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Abstract. Breast cancer (BC) is one of the leading causes of death in women
worldwide. Early diagnosis of this disease can save many women’s lives. The Breast
Imaging Reporting and Data System (BIRADS) is a standard method developed
by the American College of Radiology (ACR). However, physicians have had a lot
of contradictions in determining the value of BIRADS, and all aspects of patients
have not been considered in diagnosing this disease using the methods that have
been used so far. In this article, a novel decision support system (DSS) has been
presented. In the proposed DSS, firstly, c-mean clustering was used to determine
the molecular subtype for patients who did not have this value by combining the
mammography reports processing along with hospital information systems (HIS)
obtained from their electronic files. Then several classifiers such as convolutional
neural networks (CNN), decision tree (DT), multi-level fuzzy min-max neural net-
work (MLF), multi-class support vector machine (SVM), and XGboost were trained
to determine the BIRADS. Finally, the values obtained by these classifiers were
combined using ensemble learning with the majority voting algorithm to obtain
the appropriate value of BIRADS. This helps physicians in the early diagnosis of
BC. Finally, the results were evaluated in terms of accuracy, specificity, sensitiv-
ity, positive predicted value (PPV), negative predicted value (NPV), f1-measure,
and balanced accuracy by the confusion matrix. The obtained values were 87.77%,
61.81%, 92.74%, 56.82%, 92.75%, 69.94%, and 77.28%, respectively.

Keywords: Ensemble learning, combined machine learning, decision support sys-
tem, breast cancer diagnosis, BIRADS

1 INTRODUCTION

Nowadays, one of the main causes of death in the world is cancer. After cardio-
vascular diseases, cancer is the second most common cause of death in developed
countries and the third most common cause of death in less developed countries,
and causes more deaths than tuberculosis, AIDS and malaria [1]. So that if preven-
tive measures are not taken, in the next 10 years we will witness the death of more
than 85 million people in the world [1]. Currently, cancer is responsible for 12% of
deaths worldwide [2]. One of the most common types of cancer in women is breast
cancer. According to the presented statistics, 19.9% of deaths caused by cancer in
women are related to breast cancer [3]. According to the statistics published by
the world health organization (WHO), one out of every 8 to 10 women is diagnosed
with breast cancer [4]. On the other hand, early diagnosis in the early stages is one
of the important and fundamental factors in the treatment of this disease because
when breast cancer is diagnosed early, the probability of treatment and survival is
very high [5, 6]. Medical decision support systems (MDSS) are the result of the
cooperation of physicians and engineers and are made to help and support health
care staff in medical decisions [7, 8, 9]. Today, medical centers have realized the
benefits of using MDSS in medical care for breast cancer [8]. The results of the
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research indicate that through decision support systems using patient data visual-
ization, physicians have the ability to quickly access the necessary information to
determine the appropriate treatment [10]. One of the things that can be used as an
input in a MDSS system to help diagnose and treat breast cancer is mammography
reports [11].

Based on the factors observed in mammography, ultrasonography, and MRI,
radiologists use a classification system called BIRADS (created by the American
College of Radiology) to describe imaging results in medical reports [12]. One of
the reliable methods in evaluating and estimating the risk of breast lesions is BI-
RADS classification using mammography [13]. BIRADS is a label that is defined
in mammography reports in 7 levels, between 0 and 6, and each of these num-
bers has a specific interpretation [14]. On the other hand, according to the pre-
liminary studies conducted in this field, it was found that although various ideas
based on medical decision support systems have been presented to diagnose can-
cer patients based on the information available in the electronic records of the pa-
tients [15, 16, 17, 18, 19, 20, 21], but so far no medical decision support system
has been proposed to classify breast cancer patients based on the combination of
information from mammography reports, electronic patient records (here HIS) and
molecular subtypes.

Percha et al. in 2012 [19] processed the reports and assigned them to a BIRADS
class; but the focus was solely on breast tissue. Nassif et al. in 2012 [18] extracted
BIRADS features from clinical texts and compared them with manual reporting;
but BIRADS was not graded. In 2013 [20], Sippo et al. automated BIRADS ex-
traction from radiology reports by BIRADS Observation Kit and natural language
processing (NLP). Gao et al. in 2015 [16] used NLP to extract information from un-
structured mammography texts. Their method was limited to the diagnosis of four
types of breast complications and only medical reports were used. In 2016, Bozkurt
et al. presented an NLP-based decision support system for diagnosing malignancy
from BIRADS reports and radiology text [22]. Castro et al. in 2017 [15] presented a
rule-based NLP method for classifying radiology reports. Only one type of textual
data was used. Gupta et al. in 2017 [17] presented a method based on parse tree
and semantics for generating structured information from mammography reports.
Only medical reports were used. In 2020, Esmaeili et al. presented a decision sup-
port system to help physicians interpret mammography text reports while creating
a model capable of predicting a patient’s need for a biopsy [11]. Achilonu et al.
in 2022 [23] developed a rule-based NLP algorithm that retrieved important breast
cancer parameters using pathology reports to exploring molecular subtypes. They
used only molecular subtypes text reports. Higa in 2018 [24] used artificial neural
network and decision tree classification algorithms to predict breast cancer using
clinical information. Zhang et al. in 2019 [21] used deep learning to extract clinical
information of breast cancer; but the complexity was high. Spaeth et al. in 2023 [25]
used a model for breast cancer diagnosis that integrates influential factors associated
with breast cancer from patient’s clinical information, including long family history
and polygenic risk, which allows to removes moderate factors to improve outcomes.
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According to the study of the past research that was stated, mammography
reports, HIS data, and molecular subtypes are used separately for the diagnosis of
BIRADS. Therefore, in this research, the information of the electronic health record
patients and molecular subtypes were placed next to the mammography reports
to determine the significant difference in BIRADS diagnosis by adding this addi-
tional information. This work seeks to create a decision support system based on
the prediction of BIRADS values and molecular subtypes. For this purpose, mam-
mography reports were first processed using NLP and converted into vectors using
word2vec [26]. 15 features of HIS were extracted from electronic files of patients.
These variables include 2 numerical variables and 13 nominal variables, which were
placed next to the vector extracted from the mammography report. Also, using
the unsupervised c-mean method, the class of molecular subtypes of the samples
was clustered and the molecular subgroup value was assigned to the data of each
cluster. Convolutional neural networks (CNN), decision tree (DT), multi-level fuzzy
min-max neural network (MLF), multi-class support vector machine (SVM), and
XGboost was used for classification and determination of BIRADS. Next, the pre-
dicted values of BIRADS of each classifires are used as base learners to combine them
using ensemble learning with majority voting algorithm to get better prediction.

This article is organized into four sections. In Section 1, the article context is
introduced, its advances and limitations are specified in the field of study, also briefly
enumerating its purposes. In Section 2, a decision support system is proposed and
the description of its different stages and parts are discussed separately. After that,
all the details needed to understand the operation of the system are described. In
Section 3, the results obtained from the proposed system are analyzed and evaluated.
Finally, in Section 4, the proposed system is discussed and conclusions are drawn
regarding its feasibility and usefulness.

2 THE PROPOSED METHOD

In this work, a novel BIRADS diagnosis prediction model was presented as the
proposed decision support system (DSS). The data set includes two resources of
mammography reports and electronic patient records (extracted from HIS). This
data set include of 250 mammography images along with their reports and electronic
file records of Shahidzadeh Hospital Medical Training Center in Behbahan City in
the period of 2020 to 2022. Mammography text reports have 210 features and other
electronic records have 15 features. These 15 features can be seen in Table 1 includes
2 variables related to numerical features and Table 2 includes 13 variables related to
nominal features, which together with 210 features related to mammography text
reports, a total of 225 features were extracted for each patient.

Also, Table 3 contains information about the distribution of 250 patients who
are placed in each of the BIRADS classes.

Figure 1 depicts the different stages of the proposed method in five phases. In
the first phase, a data set is obtained, which includes mammography reports and
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Variable
Name

Variable
Description

Healthy People (n = 17)
mean ± standard
deviation

Patients (n = 233)
mean ± standard
deviation

1 Size Lesion size 5.41± 5.59 6.29± 4.71

2 Age
Age of clients/
patients

53.52± 11.48 43.89± 32.11

Table 1. Numerical features extracted from HIS

HIS information of each person. Since mammography reports are free texts, they
were processed and converted into vectors using NLP methods. In the second phase,
important features in the HIS were selected with the physician’s consultation. In the
third phase, since only BIRADS is specified in the data set, the class of molecular
subtypes must be determined first. Therefore, according to Table 4, all data were
clustered into four clusters using c-mean algorithm, which is an unsupervised clus-
tering method. Then, each cluster was assigned values related to the appropriate
molecular subtype. In the fourth phase, a trained model for predicting BIRADS val-
ues by convolutional neural networks (CNN), decision tree (DT), multi-level fuzzy
min-max neural network (MLF), multi-class support vector machine (SVM), and
XGboost were presented, and in the fifth phase, ensemble learning with majority
voting were used to combine the estimated BIRADS values of trained models from
fourth phase, then the results were validated by evaluation parameters.

2.1 The First Phase: Dataset

Our dataset includes two main sources: mammography reports and electronic pa-
tient records (HIS subset). These data were obtained from the information available
at Shahidzadeh Hospital Medical Training Center in Behbahan City, related to the
years 2020 to 2022. This dataset includes mammography reports and electronic file
records of 400 patients. Since the information of some patients was not complete,
finally only the information of 250 patients who had complete information was used.

2.2 The Second Phase: Text Processing and Determining
the Important Features of HIS

2.2.1 Preprocessing and Text Processing

Figure 2 illustrates the blocks of the proposed method for classifying medical reports
and how to extract a vector from a mammography report. It should be noted that
only the text processing flow is shown here.

In the preprocessing stage, mammography reports were stemmed by the NLTK
library [27], and prepositions and punctuation marks were removed except for nega-
tive words to ensure the accuracy and relevance of the text analysis. NLTK provides
a comprehensive suite of tools for natural language processing, including tokeniza-
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Variable
Name

Variable Description
Healthy People
Qty (No. = 17)

Patients
Qty (No. = 233)

1
Breast
secretion

Presence/absence of abnor-
mal breast discharge

No = 5
Yes = 12

No = 136
Yes = 97

2 Side
Left, right, or bilateral
(both sides of the chest)

Left = 5
Right = 8
Bilateral = 4

Left = 83
Right = 108
Bilateral = 42

3 Pain
History of pain in the breast
area

No = 6
Yes = 11

No = 86
Yes = 147

4 Pregnancy
Presence/absence of preg-
nancy history

No = 7
Yes = 10

No = 40
Yes = 193

5 Disease
Presence/absence of disease
history

No = 12
Yes = 5

No = 121
Yes = 112

6
Breast-
feeding

Presence/absence of a his-
tory of the Breastfeeding

No = 9
Yes = 8

No = 72
Yes = 161

7 Shape

Mass shape with three
states: oval, round and ir-
regular, which can be differ-
ent based on genetics, age,
weight, and hormone level.

Oval = 3
Round = 6
Irregular = 8

Oval = 34
Round = 47
Irregular = 152

8
Menstru-
ation

Presence/absence of regular
menstruation according to
age

No = 5
Yes = 12

No = 37
Yes = 196

9
Birth
control
pills

Taking/not taking birth
control pills

No = 13
Yes = 4

No = 142
Yes = 91

10 Heredity

Inheritance was divided
into three groups. People
who have no family history
of cancer. People with a
history of other cancers
and people with a family
history of breast cancer

No = 8
Yes (Breast) = 3
Yes (Others) = 6

No = 44
Yes (Breast) = 49
Yes (Others) = 140

11
Marital
status

Presence/absence of mar-
riage history

Single = 2
Married = 15

Single = 40
Married = 193

12
Related
features

Presence/absence of the
following as related features
in the patient’s records:
skin thickening, skin
shrinkage, nipple shrink-
age, structural distortion,
axillary adenopathy, and
calcium masses.

Skin thickening = 3
Skin retraction = 4
Nipple retraction = 5
Architectural
distortion = 2
Axillary
adenopathy = 2
Calcification = 1

Skin thickening = 48
Skin retraction = 65
Nipple retraction = 21
Architectural
distortion = 26
Axillary
adenopathy = 31
Calcification = 42

13 Menopause
Entering/not entering the
menopause period

No = 8
Yes = 9

No = 186
Yes = 47

Table 2. Nominal features extracted from HIS
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Class Number of Patients

BIRADS 0 9

BIRADS 1 17

BIRADS 2 24

BIRADS 3 21

BIRADS 4 78

BIRADS 5 69

BIRADS 6 32

Total 250

Table 3. Patients distribution according to BIRADS class
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Figure 1. Phasing of the proposed method

tion, stemming, and lemmatization, which are essential for accurate text prepro-
cessing. NLTK was chosen over other libraries such as SpaCy and TextBlob for
several reasons. Firstly, NLTK offers a broader range of NLP tools and resources,
making it ideal for exploring different NLP techniques and customizing them for spe-
cific research requirements [28]. Secondly, NLTK’s integration with other Python
libraries such as NumPy, SciPy, and scikit-learn facilitates seamless data analysis
and enhances the overall efficiency of the preprocessing stage [29]. Thirdly, NLTK’s
flexibility allows for fine-tuning preprocessing steps to meet the specific needs of our
study, which is crucial for ensuring the accuracy and relevance of the text analy-
sis [30]. For example, “No tangible mass in the breast or axillary seen” is a negative
sentence and the negative sign is not removed. Integer and decimal numbers were
converted to the corresponding string. To preserve local dependencies, bigram col-
lection of possible pairs of words was calculated based on mutual information. To
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Figure 2. Converting a report to a vector

improve the accuracy of word embedding, bigrams with less than 50 occurrences
were removed and those with more than 1 000 occurrences were considered as single
words.

Next, the key words in the dictionary were selected from the text. If there
is a negative word in the sentence, it is contrasted, or its vector is reversed. For
example, in the above sentence, it is possible that the person does not have breast
cancer. Therefore, since it exists in the dictionary, “tangible mass” becomes the
opposite, and if no opposite word is found for it, the result of the Word2vec is
reversed. In order to reduce ambiguities and improve the semantic accuracy of
reports, domain ontology was used in the text processing section. This was done by
a lexical crawler [31] whose task is to identify the derived terms that have a common
root with predefined terms that we mapped to controlled terms (key terms). In
addition to the dictionary, we used commonly available terms (CLEVER) [31] are
used in identifying clinical contexts and mapping.

After combining key terms and terms afforded from CLEVER, a total of 260 keys
were obtained, which are mainly used for two purposes:

1. Reduce reports through mapping.

2. It helps to generate text-aware vectors.

Unsupervised method has been used to create word embedding using Word2vec
model [26]. To train Word2vec, Skipgram with vector length 210 and window width
8 was used. In each report, selected key terms were used to describe that text.
Then the average of all the obtained vectors represents the vector of that text. Each
report vector was calculated based on Equation (1):

VMTR =
1

N

N∑
i=1

VWi
. (1)

In this equation, VMTR is the report’s vector, N is the number of words selected
from the report, and VWi

is the vector of each word obtained from Word2vec.
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2.2.2 Selection of Effective Features of Electronic Health Record in HIS

Breast cancer specialists were consulted to select the most effective features in de-
termining breast cancer from information obtained from HIS. HIS is extracted from
picture archiving and communication system (PACS) and electronic files of patients
in Shahidzadeh Hospital Medical Training Center in Behbahan City between 2020
and 2022. Electronic records including medical documents, images, and reports are
stored in PACS. HIS is an integrated information system that includes aspects of
hospital performance such as financial, patient health, legal and, administration ser-
vices, etc. The database uses information related to the PACS system in medical
training centers.

2.3 The Third Phase: Clustering of Molecular Subtypes

Breast cancer has various molecular subtypes that are recognized based on receptor
and immunochemical status. Some receptors include estrogen receptor (ER), proges-
terone receptor (PR), epidermal growth factor receptor 2-neu (HER2), proliferation
marker Ki67, and epidermal growth factor receptor (EGFR). There are four main
sets of molecular subtypes in breast cancer: luminal a, luminal b, human epidermal
growth factor (HER2), and breast cancer with basal-like molecular class (BLBC).
Each of these molecular subtypes shows the rate of recurrence and survival, which
is the most important factor in choosing different treatment techniques [32].

2.3.1 C-Mean Clustering

In order to obtain molecular subtypes, patients must perform an invasive procedure
of biopsy from breast tissue. In this paper, only 156 samples out of 250 samples
have molecular subtype features. Considering that this feature is very important and
effective in determining the stages of breast cancer progression, c-mean clustering
was used to assign molecular subtypes to samples that do not have this feature.
This allows the system to be trained to accurately determine the molecular subtype
for patients who are in the early stages of the disease and have not yet undergone
biopsy. Thus, at first, all patients were placed in four clusters using c-mean (and
the characteristics obtained from the second phase) and after the completion of the
clustering steps, based on the values of the cluster centers, molecular subtypes were
determined for each cluster. In the c-mean method, the samples are divided into c
clusters, where c (the number of molecular subtypes) is specified in advance. The
objective function is in the form of Equation (2):

J = argmin

(
n∑

i=1

c∑
j=1

um
ij ∥xi − cj∥2

)
. (2)

In Equation (2), m is a real number greater than 1, which is chosen for m in
most cases is 2, n is the number of samples, c is the cluster centre, u is the degree
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of membership, and x is the sample. To minimize the value of j, the membership
degree and cluster centres are updated in each iteration with Equations (3) and (4),
respectively [33, 34].

uij =
1∑c

k=1

(
∥xi−cj∥
∥xi−ck∥

) 2
m−1

, (3)

cj =

∑n
i=1 u

m
ij .xi∑n

i=1 u
m
ij

. (4)

The main criteria were as follows: 1. Only those with breast cancer were clus-
tered. 2. Based on immunohistochemical results after surgery or biopsy according to
the 13th St. Gallen International Breast Cancer Conference 2013, each cluster was
identified by one of four different molecular subtypes [32]. Molecular subtypes along
with immunophenotype are shown in Table 4.

Molecular
Subtypes

Immunophenotype

BLBC ER−, PR−, HER2− (triple negative), CK5/6+, and/or EGFR+

HER2 ER−, PR−, HER2+, CK5/6±
Luminal A ER+ and/or PR+, HER2−, CK5/ 6±, and Ki67 <14%

Luminal B ER+ and/ or PR+, CK5/ 6±, HER2+, or Ki67≥14%; or PR < 20%

Table 4. Molecular subtypes and immunophenotype [32]

Therefore, we obtained a logical relationship between BIRADS classification
and molecular subtypes. Now, using a classifier, we can probabilistically identify
molecular subtypes based on BIRADS information.

2.4 The Fourth Phase: Classification

2.4.1 Convolutional Neural Network (CNN)

Machine learning algorithms demonstrate effective performance within reasonable
computational timeframes, enabling significant knowledge extraction from data [35].
Among these algorithms, Convolutional Neural Networks (CNNs) [36] are widely
employed in image, speech, and text analysis within the machine learning domain.
In this study, CNN is employed as a classifier for BIRADS detection, capable of
recognizing intricate relationships between dependent and independent variables
and handling noisy data. The input undergoes convolution operations, followed
by pooling layers to reduce dimensionality and prevent overfitting [37]. During
backpropagation, the parameter Θ is updated using error minimization. ReLU is
typically used as the activation function in the first and second convolution layers,
while the output layer employs the softmax process, and the loss function is the mean
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squared error. Additionally, the optimization algorithm employed here is Adam [38],
known for its adaptive learning rate.

2.4.2 Decision Tree (DT)

Decision tree learning is a supervised machine learning algorithm that is widely
used for classification and regression tasks. In this tree structures, the leaves repre-
sent class labels, and the branches represent combinations of features that lead to
those class labels [39, 40, 41]. Decision trees are constructed based on minimizing
a “quantity” called entropy [39, 41]. Early versions of decision trees could only use
discrete variables, but newer algorithms can handle both discrete and continuous
variables in learning [41, 42]. A decision tree’s goal is to predict a variable’s value
based on the measures of input variables. One of the significant advantages of the
decision tree algorithm is its interpretability and ease of understanding, which has
made it popular [41, 42, 43]. However, its drawbacks include a lack of robustness
and insufficient accuracy [42]. In this context, a decision tree has also been used for
classification and BIRADS detection.

2.4.3 Multi-Level Fuzzy Min-Max Neural Network (MLF)

MLF is an advanced version of the Fuzzy Min-Max Neural Network [34], where the
latter employs “hyper-boxes” for sample classification. A hyper-box is essentially
an n-dimensional box characterized by a minimum point, a maximum point, and
an associated membership function, with each hyper-box corresponding to a specific
class. During network training hyper-boxes are generated and adjusted based on the
arrival of training samples. Equation (5) provides the definition for the hyper-box:

Bj = {X, Vj,Wj, f (X, Vj,Wj) ∀X ∈ In} . (5)

Vj and Wj denote the upper and lower bounds of a hyper-box. X represents
an individual sample, and n represents the number of dimensions in the feature
vectors. The dimensions of these hyper-boxes are regulated by Equation (6):

∀i=1...D

(
max

(
wi

b, x
i
)
−min

(
vib, x

i
))

≤ Θ. (6)

Equation (6) introduces the coefficient of expansion denoted by Θ. The al-
gorithm comprises three layers. The first layer deals with the inputs, the second
layer handles the hyper-boxes, and the third layer is responsible for the output or
classes [34]. Here also the system was trained by MLF to recognize the BIRADS
feature.

2.4.4 Multi-Class Support Vector Machine (SVM) Algorithm

Support Vector Machine (SVM) is an algorithm that aims to find the optimal sep-
arating hyperplane, which maximizes the margin between two classes. This hyper-
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plane can be represented by the Equation (7) [44]:

W Tx+ b = 0. (7)

Here, x represents the input vector that contains the input features, b denotes
the bias, W is the weight that determines the distance between the hyperplane
and the data points, and W T refers to the transpose of the matrix W . Selecting
the best hyperplane involves identifying different hyperplanes that can classify the
labels effectively. The algorithm then chooses the hyperplane farthest from the data
points or the one with the maximum margin, as illustrated in Figure 3.

 

Figure 3. SVM hyperplane [44]

In this paper, the RBF kernel function was used and after extracting the mo-
del [45], the possible values for each class were obtained from BIRADS. Here, normal-
ization by standard deviation method [46] was used. Seven support vector machines
were used to detect BIRADS, which has seven classes. According to Table 5, seven
support vector machines have made a decision for one sample, and considering that
in this example, the fourth support vector machine shows the highest probability,
so the sample belongs to the fourth class or “Probably benign” [12].

SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 SVM 6 SVM 7

0.01 0.04 0.02 0.76 0.06 0.05 0.06

Table 5. SVM values

2.4.5 XGboost

XGBoost is a scalable and distributed machine learning library that utilizes Gra-
dient Boosted Decision Trees (GBDT) for machine learning tasks. It is designed
for improved speed and efficiency. Gradient Boosting is a machine learning method
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used for regression and classification problems. The Gradient Boosting model is
a linear combination of a series of weak models created iteratively to form a robust
final model [41]. This approach is a part of ensemble learning algorithms, and its
performance is consistently better than fundamental or weak algorithms such as de-
cision trees or bagging-based methods like Random Forest. However, the accuracy
of this claim is somewhat influenced by the characteristics of the input data [47]. In
this context, XGBoost has also been used for classification and BIRADS detection.

2.5 The Fifth Phase: Ensemble and Validating the Results

In the fifth phase, based on Figure 4, assuming that the person refers to the treat-
ment system, initially based on the medical text reports (MTR) which in this work
is mammography reports and also the patient’s electronic file records from HIS, and
after the data fusion, text processing, and clustering, the BIRADS values are pre-
dicted using the explained base learners (CNN, DT, MLF, SVM, XGboost), then
the output was combined using ensemble learning.

2.5.1 Ensemble Learning

Ensemble learning is a machine learning approach where multiple models, often
referred to as “base learners”, are trained to solve the same problem and combined
to achieve better results in classification or regression tasks. The combination is
achieved by aggregating the outputs from each model, with two main objectives:
reducing model error and maintaining generalization. Compared to a single model,
ensembles increase final predictions’ robustness and accuracy [48, 49]. A simple and
intuitive ensemble technique is majority voting [50, 51]. Essentially, the ensemble
selects the class for an object based on the majority choice from the individual
classification results. Let us define the decision of the tth classifier for class j as
dt,j ∈ 0, 1, where (t = 1, 2, 3, . . . , T ; j = 1, 2, 3, . . . , C). Here, T represents the
number of results from base classifiers, and C represents the number of classes. If
tth classifier result chooses class j, then dt,j equals 1; otherwise, it is 0. The ensemble
decision for class k, calculated using Equation (8), is determined by majority voting.

T∑
t=1

dt,k = max
j

T∑
t=1

dt,j. (8)

Here, ensemble learning is used to predict the value of BIRADS using majority
voting method. The performance of this method is compared to base classification
algorithms.

2.5.2 Validation

The BIRADS results obtained from the base learners along with the final result
obtained from the ensemble learning using the majority voting method, are val-
idated by the evaluation parameters obtained from the confusion matrix such as
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accuracy, specificity, sensitivity, positive predicted value (PPV), negative predicted
value (NPV), f1-measure, and balanced accuracy. Equations (13), (14), (15), (16),
(17), (18) and (19) have been used to calculate these evaluation metrics, respectively.

 CNN 

MLF 

XGboost 

Clustering 

DT 

Validation 

MTR 

HIS 

NLP 

Ensemble 

Learning 

SVM 

Data Fusion 
Text 

Processing 

Figure 4. Road map of the proposed method

3 ANALYSIS AND EVALUATION OF RESULTS

To implement this plan, a computer with the following specifications was used:

Processor: Intel(R) Core(TM) i7-4790 CPU@3.60GHz,

Installed memory (RAM): 2 ∗ 8GB DDR RAM,

VGA: GT 730 2GB,

HDD: 256GB SSD + 1TB SATA.

The operating system used in this research was Microsoft Windows 10 64 bit,
and Python 3.8.7 was used in the Visual Studio Code environment to model the
program.

3.1 Evaluation Parameters

According to Table 6, the confusion matrix is one of the evaluation criteria of clas-
sifiers and is an N by N square matrix; where N represents the number of classes,
which is here there are 7 classes for BIRADS. The main diameter represents the
number of correct detections, and the rest of arrays of matrix express the incorrect
detections.

In binary classification models where only the positive or negative of the disease
is diagnosed, in the confusion matrix there is a concept of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). But here the value of
BIRADS is diagnosed for patients, which has 7 classes. Here, TP i is the value of
true positive of ith class, which refers to cases where the actual class is i, and the
detected class is i too. TP i is obtained using Equation (9). There are two other
concepts, false positive (FP) and false negative (FN), where FP i is the value of false
positive of ith class, which refers to cases where the actual class is i but the detected
class is other than i. FP i is calculated using Equation (10). Also, FN i, which is the
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Original/Actual Values
Original Class 1 . . . Original Class j

Predicted
values

Predicted
Class 1

Class 1, which is correctly
recognized as class 1

. . .
Class j, which is mistakenly
recognized as class 1

...
...

...
...

Predicted
Class j

Class 1, which is mistakenly
recognized as class j

. . .
Class j, which is correctly
recognized as class j

Table 6. Confusion matrix [46]

value of false negative of ith class, indicates the diagnosis of the class is i, but the
actual class is other than i. FN i is calculated using Equation (11). TN i is the true
negative value of class i, which refers to cases where the actual class is not i and the
detected class also is not i. TN i is obtained using Equation (12):

TP i = Cii,

i = 0, 1, · · · , 6, (9)

FP i =
6∑

i̸=j=0

Cij,

i = 0, 1, · · · , 6, (10)

FN i =
6∑

i̸=j=0

Cji,

i = 0, 1, · · · , 6, (11)

TN i =
6∑

i̸=j=0

6∑
i̸=k=0

Cjk,

i = 0, 1, · · · , 6. (12)

The parameters such as accuracy, specificity, sensitivity, positive predicted value
(PPV), negative predicted value (NPV), f1-measure, and balanced accuracy are
calculated using Equations (13), (14), (15), (16), (17), (18) and (19), respectively [52,
53].

Accuracy =
TP + TN

TP + TN + FP + FN
, (13)

Specificity =
TN

TN + FP
, (14)

Sensitivity =
TP

TP + FN
, (15)
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PPV =
TP

TP + FP
, (16)

NPV =
TN

TN + FN
, (17)

f1-measure =
2× PPV × Sensitivity

PPV + Sensitivity
, (18)

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
, (19)

where TP , TN , FP , and FN denote as mean of TP i, TN i, FP i, and FN i, respec-
tively.

3.2 Results

Figures 5, 6, 7, 8, 9 and 10 depict the level of accuracy, specificity, PPV, NPV,
sensitivity, and f1-measure for Convolutional Neural Network (CNN), Decision Tree,
Multi-Level Fuzzy Min-Max Neural Network (MLF), Support Vector Machine
(SVM), XGboost, and proposed decision support system (DSS) for BIRADS de-
tection and only using text mining. We can see that with the increase of the di-
mensions in the resulting vector of the text, the accuracy of the classification has
increased, and this value has a downward trend in dimensions higher than 160. It
has been found in many studies such as [54], by increasing the dimensions, quality of
word2vector and subsequently accuracy were decreases. This issue was investigated
by reducing and increasing the dimensions. Finally, 160 dimensions were used for
further processing, since the best results was obtained in 160 dimensions.

Figure 5 shows the variation of accuracy for all classifiers used in this research
in dimensions from 110 to 200. The best accuracy of the proposed decision support
system occurred in dimension 160 with 87.77%. In the same dimension, the accuracy
for CNN, DT, MLF, SVM, and XGboost is 84.34%, 80.46%, 84.00%, 81.37%, and
83.66%, respectively.

Figure 6 also shows the variation of specificity of all classifiers in mentioned
dimensions. The best specificity of the proposed decision support system occurred
in dimension 160 with 92.74%. In the same dimension, the accuracy for CNN,
DT, MLF, SVM, and XGboost is 91.11%, 88.51%, 91.40%, 90.19%, and 90.50%,
respectively.

Figure 7 also shows the variation of sensitivity of all classifiers in mentioned
dimensions. The best specificity of the proposed decision support system occurred
in dimension 160 with 61.81%. In the same dimension, the accuracy for CNN,
DT, MLF, SVM, and XGboost is 57.66%, 34.18%, 52.80%, 56.84%, and 44.63%,
respectively.

Figure 8 also shows the variation of positive predicted value (PPV) of all classi-
fiers in mentioned dimensions. The best specificity of the proposed decision support
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Figure 5. Variations of accuracy with the change of dimensions in the vector resulting
from word2vec
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Figure 6. Variations of specificity with the change of dimensions in the vector resulting
from word2vec

system occurred in dimension 160 with 56.82%. In the same dimension, the accu-
racy for CNN, DT, MLF, SVM, and XGboost is 45.03%, 33.24%, 47.82%, 30.97%,
and 42.62%, respectively.

Figure 9 also shows the variation of negative predicted value (NPV) of all classi-
fiers in mentioned dimensions. The best specificity of the proposed decision support
system occurred in dimension 160 with 92.75%. In the same dimension, the accu-
racy for CNN, DT, MLF, SVM, and XGboost is 90.65%, 88.51%, 91.00%, 88.96%,
and 90.59%, respectively.
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Figure 7. Variations of sensitivity with the change of dimensions in the vector resulting
from word2vec
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Figure 8. Variations of PPV with the change of dimensions in the vector resulting from
word2vec

Figure 10 also shows the variation of f1-measure of all classifiers in mentioned
dimensions. The best specificity of the proposed decision support system occurred
in dimension 160 with 69.94%. In the same dimension, the accuracy for CNN,
DT, MLF, SVM, and XGboost is 57.83%, 46.92%, 57.24%, 39.00%, and 56.93%,
respectively.

Figure 11 also shows the variation of balanced accuracy of all classifiers in men-
tioned dimensions. The best specificity of the proposed decision support system
occurred in dimension 160 with 77.28%. In the same dimension, the balanced accu-
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Figure 10. Variations of f1-measure with the change of dimensions in the vector resulting
from word2vec

racy for CNN, DT, MLF, SVM, and XGboost is 74.38%, 61.34%, 72.10%, 73.51%,
and 67.56%, respectively.

Table 7 depicts the sensitivity, specificity, positive predictive value (PPV), neg-
ative predictive value (NPV), f1-measure, balanced accuracy, and accuracy for BI-
RADS classification of proposed DSS. Classes one to seven indicate the correspond-
ing values in BIRADS zero to six. Most disease classes were diagnosed with an
accuracy of over 85%. Follow-up of the disease corresponding to BIRADS = 6,
which is seventh class, have the highest sensitivity of 90.00%. The specificity value
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15 1 0 4 3 1 1 Class1 28.85 94.95 60.00 83.56 73.53 61.90 81.20
5 10 0 0 5 2 0 Class2 50.00 94.78 45.45 95.61 61.44 72.39 91.20
5 0 26 0 1 4 1 Class3 86.67 95.00 70.27 98.12 80.78 90.83 94.00
6 0 1 24 6 1 0 Class4 68.57 93.49 63.16 94.81 75.39 81.03 90.00

10 7 3 2 35 2 0 Class5 53.03 86.96 59.32 83.77 70.53 69.99 78.00
8 1 0 5 11 15 0 Class6 55.56 88.79 37.50 94.29 52.73 72.17 85.20
3 1 0 0 5 2 18 Class7 90.00 95.22 62.07 99.10 75.15 92.61 94.80

Table 7. Confusion matrix of proposed DSS

for healthy people is equal to 94.78%, which illustrates the high performance of
healthy people. The weighted average value of specificity is 90.66%, the minimum
value is for the fifth class, and the maximum value is related to the seventh class
(95.22%). The values show that the performance of the proposed method is suit-
able in terms of specificity values. The weighted average value of PPV is equal to
54.11%, which is the maximum value is 70.27% (third class). The value of NPV
for healthy people is equal to 95.61%, which shows that the proposed method has
appropriate performance, the maximum value is 99.10% (seventh class), and its
minimum value is 83.56% (first class). The weighted average value of f1-measure
is 67.09%, the maximum value is 80.78% (third class) and its minimum is 52.73%
(sixth class), which shows that the proposed method has appropriate detection rate.
The weighted average value of balanced accuracy is 76.29%, the maximum value
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is 92.61% (sixth class) and its minimum is 61.90% (first class).The values show
that the performance of the proposed method is suitable in terms of balanced ac-
curacy values. The accuracy or ability of the test, in correctly differentiating sick
and healthy cases in average is 87.77%. The minimum and maximum value of the
accuracy are 78.00% and 94.80% respectively.

As a result, by analyzing these parameters, it was found that the proposed
method preformed well in the detection of BIRADS classes, which gratefully helps
to diagnose the disease and determine the appropriate treatment method. Since
here HIS values are used along with the results of text processing, therefore, the
performance of detection of BIRADS has improved using the proposed method.

4 DISCUSSION AND CONCLUSION

The American College of Radiology (ACR) presented a standard called BIRADS
to standardize mammography reports. This system led to the homogenization of
reports and played a major role in advancing standard treatment planning, as it
can be used to accurately prioritize the treatment progress. But this approach had
disadvantages such as the difference of opinion among physicians to conclude the
value of BIRADS. Therefore, in this work, it was suggested to use the information of
the records of electronic files of people. Therefore, a hybrid approach of unstructured
data (mammography reports) and structured data (electronic records file from HIS)
has been used.

In this way, after preprocessing and processing the texts, the keywords were
converted into vectors using Word2vec, and in each text, the average vectors of
the keywords represented that text. A 210-dimensional vector was obtained for
each text. After that, 15 features have been selected from the patients’ electronic
records. These variables include 2 numerical variables and 13 nominal variables,
which were placed next to the vector extracted from the mammography report,
and including 210 features related to mammography reports, a total of 225 features
were used for classification. Also, CNN, DT, MLF, SVM, and XGboost was used
to determine BIRADS classes, and then estimated BIRADS are combined using
ensemble learning with majority voting algorithm. The results were evaluated in
the form of different evaluation parameters such as sensitivity, specificity, PPV,
NPV, f1-measure, and accuracy. The results show that the maximum evaluation
parameters for BIRADS estimation are 90.00%, 95.22%, 70.27%, 99.10%, 80.78%
and 94.80%, respectively. The accuracy of detecting BIRADS values for proposed
method is 87.77%. The proposed DSS helps the physician to make better decisions
for the diagnosis of BIRADS by data fusion in HIS and medical text reports. This
approach compared to similar works has improved the detection of the disease or the
patient’s health, as well as the determination of the level of the disease; Therefore,
the physician can determine the individual’s treatment routine more accurately.

In this work, data fusion was used to improve accuracy. It is suggested to use the
weight for base learners for combination to increase the efficiency of the system in
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the next research. Also, since mammography images provide useful information to
the physician, another suggestion is to use decision fusion, images and deep learning
integration techniques to more accurately estimate the level of disease in order to
help physicians in making more accurate decisions about treatment procedures. An-
other idea is the use of Random Forest as an alternative to Decision Tree. Random
Forest is known for its ability to improve classification accuracy by reducing over-
fitting through the aggregation of multiple decision trees. This ensemble method
can provide more robust and reliable results, which could enhance the performance
of classification models. Additionally, other advanced machine learning algorithms
were suggested to further improve the diagnostic accuracy and reliability of the sys-
tem. These efforts will help in identifying the most effective models for breast cancer
diagnosis and contribute to the development of more accurate and efficient clinical
decision support systems.
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