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Abstract. In recommender systems, the rating matrix is usually not a global low-
rank but local low-rank. Constructing low-rank submatrices for matrix factorization
can improve the accuracy of rating prediction. This paper proposes a novel network
embedding-based local matrix factorization model, which can built more meaning-
ful sub-matrices. To alleviate the sparsity of the rating matrix, the social data
and the rating data are integrated into a heterogeneous information network, which
contains multiple types of objects and relations. The network embedding algorithm
extracts the node representations of users and items from the heterogeneous in-
formation network. According to the correlation of the node representations, the
rating matrix is divided into different sub-matrices. Finally, the matrix factoriza-
tion is performed on the sub-matrices for rating prediction. We test our network
embedding-based method on two real-world public data sets (Yelp and Douban).
Experimental results show that our method can obtain more accurate prediction
ratings.

Keywords: Matrix factorization, network embedding, local low-rank, recommender
systems

Mathematics Subject Classification 2010: 68-T99

1 INTRODUCTION

Recommender systems (RS) could deal with the problem of information overload [1]
in the big data era, which has been widely studied [2, 3, 4]. By analyzing the previous
user-item interactions (e.g. rating data and browsing data), recommender systems
can learn the preferences of users, which is utilized to predict the user behaviors
for personalized recommendations [5]. Generally, to facilitate the representation
of user preferences and item attributes, users and items are mapped into a low-
dimensional vector space. However, it is challenging to develop an effective approach
to characterize users and items in recommender systems [6].

As one of the most widely used collaborative filtering methods, matrix factor-
ization [7, 8] has received much attention for its good performance and scalability.
By factorizing the user-item interaction matrix into two matrices, namely the user
latent factor matrix and the item latent factor matrix, matrix factorization maps
users and items into a latent factor space. As a result, user preferences and item
attributes are associated with latent factor vectors. However, the basic assumption
of the matrix factorization requires that the interaction matrix is low-rank, which
means that the users (items) in the matrix are highly correlated [9]. The rating
matrix is usually not a global low-rank matrix [10], which means not all users have
similar preferences. Since the matrix is locally stable [9], matrix factorization can be
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performed in a local low-rank matrix to achieve higher prediction accuracy. Gener-
ally, according to user preferences (item attributes), all users (items) can be divided
into different subsets. In the subgroup, there is a closer correlation between the
users (items). Therefore, the user-item interaction matrices constructed by the user
subsets and item subsets are low-rank. The whole rating matrix can be converted
to multiple local low-rank matrices. It is worth noting that global low-rank refers to
the properties of the entire rating matrix, and local low-rank refers to the properties
of the sub matrix. Recommending in the local low-rank matrix can get better per-
formance. To effectively select anchor points for sub-matrices construction, Zhang
et al. propose a heuristic method to select anchor points [11]. According to the
social homophily theory, Zhao et al. exploit users’ social connections to construct
meaningful sub-matrices [12].

Most users within commercial platforms rarely rate [13]. Therefore, user la-
tent factor vectors extracted by matrix factorization cannot effectively reflect user
preferences, which will degrade the recommendation performance. For example,
Lee et al. propose a local low-rank matrix factorization method, which factor-
izes the rating matrix to get the latent factor vectors of users and items. Ac-
cording to the correlation of these latent factor vectors, the users and the items
are constructed as a sub-matrix [10]. However, the latent factor vector of users
who rate fewer items cannot accurately characterize the preferences of these users.
Hence, the sub-matrices established by these latent factor vectors are meaning-
less.

Based on the above intuition, we propose a local matrix factorization model
based on network embedding, called LMFE. To accurately characterize the users
and the items, auxiliary data is added to the model. Auxiliary data generally
includes user attributes, item attributes, social relations, and other information,
which characterize users and items from multiple aspects [14]. Previous studies [15]
have proved that the auxiliary data can effectively improve recommendation perfor-
mance.

How to use auxiliary data to improve the accuracy of user preference prediction is
a challenge for recommendation systems. The auxiliary data either contains multiple
types of objects or multiple types of relations. Based on these characteristics of the
auxiliary data, we utilize the Heterogeneous Information Network (HIN) [15, 16] to
model auxiliary data. Hence, the auxiliary data and the rating data are modeled as
a heterogeneous information network in this paper. Finally, the user representations
and item representations are obtained by applying a novel embedding method to the
HIN.

Since the rating matrix is local low-rank, it can be divided into multiple low-
rank sub-matrices. Moreover, the number of sub-matrices is determined by the
number of selected anchor points (user-item pairs) namely an anchor point corre-
sponds to a sub-matrix. By calculating the correlation between anchor points and
all data points according to the user representations and item representations, data
points are classified into sub-matrices. Since the sub-matrices constructed by the
data points with high correlation are low-rank, matrix factorization on these sub-
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matrices can improve the recommendation performance. LMFE applies to group
recommendation scenarios. That is, multiple groups exist within many users, and
users in these groups have similar preferences. Therefore, we use auxiliary informa-
tion and ratings to divide user groups and make recommendations in the subspace,
improving the accuracy of rating prediction.

The contributions of this paper are summarized as follows:

1. We present a novel HIN embedding method to learn the node representations,
which can accurately characterize the user preferences and item attributes.

2. We propose a network embedding based local matrix factorization model, which
can construct low-rank sub-matrices effectively, and improve the performance of
recommender systems.

3. We conduct experiments on two real-world datasets and demonstrate the effec-
tiveness of LMFE.

2 PRELIMINARY

In this section, we define the notations used in this article and introduce some
preliminary knowledge.

2.1 Heterogeneous Information Networks

Definition 1. Heterogeneous Information Networks (HIN) [16]. A HIN is defined
as a graph G = (ν, ε) with an object type mapping function τ : ν → A and a link
type mapping function ϕ : ε→ R, where each object v ∈ V belongs to one particular
object type τ(v) ∈ A, each link e ∈ ε belongs to a particular relation ϕ(e) ∈ R. The
object type satisfies |A| > 1 or the link type satisfies |R| > 1.

Example 1. Figure 1 c) contains two types of relations: social relations and rating
relations. Figure 1 c) contains two types of nodes: the user and the item. Specifically,
User1 and User2 are connected by social relations. User1 and Item1 are connected
by rating relation.

2.2 Matrix Factorization

The basic assumption of matrix factorization (MF) [1] is that a set of k-dimensional
features can represent user preferences and item attributes. MF extracts users’ and
items’ latent factor vectors from the rating matrix.

MF randomly initializes the features of users and items into k-dimensional vec-
tors, which are called user (item) latent feature vectors, respectively. Second, the
latent feature vector is optimized by the existing labeled data (ratings). To be spe-
cific, the inner product of the user’s latent factor vectors and the item’s latent factor
vector is the predicted rating. That is, the consistency of the latent factor vectors
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Figure 1. An example of Heterogeneous Information Network

between users and items leads to a predicted rating for the recommendation. The
latent feature vector is optimized by minimizing the error between the inner product
(predicted ratings) and the labels (real rating). Through iteration, the latent feature
vectors of the trained users and items are obtained. Finally, the predicted rating is
calculated by the inner product of the latent feature vectors of user i and item j.
The method can be expressed as follows:

r̂ij = uivj
T , (1)

where ui is the latent factor of user i, vj is the latent factor of item j, and the inner
product r̂ij is the predicted rating of user i to item j.

The basic form of matrix factorization is shown in Equation (2). For the rating
matrix R ∈ Rm×n, it can be factorized into a user latent factor matrix, an item
latent factor matrix, where k≪ min(m,n).

R ≈ UVT . (2)

The optimization objective is shown in Equation (3):

min
ui,vj

∑
i,j

(
rij − uivj

T
)2

+ λ
(
||ui||2 + ||vj||2

)
, (3)

where rij is the observable rating in the rating matrix. The observable rating rij
represents the user’s real rating, which can be used as label data. uivj

T is the
predicted rating of user i to item j. The regularization terms λ(||ui||2 + ||vj||2)
are added to Equation (3) to avoid overfitting. By optimizing Equation (3), the
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error between the predicted rating and observable rating is minimized. To learn
the latent factor vectors ui and vj, we can solve Equation (3) by gradient descent
method.

It can be seen that the predictive accuracy of matrix factorization depends on
observable ratings. When the observable ratings decrease, too few samples will
affect the training of the latent feature vector. Therefore, in the case of a few
ratings, the latent feature vectors cannot effectively represent users or items, which
need auxiliary data to improve the prediction accuracy.

3 LOCAL MATRIX FACTORIZATION
WITH SOCIAL NETWORK EMBEDDING

In this section, we use auxiliary information to construct sub-matrices more effi-
ciently and present a local matrix factorization model for recommendation. We first
introduce the framework of LMFE.

3.1 Framework

As shown in Figure 2, the model can be divided into three parts: network em-
bedding, sub-matrix construction, and sub-matrix factorization. First, we utilize
user-item rating relations and user social relations to construct HIN. The network
embedding technology is used to extract the representations of the node from HIN,
and the representations of the user and the item can be respectively obtained. Then,
we randomly select n anchor points (ut, mt) in the rating matrix, and use the ker-
nel function to calculate the correlation between the anchor point and the data
point. When the correlation is less than the defined width, the data points are
classified into sub-matrices built from the anchor points. Finally, we perform the
matrix factorization algorithm in the sub-matrix, and the final prediction result
can be obtained by the weighted ensemble of the prediction results of the sub-
matrix.

In the following sections, we will introduce HIN embedding, sub-matrix con-
struction, and sub-matrix factorization respectively.

3.2 Heterogeneous Information Network Embedding

This section consists of two parts: heterogeneous information network construction
and network embedding.

HIN construction. Let U = {U1,U2, . . . ,Um} denote a set of users, and I =
{I1, I2, . . . , In} denote a set of items. G1 = (U , ε1) denotes the graph con-
structed from social relations, where ε1 = {r1, r2, . . . , rf , }. rf indicates that
there is a social relation between users. G2 = (U , I, ε2) denotes the graph con-
structed from user-item rating, where ε2 = {r1, r2, . . . , rr}. rf indicates that the
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Figure 2. The framework of the LMFE model

user has a rating for the item. Merge the social network G1 and the rating graph
G2 to construct a HIN G = {V , E}, where U , I ⊂ V , ε1, ε2 ⊂ E .

Network embedding. A network embedding method is designed to learn the rep-
resentation vectors of users and items in HIN [17, 18, 19]. It needs to sample
the node sequence in HIN. Random walk is a classic method of sampling node
sequences in homogeneous network. However, there are different types of nodes
in a heterogeneous network, such as user and item in Figure 1 c). The random
walk cannot be directly applied to a heterogeneous network because a chaotic
sequence of nodes is meaningless. Since it is necessary to consider which type of
node should be selected as the target node when the random walk starts from
the current node [20].

There are two types of nodes in HIN, user and item. We need to formulate
a strategy for selecting target nodes. Specifically, when the current node is
an item, only the user node is connected to it. Therefore, a user can be selected
as the target node with uniform probability. When the current node is a user,
there are two types of nodes, user or item, connected to it. First, it needs to
determine whether the target node is a user or an item. In the case that the
current node is a user, the jump probability of a random walk is formalized as
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follows:

Pr(Vtar | Ucur) =


α 1

|Nuser(Ucur)| , (Ucur,Vtar) ∈ ε1;

(1− α) 1
|N item(Ucur)| , (Ucur,Vtar) ∈ ε2;

0, otherwise,

(4)

where Ucur denotes the current node (user), Vtar is the target node (user or
item) where the random walk to jump, Pr denotes the probability distribution
of selecting the next node from the current node in the process of random walk.
α ∈ [0, 1] is set to control the probability of selecting a user as the target node.
N user(Ucur) denotes the neighbor set for the current node with the type of user.
N item(Ucur) denotes the neighbor set for the current node with the type of item.
It can be seen that, with the increase of α, the probability of selecting the nodes
with the type of user by random walk will increase. Biased random walks are
performed on the heterogeneous information network G to generate a set of node
sequences D. D contains the user node sequence set Duser and the item node
sequence set Ditem.

Node sequence filtering. The node sequence contained in Duser and Ditem con-
sists of nodes with different types. Such as the sequence path1: “user1, item1,
user2”, this sequence contains two types of nodes: user and item. We focus
on the similarity of nodes with the same type. Therefore, when constructing
user (item) co-occurrence pairs, the node sequence with the same type should
be extracted from the node sequence. The node sequence containing only users
is extracted from path ∈ Duser , and the node sequence containing only items is
extracted from path ∈ Ditem . We update the user node sequences set Duser and
the item node sequences set Ditem, respectively.

The node sequence can reflect the co-occurrence probability of nodes. For exam-
ple, in Figure 1 c), the node sequence path1: “user1, user2” reflects the similarity
of the two users’ preferences for item1; the node sequence path2: “user3, user4”
exists because the two users have a social relation.

Similar to existing network embedding methods, we utilize skip-gram with neg-
ative sampling (SGNS) [21] to learn the representation vectors ev ∈ Rn×d. In detail,
the process can be divided into two steps:

Step 1. Set the sliding window size w = 2. From user node sequence set Duser

and item node sequence set Ditem, we extract co-occurrence node sequence
{vi, vi+1}w=2, {vi−1, vi}w=2.

Step 2. In the condition of independent hypothesis, set objective function
Pr({vi−w, . . . , vi+w}\vi | Φ(vi)) =

∏i+w
j=i−w
j ̸=i

Pr(vj | Φ(vi)). Φ(vi) ∈ Rd represents

the representation vector of node vi. The representation vector Φ(vi) ∈ Rd is
trained by maximizing the probability of node co-occurrence Pr.
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3.3 Sub-Matrix Construction

We assume the rating matrix is not a global low-rank but a local low-rank. Not all
users are closely correlated in the local model, but local users are highly correlated.
The process of sub-matrices construction consists of anchor selection and correlation
calculation.

Anchor selection. We define a binary group of users and items as a pair of data
points (ut,mt). We select part of these data points as anchor points, which are
the basis for constructing the sub-matrix.

The selection of anchor points is the basis for the construction of a sub-matrix.
We adopt three anchor selection methods, namely randomly selecting, select-
ing anchor points in the test set, and selecting in the training set. According
to the above methods, q data points (ut,mt) are selected from the rating ma-
trix.

Correlation calculation. The correlation between anchor points and data points
is calculated to determine whether data points are classified as submatrices
belonging to anchor points. The correlation is determined by user correla-
tion and items correlation, the calculation method is as Equation (5). The
correlation between the users (items) refers to the cosine distance calculation
of the user (item) representation vector. We use Equation (6) to calculate
the correlation. When the cosine distance is less than the threshold, we cal-
culate its cosine distance as the correlation; otherwise, the correlation is set
to 0.

E(di, at) = Eh(ui, ut)× Eh(mi,mt). (5)

The left half of Equation (5) E(di, at) refers to the correlation between the
data point di = (ui,mi) and anchor point at = (ut,mt). The right half of
Equation (5) refers to the user and item correlation, which is measured by the
Epanechnikov kernel function Eh (s1, s2). The calculation method is shown in
Equation (6):

Eh (s1, s2) ∝ (1− d (s1, s2)) 1[d(s1,s2)<h], (6)

where s denotes the data point or anchor point. In Equation (7), we use the
distance function d(si, st) to denote the distance between the data point and the
anchor point.

d (si, st) = arccos

(
esiest

||esi || · ||est ||

)
, (7)

where esi denotes the node representation obtained in Section 3.2.

When a larger value of d(si, st) indicates a larger distance between si and st,
which means the correlation decreases. h denotes the threshold. If d (si, st) >
h, Eh (s1, s2) is 0, indicating that the correlation between si and st exceeds the
threshold, and the correlation is set to 0. E(di, at) = 0 means that the data point di
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is excluded from the sub matrix based on the anchor point at. In particular, there
is a situation that the correlation between a data point and all anchor points is 0.
The data point will be constructed into the sub-matrix based on the anchor, which
has the highest correlation with this data point.

In particular, if the correlation between the data point and any anchor point
does not meet the threshold. We add it into the sub-matrix constructed by the
anchor point with the highest correlation.

Algorithm 1 Sub-matrix construction
Input: rating matrix Rmn, node representation ev;

1. Randomly select q anchor points (ut,mt)
2. for t = 1, 2, . . . , q do
3. for i = 1, 2, . . . , m do
4. if d (ui, ut) < h do
5. Ut ← Ut ∪ ui //update the user set of the sub-matrix
6. for j = 1, 2, . . . , n do
7. if d (mi,mt) < h do
8. Mt ←Mt ∪mi //update the item set of the sub-matrix
9. return sub-matrix Rt, user ∈ Ut, item ∈Mt

3.4 Sub-Matrix Factorization

In this section, we perform matrix factorization on the sub-matrix obtained in Sec-
tion 3.2 to predict the ratings. In particular, a data point can belong to multiple
sub-matrices. The predicted ratings in multiple sub-matrices were weighted to ob-
tain the ratings r̂ij of the LMFE model. The specific calculation method is shown
in Equation (8).

r̂ij =

q∑
t=1

ut
i

(
vtj
)T wt

ij∑q
s=1w

s
ij

, (8)

where wt
ij = E(ui, ut) × E(mj,mt) denotes the correlation between di = (ui,mj)

and the anchor point at = (ut,mt).
∑q

s=1w
s
ij is the sum of the similarity between

data point di = (ui,mj) and all anchor points.
wt

ij∑q
s=1 w

s
ij
represents the rating weight

of the data points di = (ui,mj) in the sub-matrix Rt. Finally, the prediction rating
r̂ij is obtained by weighting the prediction rating ut

i(v
t
j)

T of all sub-matrices. ||ut
i||2,

||vtj||2 denotes the regularization term, λ denotes the regularization coefficient, which
is used to prevent the model from overfitting.

The prediction model is trained by minimizing the error between the predicted
rating and the observed rating. The objective function is as follows:

min
ui,vj

(
rij −

q∑
t=1

ut
i

(
vtj
)T wt

ij∑q
s=1w

s
ij

+ λ
(
||ut

i||2 + ||vtj||2
))

. (9)
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4 EXPERIMENTS

In this section, the proposed LMFE method is verified by experiments on two real
datasets and compared with the existing methods.

4.1 Evaluation Metric

We choose Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
as evaluation metrics. RMSE and MAE are common metrics for measuring the
accuracy of rating prediction. RMSE and MAE are defined as follows:

RMSE =

√
1

|Dtest|
∑

(i,j)∈Dtest

(ri,j − r̂i,j)
2
, (10)

MAE =
1

|Dtest|
∑

(i,j)∈Dtest

|ri,j − r̂i,j|, (11)

where Dtest denotes the test set, ri,j indicates the observed rating (the label or
real ratings), ˆri,j denotes the predicted rating. RMSE and MAE represent the error
between the observed and predicted ratings, which means that the smaller the values
of RMSE and MAE, the better the model’s performance.

4.2 Experimental Environment and Settings

The experiments are implemented with Python 2.7 and tested on a server with
a 3.10GHz Intel Core i5-2400 CPU, 64GB RAM, and Windows 10 professional x64.
Specifically, we used packages such as Keras, and NumPy for model training and
rating prediction.

The algorithm is validated on the Yelp and Douban dataset. Yelp is an Amer-
ican review site where users can rate items and maintain social relations between
users. The platform also keeps the user’s social relations. The dataset contains
200 000 ratings of 22 496 items from 37 000 users on a scale of 1 to 5. The dataset
contains 140 345 user social relations. This dataset was provided by the Yelp Dataset
Challenge.

Douban Movie is a movie community website where users can rate movies they
have seen. The website also saves the social relations between users. Specifically,
the dataset includes 3 030 user ratings of 6 971 movies from 3 022 users on a scale
of 1 to 5. The data set contains 1366 social relationship information and 195 493
movie ratings. This dataset was provided by Douban.

The statistics for the two datasets are shown in Table 1. In the table, rating
density represents the density of the rating matrix, and the social edges represent
the social relations.

From the statistics of these two datasets, it can be seen that the scale of the
Yelp dataset (37 000 users, 22 500 items) is larger than that of Douban. On the other
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hand, in the Yelp dataset, the rating data is sparser (Rating Density = 0.023%). By
comparing the experimental results of these two datasets, we can observe scenarios
where the algorithm is more applicable. We divided the dataset into a training set
and a test set in a ratio of 8 : 2. Five experiments were repeated, and the average
RMSE and MAE were taken as experimental results.

Datasets Users Items Ratings Rating Density Social Edges

Yelp 37 000 22 500 200 000 0.023% 140 345
Douban 3 030 7 000 195 493 0.92% 1 366

Table 1. Statistics of datasets

4.3 Baseline Models

We compare the following methods to our approach:

• RegSVD [22]: The Regularized Singular Value Decomposition model uses only
the rating matrix as input of the matrix factorization.

• LLORMA [11]: A local low-rank matrix approximation model. After divid-
ing the rating matrix into sub-matrices, the matrix factorization algorithm is
performed on the sub-matrix.

• SocReg [23]: A matrix factorization framework with social regularization. It is
a collaborative filtering method and adds user social information as a regular
term to the matrix factorization model.

• SLOMA [12]: Collaborative Filtering with Social Local Models. A local ma-
trix factorization method constructing sub-matrices according to the social ho-
mophily theory.

• LMFE: The model LMFE proposed in this paper first learns the representation
of network nodes from HIN and uses these representations to construct the sub-
matrix. Finally, matrix factorization is performed on the sub-matrix to obtain
the recommendation result.

These baselines include the classic matrix factorization algorithm RegSVD,
which only uses ratings as the basis for recommendation. The local matrix fac-
torization algorithm LLORMA is used to verify the validity of the sub-matrices
constructed by LMFE, which is suitable for group recommendation, but it does
not use any auxiliary data to improve the prediction accuracy of RS. The social
recommendation algorithm SocReg adds auxiliary data to improve the accuracy of
recommender systems. SLOMA is a local matrix factorization algorithm with ex-
cellent performance. By comparing with SLOMA, we can observe the performance
of LMFE.
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4.4 Recommendation Effectiveness

The inputs for the algorithms listed in Table 2 are different. The classic matrix
factorization algorithm RegSVD and local low-rank algorithm LLORMA only use
the rating matrix as the input. SocReg and LMFE add user social relations as the
input. As can be seen from Table 2, the prediction error of LMFE (MAE, RMSE)
is smaller than that of RegSVD and LLORMA, which proves the effectiveness of
joining social relations to construct a sub-matrix.

Datasets Metrics RegSVD LLORMA SocReg SLOMA LARec

Yelp

MAE 1.6277 1.3817 1.3231 1.3082 1.2922
Improve 20.61% 6.47% 2.33% 1.22%
RMSE 1.7317 1.5385 1.4613 1.3691 1.3341
Improve 22.96% 13.28% 8.70% 2.55%

Douban

MAE 0.5831 0.5730 0.5715 0.5705 0.5505
Improve 5.59% 3.93% 3.67% 3.50%
RMSE 0.7410 0.7287 0.7250 0.7185 0.6961
Improve 6.06% 4.47% 3.99% 3.12%

Table 2. Performance of different methods, the number of sub-matrices is 30

The prediction accuracy of LMFE was significantly better than that of RegSVD.
This indicates that adding auxiliary information to the model can improve the accu-
racy of rating prediction. On the other hand, the correctness of the local low-rank
hypothesis is demonstrated, and the performance of RS is improved by following
this hypothesis.

Both LLORMA and LMFE follow the assumption of the local low-rank, but
LMFE performs better than LLORMA. This is because LMFE adds auxiliary data
to the model. From the statistical characteristics of the dataset, it can be found
that the Rating Density in Yelp is 0.023%, which means that users’ rating behavior
is scarce. Therefore, it is not enough to use only rating data. Better results can be
achieved by using auxiliary data for the recommendation. Both LMFE and SocReg
make use of auxiliary data and achieve better performance. However, LMFE uses
network embedding technology and auxiliary data to obtain more accurate user and
item features. At the same time, better recommendation performance is obtained
based on the assumption of the local low-rank.

SLOMA is an effective local matrix factorization method, which adds
social relations to the recommender system. SLOMA performs better than
RegSVD, LLORMA, and SocReg. This is because the sub-matrix constructed
through social relations is a low-rank. Matrix factorization on the low-rank sub-
matrices can achieve better performance. Nevertheless, in the recommender sys-
tem, the correlation between users can be reflected not only through social rela-
tions but also through user-item rating relations. Therefore, a heterogeneous in-
formation network is utilized to model multiple types of relations and get more
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accurate user and item representation vectors, which lead a better performance
in LMFE.

4.5 Impact of the Number of Local Models

In this section, we studied how performance varies with different numbers of lo-
cal models (sub-matrices) in LLORMA, SLOMA, and LMFE. We select different
numbers of sub-matrices to conduct experiments.

As can be seen from Figure 3, LLORMA, SLOMA, and LMFE achieve a higher
RMSE when the number of sub-matrices is 1, which means that the performance of
the model is worse. The reason that the number of sub-matrices is 1 means that
only one anchor point is selected. In this case, all users are affected by a single
anchor user, which is unreasonable. When the number of sub-matrices exceeds 5,
the local low-rank rating matrix is processed into multiple low-rank matrices. As a
result, the performance of the LLORMA, SLOMA, and LMFE algorithms is grad-
ually improved. As the number of local sub-matrices increases, RMSE of LMFE
decreases, and RMSE values tend to be stable when the number of sub-matrices
exceeds 35.

Anchor Point Metrics LLORMA SLOMA LMFE

Anchor point selected MAE 1.3821 1.3047 1.2910
from the Training set RMSE 1.5362 1.3685 1.3340

Anchor point selected MAE 1.3829 1.3058 1.2921
from the Test set RMSE 1.5331 1.3659 1.3342

Table 3. Effects of the anchor point on the performance of model (Yelp)

It can be seen that on the Douban dataset, the number of sub-matrices converges
faster. Compared with the Yelp dataset, the Douban dataset has a smaller data
size. Therefore, by constructing 5 sub-matrices, the rating matrix can be effectively
divided. On the Yelp dataset, LMFE has achieved a more significant performance
improvement compared to baselines. It also shows that LMFE is more suitable for
sparse data environments.

On the other hand, we tested the anchor points selected in the training set and
the test set respectively to construct the submatrix. The results show that selecting
the anchor points from the training set or the test set has no significant effect on
the accuracy of the rating prediction.

4.6 Impact of the Threshold h

For the proposed approach, an important parameter to control the sub-matrices con-
struction is the threshold h. In this section, we discuss the effect of the parameter h
on the performance of the model. On the Yelp and Douban datasets, we performed
experiments on different values of h, where the range of the threshold h was set to



Local Matrix Factorization with Network Embedding for Recommender Systems 237

0 5 10 15 20 25 30 35 40 45
Number of Local Models

1.3

1.4

1.5

1.6

1.7
R

M
SE

Yelp
LMFE
Regsvd
LLORMA
SocReg
SLOMA

a) Yelp

0 5 10 15 20 25 30 35 40 45
Number of Local Models

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

R
M

SE

Douban
LMFE
Regsvd
LLORMA
SocReg
SLOMA

b) Douban

Figure 3. Experimental results with different local models

a range of (0.2, 0.4, 0.6, 0.8). Corresponding to each threshold, we select a different
number of anchors (sub-matrices) for the experiments. Since the representation vec-
tors with different dimensions d will affect the calculation of similarity, we conduct
the experiments in two cases (d = 8, d = 32), respectively.

Results are shown in Figure 4. It can be seen that when the threshold is set to
0.2, the performance of models in all cases is the worst. This is because when the
threshold is 0.2, it means that only users with high similarity (similarity > 0.8) can
be constructed into one sub-matrix. According to the algorithm, such a threshold
causes many data points not to be classified into any sub-matrix, then the data
points are constructed into the sub-matrix based on the anchor, which has the high-
est correlation with this data point. This strict threshold excludes a large number of
data points from the sub-matrix, resulting in performance degradation. When the
number of anchors is small, this situation will aggravate the performance degrada-
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Figure 4. Effects of the threshold h on the performance of the model

tion. The performance becomes better with increasing threshold and then becomes
stable. An interesting observation is that on Douban, when d = 32 anchor > 20,
the performance maintains a steady improvement in the case of threshold changes.
The reason is that the Douban dataset is small in scale and the correlation between
users (items) is high. When the anchor points are enough, the strict threshold
is also enough to make these anchor points cover all users to construct effective
sub-matrices. When the threshold is set to 1, it means that each anchor point con-
structs all data points into a sub-matrix, which is unreasonable. As a result, it leads
to a decrease in performance.
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4.7 Impact of the Representation Vectors ev

In this section, we discuss the impact of the representation vectors ev ∈ Rn×d on
prediction accuracy. The process of representation vector learning includes two
important parameters, the control parameter α and the representation vector di-
mension d. α is set to control the probability of selecting a user as the target node.
On the Yelp and Douban datasets, we performed experiments on different values
of α, where the control parameter α range was set to (0, 0.3, 0.5, 0.7, 1.0). And the
range of the representation vector dimension d was set to a range of (8, 16, 32, 64).
For other parameters, the number of local models was 40, the threshold parameter
h was 0.8, and the dimension of latent factor vectors k was 10. The experimental
results are shown in Figure 5.
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Figure 5. Experimental results with different local models

When α = 0, it means that the random walk does not jump to the user, so
the node sequence consists of the sequence “user-item-user”. The representation
vector learned from these node sequences characterizes relations that users who
“purchase” the same item have similar vectors. When α = 0.3, the accuracy of
rating prediction has improved. α = 0.3 means that the user has a probability
of 30% to jump to the user node, which means that the user’s social relations
are added to the node sequences. This proves that adding social relations to as-
sist the construction of a sub-matrix helps improve the accuracy of rating pre-
diction. When α = 1, user representation vectors are learned entirely from user
social relations, resulting in bad performance. Therefore, when modeling user re-
lations, multiple types of data should be considered to represent users more accu-
rately.

It can be seen from the experimental data on the two datasets that the predic-
tion accuracy is improved with the increase of dimension d. On Yelp, when d = 8,
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the dimension of the representation vector is too low to accurately represent users
and items, leading to bad prediction performance. The prediction performance
of 32-dimensional and 64-dimensional representation vectors are similar, indicat-
ing that 32-dimensional representation vectors are sufficient to represent users and
items.

On Douban, due to the small data scale, the experiment set a low representation
vector dimension (d = 3, 5, 8, 16). When the dimension of the representation
vector is increased to 5, the prediction accuracy gradually stabilizes, indicating
that the 5-dimensional representation vector is enough to represent the users and
items.

5 CONCLUSIONS

To solve the problem that the traditional matrix factorization algorithm cannot
construct sub-matrix effectively, a network embedding-based local low-rank matrix
factorization algorithm LMFE is proposed. LMFE uses social data and rating data
to build heterogeneous information networks and then learn user and item repre-
sentation vectors from them, which can accurately represent user preferences and
item attributes. Based on the assumption of local low-rank and the representation
vector of user and item, a sub-matrix construction method was proposed. Finally,
the prediction rating of the sub-matrix is weighted to obtain the final prediction
rating.
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