
ing) [9, 10]. Data parallelism is a straightforward approach to parallelization. This
method dates back to the first practical implementations of artificial neural net-
works [11]. Data parallelism partitions the dataset among processing units having
a copy of the full model. Each unit calculates the gradients of different subsets, inde-
pendently, and uses these gradients to update the global model concurrently. Most
DL frameworks support data parallelism (Chainer [12], PyTorch [13], CNTK [14]).
In the model parallelism, data are copied to all processors, each unit has a portion of
the model and works in cooperation with others to do the calculation for one subset.
Subsequently, different stages of the calculation of the global model are executed in
the pipeline on different processors. In layer pipelining, different layers of the neu-
ral network are processed concurrently, with data flowing through the network in
a pipeline fashion. It is a strategy to reduce the latency in DL inference.

Model parallelism has lower communication requirements, but because of its
pipeline data dependency, model parallelism suffers from underutilization of the
computing elements, while data parallelism does not have the data dependency
issues, but requires heavier communication across processing units due to the syn-
chronization with the other processing units. The combination of multiple paral-
lelism schemes can overcome the drawbacks of each scheme giving rise to hybrid
approaches. In this regard, the most notable frameworks supporting hybrid ap-
proaches are TensorFlow [15], MXNet [16] and SINGA [17].

1.2 The Present Work

According to the recent survey in [8], in the following we summarize main aspects
of significance and novelty of D3L.

Parallelization Model. We introduce a hybrid parallelism which starts with a de-
composition of the global problem into overlapped smaller subproblems. On
these subdomains we define local minimization problems and we prove that the
solution of the (global) problem can be obtained by collecting the solutions of
local problems.

Framework Architecture. The proposed approach works without any parameter
services, e.g. it is decentralized, but it does not need to exchange parameter
updates by using an all-reduce operation. The resulting algorithm consists of
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several copies of the original one, each one requiring approximately the same
amount of computations on each subdomain and an exchange of boundary con-
ditions between adjacent subdomains.

Synchronization. The partitioning of the computational domain requires only in-
teractions among two adjacent subdomains. Since data is flowing across the
surfaces, the so-called surface-to-volume effect is produced. As the equations in
the subdomains are solved concurrently the synchronization of local solutions
is imposed iteratively. Such synchronization guarantees the model convergence,
although it may slow down the complete work. In such cases, a static and or
a priori decomposition could not ensure a well-balanced workload, while a way to
re-partition the mesh so that the subdomains maintain a nearly equal number of
observations plays an essential role in the success of any effective DD approach.
A dynamic load balancing algorithm allows minimal data movement restricted
to the neighbouring processors. It is achieved by considering a connected graph
induced by the mesh partitioning whose vertices represent a subdomain associ-
ated with a scalar representing the number of observations on that subdomain.
Once the domain has been partitioned a load balancing schedule (scheduling
step) should make the load on each subdomain equal to the average load pro-
viding the amount of load to be sent to adjacent subdomains (migrations step).
The most intensive kernel is the scheduling step which defines a schedule for
computing the load imbalance (which we quantify in terms of number of obser-
vations) among neighbouring subdomains. Such quantity is then used to update
the shifting the adjacent boundaries of subdomains which are finally re-mapped
to achieve a balanced decomposition. We are assuming that load balancing is
restricted to the neighbouring domains so that we reduce the overhead pro-
cessing time. Finally, we use a diffusion type scheduling algorithm minimizing
the Euclidean norm of data movement. The resulting constrained optimization
problem leads to the solution of the related normal equations whose matrix is
associated with the decomposition graph [18].

Communication. The approach we introduce is extremely easy to implement on
emerging parallel architectures. This is due to the ability to exploit multiple
levels of parallelism depending both on the granularity of the operations and on
the mapping of the target architecture. In particular, theoretical performance
analysis in terms of the scale-up tells us that if the application needs to reach
a prescribed time-to-solution (strong scaling), we can exploit the high perfor-
mance of emerging GPUs. In this case, the number of processing elements can
increase while the local problem size is fixed according to the memory constraints
of GPU; the scale-up factor increases with a fixed surface-to-volume ratio. On
the other hand, for computationally intensive applications, it is preferable to
exploit the weak scaling of clusters of distributed memory multiprocessors. By
fixing the number of processors while the local problem size may increase, accord-
ing to the requirements of the application, the scale-up factor is kept constant
while the surface-to-volume ratio decreases supporting the overall efficiency.
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It is worth noting that the efficient implementation of any model-level techniques
on given computing platforms is essential to improve physical resource efficiency. In
this regard, we are mainly interested in investigating the integration of the STRADS
interface into the framework [8]. Here we start presenting the feasibility analysis of
the proposed approach and validate its scalability using the high-performance hy-
brid computing architecture of the SCoPE (Sistema Cooperativo Per Elaborazioni
scientific multidisciplinary) data center, located at the University of Naples Fed-
erico II. The architecture is composed of 8 nodes consisting of distributed memory
DELL M600 blades. The blades are connected by a 10 Gigabit Ethernet technol-
ogy and each of them is composed of 2 Intel Xeon@2.33GHz quadcore processors
sharing the same local 16GB RAM memory for a number of 8 cores per blade and
of 64 total cores. We study the performance by using Parallel Computing Toolbox
of MATLAB R2014b.

The rest of the article is described as follows. Section 2 introduces ML and
DL as identification problems while in Section 3 by restricting the analysis on Re-
producing Kernel Hilbert Spaces we cast DKL (Deep Kernel Learning) problems
into a framework exploiting the connection with the theory of inverse and ill-posed
problems. Finally, we formulate DKL problems as Concatenated Tikhonov Reg-
ularization functionals (CT R). Section 4 focuses on the new approach to CT R
reduction, while the algorithm is presented in Section 5 with its performance ana-
lysis. Section 6 discusses the main outcomes of this analysis.

2 BASIC MATHEMATICAL CONCEPTS OF LEARNING
FROM EXAMPLES

Identification problems concern the formulation of models. ML in its universal
expression can be regarded as an identification mathematical problem.

According to [19], we say that a model is identified if it is in a unique form that
enables subsequently unique estimates of its parameters from the available data. In
order to better clarify that ML is in fact an identification problem, we review basic
mathematical definitions of ML [20, 1, 2, 21].

Definition 1 (ML – Problem I). We are given the input space X, which we assume
to be a compact subset of ℜ, the output space Y , which is a subset of ℜ contained
in [−M,M ] for some M ≥ 0 and the (training) data set S := (xi, yi), for i = 1, . . . ,
N , which are samples in X × Y .

Given the data set S the aim of any (supervised) learning problem is to find the
function Φ : X → Y (also known the predictor) which is able to well estimate any
new output y ∈ Y once a new input x ∈ X is given (or, function Φ generalizes the
output from unseen input).

Solving identification problems, e.g. finding the predictor, necessitates finding a way
of incorporating information coming from data inside the most likely probable model.
We recognize that identification problem is logically prior to data estimation prob-



6 L. D’Amore

lem. More precisely, we could not understand from the data set which specific
relationship it is representing unless we get a particular form of it.

Moreover, as we will see later, the typical approach towards the solution of any
identification problem is to define a metric (the loss function) depending on the data
and on the most likely model Φ. Therefore the identification problem is treated as
an approximation problem [22].

To understand how such an approximation problem comes out in any ML prob-
lems, we first note that ML Problem I belongs to the so-called Data Estimation
problems, introduced by R.E. Kalman, in his pioneering work in 1960 [23].

Definition 2 (Data Estimation). Given the points

(ti, yi), i = 1, 2 ti ∈ [0, T ],

where yi = x1(ti) + ϵi, to calculate x1(t̃), t̃ ∈ [0, T ].
Depending on the position of t̃ with respect to t1 and t2 in [23] this problem was

characterized as follows:

• t1 < t̃ < t2: data smoothing (fitting of data);

• t̃ = ti: data filtering;

• t̃ > {t1, t2}: data prediction (data mining).

and, in general, it was called data estimation.

Since C. F. Gauss in 1795, in scientific computing Data Estimation problems are
solved as approximation problems. C. F. Gauss, at age 18, in his study of the orbits
of the planets stated that [24]:

“[. . . ] measurements are affected by errors and so are all obtained from these
computations, therefore, the only way to get information about the problem
at hand is to compute an approximation of the nearest and most practicable
solution possible. This can be done by using a suitable combination of the
experimental measurements, which must be in number than those of the un-
known parameters, and starting from an approximate knowledge of the orbit
(to be calculated), which will be corrected in order to describe as accurately
as possible the experimental observations.”

In other words, C. F. Gauss highlighted the main ingredients needed for the
computation of the solution of an approximation problem:

1. the use of experimental measurements in a number higher than that of the
unknown parameters;

2. the identification of the model linking the quantities and the known unknowns;

3. the calculation of the minimum distance between the known values and those
obtained by solving the model.

Following Gauss, we now refine ML Problem I by contextualizing it into the Deep
Learning models.
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3 LEARNING FROM EXAMPLES:
A LARGE SCALE INVERSE ILL-POSED PROBLEM

Deep Learning (DL) is the enhanced version of ML where models deal with com-
plex tasks by learning from subtasks. In particular, several nonlinear functions
are stacked in hierarchical architectures to learn multiple levels of representation
from input data (the higher-level features are defined in terms of lower-level ones).
Each function transforms the representation at one level into a much more abstract
representation at a higher level. The core building block of DL are mathematical
functions called artificial neurons [25].

Definition 3 (Artificial Neuron). An artificial neuron with weights w1, . . . , wN ∈
ℜ, bias b ∈ ℜ and (activation) function ρ : ℜ → ℜ is defined as the function
f : ℜN → ℜ given by

f(x1, . . . xN) = ρ

(
N∑
i=1

xiwi − b

)
. (1)

The simplest form of deep networks is the Deep Feedforward network (or deep
neural network, DNN) described as a collection of artificial neurons which are or-
ganized in layers. Neural networks are basically made up of three layers: an input
layer, a hidden layer, and an output layer. Adding two or more hidden layers to
a traditional neural network we obtain the DNN. Each layer has a set of units. The
units between adjacent layers are inter-connected and each connection is associated
with a weight parameter. In each layer, the input vector first goes through an affine
linear transformation and then pass through the activation function [26, 25].

Definition 4 (DL – Problem I). Let d ∈ N be the dimension of the input layer,
L the number of layers, N0 := d, Nl, where l = 1, . . . , L the dimensions of the
hidden and last layer, ρ, an activation function and, for l = 1, . . . , L Tl be the affine
linear functions

Tlx = W (l)x+ b(l) (2)

with W (l) ∈ ℜNl×Nl−1 being the weight matrices, x = (x1, . . . , xd), and b(l) ∈ ℜNl the
bias vector of the lth layer. Then the composite function Φ : ℜd → ℜNL given by

Φ := TL ◦ ρ · · · ◦ ρ ◦ T1,

such that
Φ(x) := TLρ(TL−1ρ(. . . ρ(T1(x))))

is a (deep) neural network of depth L. The activation function is applied at each
hidden unit to achieve the nonlinearity of neural network models. Commonly used
activation functions include sigmoid, hyperbolic tangent, and rectified linear unit
(ReLU) functions [26, 25].
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3.1 The Learning Inverse Ill-Posed Problem

Kernel methods have been successfully applied to a wide variety of learning prob-
lems. These methods map data from the input space to a Reproducing Kernel
Hilbert Space (RKHS) by using a kernel function which computes the scalar prod-
uct between data points in the RKHS.

In this section, by restricting the analysis on RKHS, we cast Deep Learning mod-
els into a functional analysis framework exploiting the connection with the theory
of Tikhonov Regularization [21, 27].

Formally, an RKHS is a Hilbert space of functions on some domain in which all
evaluation functionals are bounded linear functionals [28].

Definition 5 (RKHS). Let H be a Hilbert space of functions from Ω ⊂ ℜN to ℜ,
equipped with the scalar product ⟨·, ·⟩. H is a RKHS if exists a function

K : Ω× Ω → ℜ, (3)

which is called a Reproducing Kernel (RK) of H, satisfying:

1. ∀x ∈ Ω, kx = K(·,x) ∈ H;

2. ∀x ∈ Ω, ∀f ∈ H, ⟨f,K(·,x)⟩ = f(x).

The RK is always symmetric and positive definite. Every RKHS has a unique RK.
Conversely, for every positive definite function K there exists a unique RKHS with
K as its RK.

Definition 6 (ML in RKHS – Problem II). Let H be a Hilbert space of functions
from X to ℜ. Given the setup as in Definition 1 of ML Problem I, the (supervised)
learning problem concerns the computation of the predictor Φ in an hypothesis space
H which is a RKHS on the set X.

Following result leads to solution of ML in RKHS – Problem II for noiseless data
(e.g. data interpolation) [29, 30].

Theorem 1 (Representer Theorem). The function

Φ =
N∑
k=1

αkK(·, xk)

is the unique minimizer of the Hilbert space norm in H under all functions f ∈ H
such that

f(xi) = yi.

The coefficients αk can be calculated from the linear system

Aα = y,

where Aij = K(xi, xj), α = (α1, . . . αN)
T , y = (y1, . . . , yN)

T and A ∈ ℜN×N .
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This result states that ML Problem II in RKHS leads to the inverse problem
consisting in computing the coefficients α1, . . . αN inverting the kernel matrix A;
since A is positive definite, it is also invertible, and the solution is unique.

Definition 7 (ML in RKHS – An Inverse Problem). Let H be a Hilbert space of
functions from X to ℜ. Given the setup as in Definition 1 of ML Problem I, the
(supervised) learning problem consists in the solution of the linear system

Aα = y, (4)

where A ∈ ℜN×N is the kernel matrix of H.

Solving inverse problems can be very challenging for the following reasons: small
changes in the data values may lead to changes in Φ i.e., the kernel matrix A can be
very ill-conditioned (in the learning context this is the so-called overfitting problem)
and the ill-posed problem.

The characterization of ill-posed mathematical problems dates back to the early
years of the last century (J. Hadamard, 1902) and reflects the belief of the mathe-
maticians of that time to be able to describe uniquely and completely each physics
problem.

As a result, a problem was ill-posed when, from the mathematical point of
view, it presents anomalies and for this reason it could certainly not correspond to
a physical event. Therefore, for some years, ill-posed problems were not taken into
consideration by mathematicians. The first comprehensive treatment of ill-posed
problems is due in 1965, to A.N. Tikhonov, which described the concept of solution
for ill-posed problem and introduced the regularization methods [31]. This solution is
obtained by solving a best approximation problem minimizing the sum of two terms:
the first is a combination of the residual between data and predicted outputs (the so-
called data fitting term) in an appropriate norm, and the second is a regularization
term that penalizes unwanted features of the solution. The inverse problem thus
leads to a nonlinear variational problem in which the forward simulation model is
embedded in the residual term. Hence, regularization methods are used to introduce
prior knowledge [32].

Definition 8 (RML – Regularized ML Problem III). Given the setup of ML Prob-
lem II as in Definition 6, the predictor Φ is defined such that

Φ∗ = argminΦ∈H

N∑
i=1

L(Φ(xi), yi), (5)

where the operator L is the regularization operator measuring the goodness of fit to
data.

This viewpoint does not guarantee to compute acceptable solutions, because con-
tinuous dependence of the solution on the data (guaranteed by the regularization
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methods) is necessary but not sufficient to get numerical stability. In 1988, James
Demmel discussed the relationship between an ill-posed and conditioning of a prob-
lem, investigating the probability that a numerical analysis problem is difficult. In
the meanwhile, P.C. Hansen introduced the so-called discrete ill-posed problems,
to emphasize the huge condition number of rank-deficient discrete problems arising
from the discretization of ill-posed problems. The key point is the computation of
regularization parameters which are able to balance the accuracy of the solution and
the stability of its computation [33, 34, 35, 36].

A classical choice for L is Tikhonov Regularization (TR). Standard TR method
consists in replacing the linear system in (4) with the constrained least square prob-
lem

α∗ = argmin
α

L = argmin
α

∥Aα− y∥2 + λ∥Qα∥2, (6)

where Q is referred to as the regularization matrix and the scalar λ is known as
the regularization parameter. The matrix Q is commonly chosen to be the identity
matrix; however, if the desired solution has particular known properties, then it may
be meaningful to let Q be a scaled finite difference approximation of a differential
operator or a scaled orthogonal projection. Finally, ∥ · ∥2 denotes the L2-norms in
ℜN . For an introduction to the solution of this kind of problems we refer to [31].

Regularization parameter λ influences condition number of L. By using Theo-
rem 1, the function

Φ =
N∑
k=1

αλ
kK(·, xk)

is the unique minimizer of (5), where coefficients αλ
k can be calculated from the

normal equations arising from (6):

(ATA+ λQT )αλ = ATy,

where Aij = K(xi, xj), α
λ = (αλ

1 , . . . .α
λ
N)

T and y = (y1, . . . , yN)
T .

By proceeding in the same way, e.g. by considering DL models in RKHS, we can
even employ TR [37] to solve DL problems.

Definition 9 (RDL – Regularized DL Problems). Given the DL problem setup as
in Definition 4, given L nonlinear functions gi(x) := ρ◦Ti(gi−1(x)), where g0(x) = x,
the Regularized DL (RDL) consists in computing the function g∗i such that

{g∗i }i=1,...,L = argmin
gi∈H

J (gi) (7)

with

J (gi) =
L∑
i=1

Θi∥gi∥2 +
L∑
i=1

∥L(gL ◦ gL−1 ◦ . . . g1(x),y)∥, (8)

where L is defined in (6).
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In particular, L-layer Deep Kernel Learning (DKL) models are hybrid DL prob-
lems on RKHS. They combine the flexibility of kernel methods with the structural
properties of DL methods. DKL methods build a kernel by non linearly transforming
the input vector of data before applying an outer kernel [38, 30, 29, 39, 40, 20, 41, 42].
Formally, we assume that each function gi ∈ Hi for i = 1, . . . , L where Hi are RKHS
with associated kernel Ki.

In this case, the solution of a L-layer DKL model is given by a linear combi-
nation of at most N basis functions in each layer and the following Concatenated
Representer Theorem subsists:

Theorem 2 (Concatenated Representer Theorem). Let H1, . . . , HL be RKHS of
functions with domain Di, and range Ri ⊆ ℜdi where Ri ⊆ Di−1 and DL = Ω for
i = 2,. . . , L. Let L be the regularization functional in (8). Then, a set of minimizer
fi ∈ Hi, i = 1, . . . , L of

J(f1, . . . , fL) =
L∑
i=1

L(yi, f1 ◦ · · · ◦ fL(xi)) +
L∑
i=1

∥fl∥22 (9)

fulfills fi ∈ Vi ⊂ Hi with

Vi = span{Ki(fi+1 ◦ . . . fL(xj)), ·)eki) , for j = 1 . . . N and ki = 1, . . . di}.

This result enables us to consider the Regularized DKL (RDKL) Problem instead
of DKL, and, by using TR in (8), we arrive at the computation of the minimizer
of the following functional which we call Concatenated Tikhonov Regularization
(CT R):

CT R(f1 ◦ f2 ◦ · · · ◦ fL)(x)) = T R(f1) + T R(f2) + . . . T R(fL−1). (10)

In particular, each quadratic term in (6) can be expressed in terms of the kernel
matrix Al of each RKHS, for l = 1, . . . , L:

Al
ij = K(f1 ◦ f2 ◦ · · · ◦ fL(xi), f1 ◦ f2 ◦ · · · ◦ fL(kj)

leading to a nonlinear least square problem [43] whose dimension is
∑L

i=1N · di In-
terested readers can found the detailed analysis for a two-layer least square problem
in [44].

4 PROBLEM REDUCTION

This nonlinear least-squares problem is typically considered data intensive with N
larger than 1010 and L larger than 1000 (ResNet comprises 1202 layers and the
number of layers grew about 2.3× each year). So how to speed the time-to-solution
is an interesting and active research direction. In this context, we provide a math-
ematical approach based on domain decomposition of CT R which starts from data
decomposition then uses a partitioning of the solution and of the modified functional.
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Starting from the CT R loss functional, we define local CT R functional on sub
sets of data and we prove that the minimum of the “global” functional can be
obtained by collecting the minimum of each ”local” functional. We prove that the
“local” inverse problems are equivalent. As a result, we may say that the proposed
approach is loseless keeping the reliability of the global solution [45, 46].

4.1 Basic Concepts

In this section we introduce some concepts and notations we need to use. We give
a precise mathematical setting for space and function decomposition then we state
some notations used later. In particular, we first introduce the function and domain
decomposition, then by using restriction and extension operators, we associate to the
domain decomposition a functional decomposition. So, we may prove the following
result: the minimum of the global functional, defined on the entire domain can be
regarded as a piecewise function obtained by collecting the minimum of each local
functional.

Definition 10 (Data Decomposition). Let Ω be a finite numerable set such that
card(Ω) = N . Let

Ω =

p⋃
i=1

Ωi card(Ωi) = ri (11)

be a decomposition of the domain Ω into a sequence of overlapping sub-domains Ωi,
where ri ≤ N and Ωi ∩ Ωj = Ωij ̸= ∅ when the subdomains are adjacent.

Associate to the decomposition (11), we give the following:

Definition 11 (The Restriction and the Extension Operator). If w = (wi)i∈Ω ∈
ℜN then

ROi(w) := (wi)i∈Ωi
∈ ℜri

is the restriction operator acting on w. In the same way, if z = (zi)i∈Ωi
, then it is

EOi(z) := (z̃k)k∈Ω ∈ ℜN ,

where

z̃k :=

{
zk, k ∈ Ωi,

0, elsewhere
(12)

is the extension operator acting on z.

We shall use the notations ROi(w) ≡ wROi and EOi(z) ≡ zEOi .

Remark 1. For any vector w ∈ ℜN , associated to the domain decomposition (11),
it results that

w =
∑
i=1,p

EOi

[
wROi

]
. (13)
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The summation
w :=

∑
i=1,p

wEOi (14)

is such that, for any j ∈ Ω:

ROj[w] = ROj

[∑
i=1,p

wEOi

]
= wROj .

Definition 12 (The Functional Restriction Operator). Let

J(w) : w ∈ ℜN 7→ J(w) ∈ ℜ

be the least square operator as defined in (6)

J(w) = ∥Aw − y∥2 + λ∥w∥2 (15)

defined in ℜN , where λ > 0 is the regularization parameter. For simplicity of
notations we let Q = I, where I is the identity matrix. We generalize the definition
of the restriction operator ROi acting on J , as follows:

ROi[J ] : J(w) 7→ ROi[J(w)], (16)

where ROi[J(w)] = ∥AROiwROi − yROi∥2 + λ∥wROi∥2 and

J(wROi) 7→

{
J(wROi), ∀j, Ωi ∩ Ωi = 0,

1
2
J(wROi), ∃j : i ∈ Ωi ∩ Ωj.

For simplicity of notations, and also for underlining that the restriction operator is
associated to the domain decomposition (11) we pose:

ROi[J ] ≡ JΩi
.

Definition 13 (The Functional Extension Operator). We generalize the definition
of the extension operator EOi acting on JΩi

as

EOi : JΩi
7→ JEOi

Ωi
,

where

EOi[JΩi
] : w 7→

{
J(EOi(w

ROi)), i ∈ Ωi,

0, elsewhere.
(17)

We note that the (17) can be written as

JEOi
Ωi

(w) = EOi[JΩi
](w) = J(EOi(ROi[w])). (18)
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Proposition 1 (Functional Reduction). Let Ω =
⋃p

i=1 Ωi be the decomposition de-
fined in (11) and let J be the functional defined in (15). It holds:

J ≡
∑
i=1,p

JEOi
Ωi

, (19)

where
JΩi

: ℜri 7→ ℜ.

Proof. From the (18) it follows that, if w ∈ ℜN , then∑
i=1,p

JEOi
Ωi

(w) =
∑
i=1,p

EOi[JΩi
](w) =

∑
i=1,p

JΩi
(ROi[w]). (20)

From (13), (17) and (20) it results that

∑
i=1,p

[JΩi
(ROi[w])]EOi =

∑
i=1,p

J
(
EOi((w

ROi))
)
= J

[∑
i=1,p

(wROi)EOi

]
= J(w). (21)

From (20) and (21), the (19) follows. □

4.2 TR Reduction

Let:
wTR

λ = argmin J(w) (22)

We now introduce the local CT R functionals which describes the local problems on
each sub-domain Ωi.

Definition 14. Let Ω =
⋃p

i=1 Ωi be the domain decomposition in (11). For any
vector w ∈ ℜN , let: JΩi

= ROi[J ] be the operator as defined in (16) and let

J̃Ωij
: wROi 7→ J̃Ωij

(wROi) ∈ ℜ

be a quadratic operator defined in ℜcard(Ωij). The operator

JΩi
(wROi) := JΩi

(wROi) + ωiJ̃Ωij
(wROij) (23)

is the local CT R functional defined on Ωi and on Ωi ∩ Ωj. Parameters ωi are local
regularization parameters. Then

wTRi
λ,ωi

:= argmin
wROi

JΩi

(
wROi

)
. (24)

is the solution of the local TR problem. Since the local functional is quadratic this
solution is also unique, once index i has been fixed.
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Remark 2. From (19) it follows that

JD3L :=
∑
i=1,p

JEOi
Ωi

=
∑
i=1,p

JEOi
Ωi︸ ︷︷ ︸

J

+
∑
i=1,p

ωiJ̃
EOi
Ωij︸ ︷︷ ︸

C

. (25)

In practice, JD3L is obtained from a restriction of the CT R functional JΩ in (22),
and adding a local functional defined on the overlapping regions in Ωij. This is done
in order to enforce a sufficient continuity of local solutions onto the overlap region
between adjacent domains Ωi and Ωj.

Operator J̃Ωij
can be suitably defined according to the specific requirements of

the solution of the CT R problem.

The following result relates the solution of CT R problem in (22) to the solutions
of the local TR problems in (23). From simplicity of notations, in the following
theorem we assume that C is quadratic functional. The result still holds if this is
a more general convex functional.

Theorem 3. Let
Ω =

⋃
i=1,p

Ωi

be a domain decomposition of Ω defined in (11), and let (25) be the associated
functional decomposition. Then let wTR

λ be defined in (22) and let ŵTR
λ be defined

as follows:
ŵTR

λ =
∑
i

(wTRi
λ,ωi

)EOi .

It is:
ŵTR

λ = wTR
λ .

Proof. JΩ is convex, as well as all the functionals JΩi
, so their (unique) minimum,

wTR
λ and wTRi

λ,ωi
, respectively, are obtained as zero of their gradients, i.e.:

∇J [wTR
λ ] = 0, ∇JΩi

[wTRi
λ,ωi

] = 0. (26)

From (23) it follows that

∇JΩi
[wTRi

λ,ωi
] = ∇JΩi

[wTRi
λ,ωi

]. (27)

From (12) it is:

wROi
λ,ωi

=
∑
j=1,p

(w
TRj

λ,ωi
)EOj , on Ωi. (28)

From (26), (27) and (28), it follows that

0 = ∇JΩi
(wTRi

λ,ωi
) = ∇JEOi

Ωi

(∑
j=1,p

(wTRi
λ,ωi

)EOi

)
. (29)
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By summing each equation in (29) for i = 1, . . . , p on all sub-domains Ωi,
from (29) it follows that:

∑
i

∇JEOi
Ωi

(∑
j

(w
EOj

λ,ωj
)TR

)
= 0 ⇔

∑
i

∇JEOi
Ωi

(ŵTRλ) = 0. (30)

From the linearity of the gradients of JΩi
, it is∑

i

∇JEOi
Ωi

(ŵTR
λ ) = ∇

∑
i

JEOi
Ωi

(ŵTR
λ ) = ∇J(ŵTR

λ ). (31)

Hence, from (31) it follows∑
i

∇JΩi
(ŵTR

λ ) = 0 ⇔ ∇J(ŵTR
λ ) = 0.

Finally,
∇J(ŵTR

λ ) = 0 ⇒ ŵTR
λ ≡ wTR

λ ,

where the last equality holds because the minimum is unique. □

In conclusion, the minimum of JΩ, can be obtained by patching together the
minima of JΩi

. This means that the accuracy per parameter metric is highly im-
proved in this way.

5 THE D3L PARALLEL ALGORITHM

Definition 15. Let Aloc
D3L denote the algorithm solving the local CT R functional.

Parallel D3L algorithm is symbolically denoted as

AD3L :=
⋃
i=1,p

Aloc
D3L(Ωi). (32)

Parallel D3L algorithm is described by Algorithm 1. Similarly, the Aloc
D3L is

described by Algorithm 2. Aloc
D3L computes a local minimum of JΩi

by solving the
normal equations arising from the linear least squares (LLS) problem [47]. We note,
in line 6, the exchange of wl

i. This is done in order to enforce a sufficient continuity
of local solutions onto the overlap region between adjacent domains Ωi and Ωj.

5.1 Performance Analysis

We use time complexity and scalability as performance metrics. Our aim is to
highlight the benefits which arise from using the decomposition approach instead of
solving the problem on the whole domain.
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Algorithm 1

1: procedure D3L(in: A, y; out: wTR
λ )

2: % Domain Decomposition Step
3: repeat
4: l := l + 1
5: Call Loc LLS (in: AROi , yROi ; out: wl

i)
6: Exchange wl

i between adjacent subdomains
7: until ∥wl

i −wl−1
i ∥ < eps

8: % End Domain Decomposition Step
9: Gather of wl

i : w
TR = argmini

{
J
(
wl

i

)}
10: end procedure

Algorithm 2 Algorithm 2

1: procedure Loc-LLS(AROi , yROi ; out: ul
i)

2: Initialize l := 0;
3: repeat
4: Compute δul

i = argminJΩi
by solving the normal equations system

5: Update ul
i = ul

i + δul
i

6: Update l = l + 1
7: until (convergence is reached)
8: end procedure

Definition 16. A uniform decomposition of Ω is such that if we let

size(Ω) = N

be the size of the whole data domain, then each subdomain Ωi is such that

size(Ωi) = Nloc, i = 1, . . . , p,

where Nloc =
N
p
≥ 1.

Various metrics have been developed to assist in evaluating the scalability of
a parallel algorithm: speedup, throughput, efficiency are the most used. Each one
highlights specific needs and limits to be answered by the parallel software. Since
we mainly focus on the algorithm’s scalability arising from the proposed framework,
we consider the so-called scale-up factor first introduced in [45].

Let T (AD3L(Ω)) denote time complexity of AD3L(Ω). The major computational
tasks to be performed are as follows:

1. Computation of the kernel ROji[A] (the time complexity of such an operation
scales as LN2).

2. Solution of the normal equations, involving at each iteration two matrix-vector
products with ROji[(A

T )] and ROji[A] (whose time complexity scales as L2N4).
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We pose d = 4. We now provide an estimate of the time complexity of each
local algorithm, denoted as T (ALoc(Ωi)).

The first result straightforwardly derives from the definition of the scale-up
factor:

Proposition 2 (Scale-up factor). The (relative) scale-up factor of AD3L(Ω) related
to Aloc(Ωi), denoted as Scp(AD3L(Ω)), is

Scp(AD3L(Ω)) :=
1

p
× T (AD3L(Ω))

T (Aloc(Ωi))
,

where p is the number of subdomains. It is

Scp(AD3L) ≥ α(Nloc, p) (p)
d−1, (33)

where

α(Nloc, p) =
ad + ad−1

1
N
+ · · ·+ a0

Nd
loc

ad + ad−1
p

Nloc
+ · · ·+ a0(p)d

Nd
loc

and
lim

p→Nloc

α(Nloc, p) = β ∈]0, 1].

Corollary 1. If ai = 0 ∀i ∈ [0, d− 1], then β = 1, that is,

lim
p→Nloc

α(Nloc, p) = 1.

Then,
lim

Nloc→∞
α(Nloc, p) = 1.

Corollary 2. If Nloc is fixed, then

lim
p→Nloc

Scp(AD3L) = β ·Nd−1
loc ,

while if p is fixed, then

lim
Nloc→∞

Scp(AD3L) = const ̸= 0.

From (33) it results that, considering one iteration of the whole parallel algo-
rithm, the growth of the scale-up factor is essentially one order less than the time
complexity of the reduced kernel. In other words, the time complexity of the re-
duced kernel impacts mostly the scalability of the parallel algorithm. In particular,
since parameter d is equal to 4, it follows that the asymptotic scaling factor of the
parallel algorithm, with respect to p, is bounded above by three.

Besides the time complexity, scalability is also affected by the communication
overhead of the parallel algorithm. The surface-to-volume ratio is a measure of
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the amount of data exchange (proportional to surface area of domain) per unit
operation (proportional to volume of domain). It is straightforward to prove that
the surface-to-volume ratio of the uniform decomposition of Ω is

S
V

= O
(

1

Nloc

)
. (34)

Theoretical performance analysis in terms of the scale up factor tell us that if
the application needs to reach a prescribed time-to-solution (strong scaling), we can
exploit the high performance of emerging GPU. In this case, p can increase whileNloc

is fixed according to memory constraints of GPU; the scale-up factor increases with
a fixed surface-to-volume ratio. On the other hand, for computationally intensive
applications, it is preferable to exploit the weak scaling of clusters of distributed
memory multiprocessors. In fact, by fixing p while Nloc may increase according
to application requirements, the scaling factor is kept constant, while the surface-
to-volume ratio decreases supporting overall efficiency. Summarizing, performance
analysis tells us that by looking at the scale-up factor one may find the appropriate
mapping of the specific application on the target architecture [48].

6 VALIDATION

The proposed approach has a straightforward application to Convolution Neural
Networks (CNN) which are specialized in processing data that has a grid-like topol-
ogy, such as an image. In this case, the domain Ω is the image while the core
building block of the CNN is the convolutional layer. This layer performs a dot
product between two matrices, where one matrix is the kernel and the other matrix
is a restricted portion of the image. As a result, by decomposing Ω according to
the standard two-dimensional block cyclic distribution of the image matrix, which is
implemented in linear algebra libraries for parallel matrix computation (MATLAB,
ScaLAPACK, PBLAS, . . . ), we get to the standard data layout of dense matrix
on distributed-memory architectures which permits the use of the Level 3 of BLAS
during computations on a single node [49].

We validate the algorithm on the DIGITS dataset of MATLAB R2014b, by
using the high-performance hybrid computing architecture of the SCoPE (Sistema
Cooperativo Per Elaborazioni scientifiche multidiscipliari) data center, located at the
University of Naples Federico II. The architecture is composed of 8 nodes consisting
of distributed memory DELL M600 blades. The blades are connected by 10 giga-
bit Ethernet technology and each of them is composed of 2 Intel Xeon@2.33GHz
quadcore processors sharing the same local 16GB RAM memory for a number of 8
cores per blade and of 64 total cores. We validate the algorithm using the Parallel
Computing Toolbox of MATLAB R2014b. In Table 1 we report strong scaling re-
sults computed using the scale-up factor Scp(AD3L(Ω)) as given in Proposition 21
and, just to make a comparison with a standard metric, we also report the classical
speed-up metric indicated as Sp(AD3L(Ω)). Weak scaling scalability is reported in
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Table 2 using the scale-up factor.

p N T (AD3L(Ω))

1 1.23× 104 1.56× 103

S/V T
(
Aloc(Ωi)

)
T p
(
AD3L(Ω)

)
Sp

(
AD3L(Ω)

)
Scp

(
AD3L(Ω)

)
2 1.06× 10−7 9.8× 101 0.8× 103 1.8 1.5
4 6.7× 10−5 3.0× 101 0.48× 103 3.2 6.5
8 2.5× 10−5 2.7× 10−1 0.24× 103 6.5 7.2
16 1.4× 10−5 1.2× 10−2 0.1× 103 14.2 8.1

Table 1. Strong scaling results

p 2 4 8 16 32 64

N 3.07× 103 1.23× 104 4.90× 104 1.97× 105 7.86× 105 3.15× 106

Scp 5.96× 100 2.39× 101 9.54× 101 3.81× 102 1.53× 103 6.10× 103

Table 2. Weak scaling scalability of AD3L(Ω)

7 FUTURE WORK

We underline that we referred to DKL problems which gave rise to convex opti-
mization. More in general, we could address DL problems where, in case of the
non convex loss function, we could consider a surrogate convex loss function. An
example of such surrogate loss functions is the hinge loss, Φ(t) = max(1 − t, 0),
which is the loss used by Support Vector Machines SVMs. Another example is the
logistic loss, Φ(t) = 1/(1+exp(−t)), used by the logistic regression model. A natural
questions to ask is how much have we lost by this change. The property of whether
minimizing the surrogate function leads to a function that also minimizes the loss
function is often referred to as consistency [50]. This property will depend on the
surrogate function. One of the most useful characterizations was given in [50] and
states that if Φ is convex then it is consistent if and only if it is differentiable at zero
and Φ′(0) < 0. This includes most of the commonly used surrogate loss functions,
including hinge, logistic regression and Huber loss functions.

Following [51, 52] we suggest the employment of the proposed approach on the
plentiful literature of Physical Informed Neural Network (PINN) applications, where
data are constrained according to a specific physical model generally modelled by
evolutive Partial Differential Equations.
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