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Abstract. Analysis class diagram (ACD) metrics like number of classes, number
of methods, and number of attributes can be used for early software size estima-
tion by project managers during initial project planning. However, not all of these
ACD metrics have the same influence on software size. This study aims to em-
pirically determine the relative influence of these ACD metrics on software size
using historical data from academia and industry. Using the objective class points
(OCP) metric as a base, two new metrics – enhanced OCP (EOCP) and weighted
EOCP (WEOCP) – are proposed. Separate linear regression-based early software
size estimation models are also constructed and validated using the original OCP
metric and its newly proposed variants. A comparison of these models reveals that
models based on our freshly proposed metrics perform better in terms of early size
estimation accuracy.
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1 INTRODUCTION

Software project plans are made around project schedules which, in turn, require
estimates of task effort and duration. Estimates of task effort are highly dependent
on the magnitude of the task and have the highest utility at the time of project
inception. Therefore, accurate early estimation of software size in terms of source
lines of code (SLOC) is of utmost importance for project managers in planning their
software projects [1, 2].

Class diagram metrics have been widely used to predict software size (SLOC)
in many existing studies [3, 4, 5, 6, 7, 8, 9, 10, 11]. A class diagram [12] illustrates
the static structure of a software application. It depicts a set of classes (contain-
ing attributes and methods) connected to each other via different relationships.
In the analysis stage of software development, an analysis class diagram (ACD)
is created to understand the requirements of the problem domain. This paper fo-
cuses on exploiting metrics derived from an ACD to estimate SLOC early on in the
project.

Objective class points (OCP) [13] is a metric that aggregates different class
diagram metrics and has also been used by multiple earlier studies [6, 7, 10] to
estimate software size in SLOC. However, these metrics are aggregated without
considering their relative importance (via weights) in software size estimation. This
research gap motivated us to determine the weights for these ACD metrics and
investigate the combined influence of weighted ACD metrics on SLOC estima-
tion.

In this paper, we propose two new metrics i.e. enhanced objective class points
(EOCP) and weighted EOCP (WEOCP). EOCP is calculated by aggregating metrics
for quantifying a relationship’s multiplicity (one-to-one, one-to-many, and many-to-
many) [12] into the original OCP. WEOCP is the weighted version of EOCP. For the
computation of WEOCP, we utilize academic and industrial projects to empirically
determine the weights for all the ACD metrics used in EOCP. The relative weights of
these ACD metrics are determined using min-max normalization [14]. Subsequently,
the WEOCP metric is computed utilizing these relative weights. Furthermore, we
construct and validate regression-based SLOC estimation models based on the orig-
inal OCP and its two proposed variants (i.e. EOCP and WEOCP). Results indicate
that the models based on our proposed metrics (i.e. EOCP and WEOCP) outper-
form the original OCP-based model in terms of estimation accuracy.

The rest of this paper is structured as follows. Section 2 provides a summary
and outlines the limitations of previous studies related to software size estimation
using aggregated class diagram metrics. Section 3 describes our experimental design
and Section 4 presents the experimental results of this study along with a discussion
of the salient points. A worked-out example is provided in Section 5 to illustrate
how our proposed model can be used by a project manager. Section 6 discusses
the threats to the validity of this study. Finally, Section 7 summarizes the major
conclusions and recommends future work.
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2 SOFTWARE SIZE ESTIMATION USING AGGREGATED
CLASS DIAGRAM METRICS

Costagliola et al. [15] proposed a software size estimation method called Class Points
(CP). Their proposal included two variants i.e. CP1 and CP2. CP1 computation
requires two metrics (i.e. number of services requested (NSR) and number of external
methods (NEM)). CP2 is a refined version of CP1 since it involves three metrics (i.e.
NSR, NEM, and number of attributes (NOA)). The results of empirical investigation
for predicting development effort showed that the performance of both CP1 and CP2
was better than the single basic metrics used in CP counting. Results also showed
that CP2 was better than CP1. However, the metrics involved in CP1 and CP2
counting were collected from design specifications that are available later in the
software development.

A limited number of studies have evaluated the combined influence of class
diagram metrics (e.g. number of classes, number of methods, etc.) in measuring
or estimating software size. Kim et al. [13] proposed a metric called OCP that
aggregates different class diagram metrics. However, OCP does not consider weights
for different class diagram metrics even though these metrics represent different
concepts.

Harizi [5] presented an approach to estimate software size using aggregated
weighted class-level metrics. However, no objective approach was used to define
the weights, no dataset was used to empirically validate the proposed method, and
most importantly, the metrics from the design phase (rather than the earlier analysis
phase) of the software development were used.

Zhou et al. [6] compared six different class diagram metrics-based SLOC esti-
mation models (including the OCP-based model) that were built using eight dif-
ferent modeling techniques and two transformations. The best-performing model
was based on an object-oriented project size metric that was built using ordinary
least squares regression and logarithmic transformation. However, the class dia-
grams used in this study were collected by reverse-engineering the source code of
the projects.

Badri et al. [7] conducted an empirical study to investigate the role of use case
metrics and OCP in the early estimation of SLOC. They compared regression-based
SLOC estimation models in terms of R2. They found that the model utilizing use
case metrics outperformed the OCP-based model. However, the collection of use
case models and class diagrams involved a process of reverse-engineering the source
code of the projects. Moreover, they used a small dataset and did not empirically
validate these models.

In one of our earlier works [10], we empirically validated early SLOC estimation
models based on OCP using six diverse datasets. In that work, however, different
weights were not used for the different ACD metrics used in determining the value
of the OCP metric.

To the best of our knowledge, the related literature does not report anything on
empirically determining the weights for the ACD metrics aggregated in OCP and
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on evaluating the combined influence of weighted ACD metrics on early software
size estimation. This research attempts to fill this gap by empirically determining
the weights for different ACD metrics (based on their contribution to software size)
and by comparing the performance of different early SLOC estimation models built
using the original OCP metric and its newly proposed variants.

3 EXPERIMENTAL DESIGN

The main goal of this research is to investigate and compare the estimation accuracy
of different early software size estimation models built using OCP and its newly
proposed variants i.e. EOCP and WEOCP. This goal is achieved by finding the
answers to the following two research questions (RQs):

• RQ1: Is the EOCP-based model better than the original OCP-based model for
early estimation of software size (SLOC)?

• RQ2: Is the WEOCP-based model better than the EOCP-based model for early
estimation of software size (SLOC)?

3.1 Datasets

We collected 62 completed projects developed by students enrolled in two under-
graduate level courses – object-oriented analysis and design (OOAD) and software
engineering (SE) at a renowned private university located in Lahore, Pakistan. We
also collected 11 completed projects developed by professionals at a private software
development company located in Lahore. We assigned these projects to four differ-
ent datasets based on their category (academia or industry), programming language,
and project type (web or desktop), as shown in Table 1. These projects have also
been used in our earlier works [10, 11].

Category Dataset #
No. of

Projects
Programming
Language

Project Type

Academia Dataset #1 31 C++
GUI-based desktop
applications

Academia Dataset #2 19 Java
GUI-based desktop
applications

Academia Dataset #3 12 Java GUI-based web applications

Industry Dataset #4 11 VB.NET
GUI-based desktop
applications

Table 1. Datasets characteristics (adapted from [10])

3.2 Research Process

The steps to conduct experiments are illustrated in Figure 1 and listed as follows:
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1. Determine software size in SLOC from the source code of projects.

2. Extract/create ACDs from the software requirements specification (SRS) docu-
ment of the projects.

3. Calculate ACD metrics from the extracted/created ACDs.

4. Determine weights for ACD metrics using simple linear regression (SLR).

5. Determine normalized weights for ACD metrics using min-max normalization.

6. Calculate OCP, EOCP, and WEOCP.

7. Build a separate regression-based SLOC estimation model based on each of the
following metrics: OCP, EOCP, and WEOCP.

8. Assess and validate these models through the leave-one-out cross-validation
(LOOCV) technique.

9. Compare these models with respect to different accuracy measures.

3.3 Metrics from UML Class Diagram

Table 2 lists the metrics that can be easily obtained from an ACD. We have proposed
three new metrics – NOOM, NOMM, and NMMM (metrics 10–12 in Table 2) –
that capture the information representing the multiplicity of relationships in a class
diagram. Capturing this information is necessary since checks related to multiplicity
need to be implemented explicitly in the source code thus requiring extra effort and
consuming additional time. For example, to implement the one-to-one multiplicity
between student and transcript, an extra check is required to make sure that no
more than a single transcript object is associated with one student. Every student
has a single transcript, and no student can have more than one transcript. EOCP
(metric 14 in Table 2) is also a newly proposed metric. It is a variant of OCP
which uses OCP as a base value and adds to it the information about multiplicities
captured in NOOM, NOMM, and NMMM.

3.4 Weight Computation and Normalization

SLR [16] is a technique for predicting the value of a dependent variable (y) based on
one predictor (x). Equation (1) presents the general form of an SLR model where
“β0” is the intercept of the line, “β1” is the slope of the line, and “”ϵ” represents
the error.

y = β0 + β1x+ ϵ. (1)

After removing outliers (8 from Dataset #1, 2 each from Dataset #2 and
Dataset #3, and 1 from Dataset #4), SLR was used to calculate the R2 value
(response variable = SLOC, predictor = ACD metric) for each ACD metric using
all four datasets. These R2 values are shown in Table 3 which also shows the mean
R2 value for each ACD metric. We computed the mean R2 value to determine the
weights for all ACD metrics included in the definition of EOCP. The rationale for
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Sr. # Metric Definition

1 NC The total number of classes.
2 NA The total number of attributes.
3 NM The total number of methods.
4 NDep The total number of dependency relationships.
5 NAss The total number of association relationships.
6 NComp The total number of composition relationships.
7 NAgg The total number of aggregation relationships.
8 NGen The total number of generalization relationships.
9 NRR The total number of realization relationships.

10 NOOM The total number of one-to-one multiplicity rela-
tionships.

11 NOMM The total number of one-to-many multiplicity rela-
tionships.

12 NMMM The total number of many-to-many multiplicity re-
lationships.

13
Objective Class
Points (OCP)

OCP = NC+NA+NM+NDep+NAss+NComp+
NAgg + NGen + NRR

14
Enhanced Objective
Class Points (EOCP)

EOCP = OCP+NOOM+NOMM+NMMM

Table 2. Metrics from UML class diagram

calculating the mean R2 value despite the fact that these projects were developed
in different programming languages is that the average gearing factors [17] for these
programming languages (C++ = 50, Java = 53, and VB.NET = 52) are very close.
Besides this, all of these projects belong to the same broad category i.e. GUI-based
applications (see Table 1).

Min-max normalization was used to compute the normalized weights (see Ta-
ble 3, last column) for all ACD metrics. This normalization technique rescales the
weights to a new range of values such as (0, 1). Equation (2), where Min is the
minimum value of weight (0 in our data) and Max is the maximum value of weight
(0.678 in our data), was used to determine the normalized weight for each ACD
metric. Finally, these normalized weights were used to define the weighted version
of the EOCP metric – weighted EOCP (WEOCP) – as shown in Equation (3).

Normalized Weight =
Weight −Min

Max −Min
, (2)

WEOCP = 1 ∗ NC + 0.749 ∗ NA+ 0.889 ∗ NM + 0.003 ∗ NDep

+ 0.622 ∗ NAss + 0.226 ∗ NComp + 0.246 ∗ NAgg

+ 0.777 ∗ NGen + 0.243 ∗ NOOM + 0.656 ∗ NOMM

+ 0.385 ∗ NMMM . (3)
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Sr.
#

ACD
Metric

R2 Mean R2

(Weight)
Normalized
Mean R2

(NW)
Dataset
#1

Dataset
#2

Dataset
#3

Dataset
#4

1 NC 0.315 0.637 0.856 0.904 0.678 1
2 NA 0.024 0.734 0.444 0.831 0.508 0.749
3 NM 0.15 0.774 0.709 0.779 0.603 0.889
4 NDep 0.008 0 0 0 0.002 0.003
5 NAss 0.016 0.624 0.25 0.799 0.422 0.622
6 NComp 0.036 0.066 0.264 0.244 0.153 0.226
7 NAgg 0.001 0.011 0.136 0.519 0.167 0.246
8 NGen 0.502 0.651 0.48 0.475 0.527 0.777
9 NRR 0 0 0 0 0 0

10 NOOM 0.005 0.388 0.063 0.203 0.165 0.243
11 NOMM 0.013 0.325 0.63 0.811 0.445 0.656
12 NMMM 0.3 0.173 0.199 0.371 0.261 0.385

NW: normalized weight

Table 3. Weights for ACD metrics before and after normalization

3.5 Data Collection for Model Construction

SLR analysis was performed to construct three separate SLOC estimation models
based on the original OCP and its two different variants (i.e. EOCP and WEOCP)
as predictors. Values of these predictors were obtained using the information avail-
able in the ACD of completed projects. SLOC values, on the other hand, were
automatically extracted from the source code of a project using a static analysis
tool called Understand 5.1 [18]. Table 4 shows the descriptive statistics for all the
variables used to construct the models.

3.6 Model Assessment Criteria

The three regression models are evaluated by using the most widely used accuracy
metrics in the software size estimation community [10]. These include the mean
absolute error (MAE) [10], the mean magnitude of relative error (MMRE) [10], the
median magnitude of relative error (MdMRE) [10], Pred(25) [10], the sum of squared
error (SSE) [12], and mean squared error (MSE) [10]. Equations (4), (5), (6), (7), (8)
and (9) given below provide the formulas for calculating these performance measures
where the subscript i represents an individual project, n is the total number of
projects, and yi and ŷi are the actual and predicted sizes (SLOC), respectively, of
project i.

MAE =
1

n

n∑
i=1

|yi − ŷi|, (4)
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Dataset Metric Minimum Median Maximum Mean Std. Deviation

Dataset
#1

OCP 36 91 175 94.94 31.28
EOCP 38 100 198 104.87 35.14
WEOCP 32 78 146 81.97 26.61
SLOC 493 4 387 77 658 7 630.1 13 429.03

Dataset
#2

OCP 41 90 308 111.79 66.207
EOCP 47 100 362 127.26 78.45
WEOCP 37 77 276 97.63 59.1
SLOC 1 220 5 001 27 273 7 534 7 026.18

Dataset
#3

OCP 17 67 98 65.42 25.34
EOCP 18 73.5 109 72.5 28.81
WEOCP 14 56.5 83 56.33 22.4
SLOC 350 2 162 5 821 2 373.08 2 162.5

Dataset
#4

OCP 526 911 1 409 951 233.92
EOCP 573 1 000 1 517 1 028.27 249.88
WEOCP 450 761 1 173 795 192.84
SLOC 31 138 65 204 104 611 66 009.45 21 184.67

Table 4. Descriptive statistics for all metrics

MMRE =
1

n

n∑
i=1

|yi − ŷi|
yi

, (5)

MdMRE = MEDIAN (i=1, n)

[
|yi − ŷi|

yi

]
, (6)

Pred(25) =
1

n

n∑
i=1

1, if |yi−ŷi|
yi

<= 25
100

,

0, otherwise,
(7)

SSE =
n∑

i=1

(yi − ŷi)
2, (8)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (9)

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 SLR Models

SLR analysis was performed using the IBM SPSS statistical tool [19, 20]. The
rationale for using the SLR modeling approach is its simplicity, extensive usage,
and documented higher effectiveness in improving estimation accuracy relative to
alternative methods in the existing body of literature concerning software size esti-
mation [6].
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One of the important steps in SLR analysis is the identification of outliers (ob-
servations that fall vertically far from the regression line) and influential points
(observations that fall horizontally far from the regression line) since these may sig-
nificantly distort any SLR model [16]. Therefore, we identified and removed the
outliers in each of the four datasets using both Cook’s distance [21] and stan-
dardized residuals [10]. An observation with Cook’s distance greater than 4/n
was considered an influential point, where n is the total number of observations
in a dataset [10, 11]. An observation was considered an outlier if its standardized
residual value did not fall in the range of −2 to +2. We evaluated the quality of
our linear models using the coefficient of determination (i.e. R2) [16]. R2 indicates
the proportion of the variation in the response variable that is explained by the
predictor.

Table 5 summarizes the results of applying SLR to our four datasets. For each
dataset, the R2 value of the best-performing model is highlighted. For Dataset #1,
Dataset #2, and Dataset #3, the WEOCP-based model achieves the highest R2

value. For Dataset #4, the EOCP-based model achieves the highest R2 value.
The linear relationship between these aggregated ACD metrics (OCP, EOCP, and
WEOCP) and SLOC appears to be strong since most of the R2 values are greater
than or equal to 0.50. In Dataset #2, for instance, approximately 83% of the
variation in SLOC values can be explained by WEOCP (Model #3).

Dataset Models (OCP, EOCP, WEOCP) R2 NI Outlier(s)

Dataset
#1

SLOC = −2 031.716 + 84.849 ∗OCP 0.401
18

P1, P2, P4, P7, P10,
P14, P22, P24, P26,
P27, P28, P29, P30

SLOC = −2 489.104 + 83.363 ∗ EOCP 0.442

SLOC = −2 523.185 + 106.371 ∗WEOCP 0.463

Dataset
#2

SLOC = −3 651.555 + 97.911 ∗OCP 0.824
16 P14, P16, P47SLOC = −3 720.238 + 88.290 ∗ EOCP 0.819

SLOC = −3 690.699 + 113.338 ∗WEOCP 0.826

Dataset
#3

SLOC = −525.847 + 39.391 ∗OCP 0.728
11 P1SLOC = −478.685 + 34.858 ∗ EOCP 0.736

SLOC = −496.556 + 45.206 ∗WEOCP 0.749

Dataset
#4

SLOC = −3 548.213 + 70.665 ∗OCP 0.872
10 P8SLOC = −4 325.669 + 66.039 ∗ EOCP 0.877

SLOC = −4 661.618 + 85.953 ∗WEOCP 0.875

NI: Number of instances (i.e. projects) in a dataset after removing outlier(s)

Table 5. SLR results

The biggest improvement is seen in Dataset #1 in which the WEOCP-based
model (Model #3) achieves an R2 value which is about 15% higher than that of the
base OCP-based model (Model #1). This implies that our WEOCP-based model
may be the most valuable for early size estimation of GUI-based desktop applications
implemented in C++.

It is also observed that the EOCP-based model (Model #2) performs better
than the original OCP-based model (Model #1) with respect to R2 for 3 out of
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4 datasets. The WEOCP-based model (Model #3) outperforms the original OCP-
based model (Model #1) with respect to R2 for all 4 datasets. On the other hand,
the WEOCP-based model (Model #3) performs better than the EOCP-based model
(Model #2) with respect to R2 for 3 out of 4 datasets. Overall, at least one of the
two newly proposed variants of OCP always performed better than the original OCP
for all four datasets used in this study.

The WEOCP-based model (Model #3) is the best performing model for all
three academic datasets (Datasets #1–3) while the EOCP-based model (Model #2)
is the best performing model for the industrial dataset (Dataset #4). However, for
the industrial dataset, the difference in the performance of our two newly proposed
models is only marginal.

4.2 Model Assessment and Validation

Tables 6, 7, 8 and 9 show the values of the six accuracy measures (Section 3.6)
for each of the three different models. These accuracy measures are obtained using
the LOOCV method [22] separately on each of the four datasets. For each dataset,
the accuracy metric value of the best-performing model is highlighted. For Dataset
#1 (see Table 6), Model #3 is the best-performing model with respect to MAE,
MdMRE, SSE, and MSE. With respect to MdMRE, Model #3 achieves around
16% reduction vis-à-vis the base OCP-based model (Model #1). Model #2 performs
better than all other competing models with respect to MMRE.

Accuracy
Measure

Model #1 Model #2 Model #3
SLOC ∼ OCP SLOC ∼ EOCP SLOC ∼ WEOCP

MAE 1660 1 597 1568

MMRE 0.49 0.434 0.446

MdMRE 0.39 0.356 0.329
Pred(25) 0.222 0.222 0.222

SSE 60 845 099 56 601 137 54 488 670

MSE 3 380 283 3 144 508 3 027 148

Table 6. LOOCV results for Dataset #1

Accuracy
Measure

Model #1 Model #2 Model #3
SLOC ∼ OCP SLOC ∼ EOCP SLOC ∼ WEOCP

MAE 1673 1692 1613

MMRE 0.59 0.592 0.562

MdMRE 0.335 0.388 0.334

Pred(25) 0.25 0.312 0.312

SSE 62 113 178 63 671 263 61 270 333

MSE 3 882 074 3 979 454 3 829 396

Table 7. LOOCV results for Dataset #2
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For Dataset #2 (see Table 7), Model #3 is the best-performing model with
respect to all accuracy measures. For Dataset #3 (see Table 8), Model #3 is the
best-performing model with respect to MAE, MMRE, SSE, and MSE. Model #2
performs better than all other competing models with respect to MdMRE. For
Dataset #4 (see Table 9), Model #2 performs better than all the competing models
with respect to MAE, MMRE, MdMRE, SSE, and MSE. Pred(25) values are equal
for all three competing models for Dataset #1, Dataset #3, and Dataset #4. For
Dataset #2, Model #2 and Model #3 outperform Model #1.

Overall, EOCP-based model (Model #2) performed better than the base OCP-
based model (Model #1) in case of Dataset #1 (approximately 4% reduction in
MAE, 11% reduction in MMRE, 9% reduction in MdMRE, and 7% reduction in
SSE), Dataset #3 (approximately 2% reduction in MAE, 2% reduction in MMRE,
12% reduction in MdMRE, and 3% reduction in SSE), and Dataset #4 (approxi-
mately 2% reduction in MAE, 3% reduction in MMRE, 11% reduction in MdMRE,
and 4% reduction in SSE). It is evident from these results that the prediction accu-
racy of the EOCP-based model (Model #2) is better than the original OCP-based
model (Model #1) for most of the accuracy measures. This answers RQ1. WEOCP-
based model (Model #3) performs better than the EOCP-based model (Model #2)
for 3 out of 4 datasets for most of the accuracy measures. This answers RQ2.

Accuracy
Measure

Model #1 Model #2 Model #3
SLOC ∼ OCP SLOC ∼ EOCP SLOC ∼ WEOCP

MAE 519 509 503

MMRE 0.346 0.34 0.333

MdMRE 0.23 0.202 0.215
Pred(25) 0.636 0.636 0.636

SSE 4 092 287 3 967 577 3 775 897

MSE 372 026 360 689 343 263

Table 8. LOOCV results for Dataset #3

Accuracy
Measure

Model #1 Model #2 Model #3
SLOC ∼ OCP SLOC ∼ EOCP SLOC ∼ WEOCP

MAE 5017 4 824 5032

MMRE 0.086 0.083 0.087

MdMRE 0.074 0.066 0.081
Pred(25) 1 1 1

SSE 365 546 841 351 053 261 356 142 761

MSE 36 554 684 35 105 326 35 614 276

Table 9. LOOCV results for Dataset #4

Table 10 summarizes the comparison of the performance (with respect to esti-
mation accuracy) of all three models for all four datasets. This overall comparison
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clearly reveals that both of the models based on the newly introduced variants of
OCP (i.e. Model #2 and Model #3) lead to an improvement in the estimation
accuracy vis-à-vis the original OCP-based model (i.e. Model #1).

Accuracy Measure Dataset #1 Dataset #2 Dataset #3 Dataset #4

MAE Model #3 Model #3 Model #3 Model #2
MMRE Model #2 Model #3 Model #3 Model #2
MdMRE Model #3 Model #3 Model #2 Model #2
Pred(25) Equal Model #3 Equal Equal
SSE Model #3 Model #3 Model #3 Model #2
MSE Model #3 Model #3 Model #3 Model #2

Equal: All three models results are equal

Table 10. Best-performing model for all datasets

5 WORKED-OUT EXAMPLE

This section briefly explains how our proposed model based on WEOCP can be used
by a practitioner (i.e. project manager) to estimate the size (in terms of SLOC) of
a new software project.

Suppose a project manager has been assigned the responsibility of planning
a new software project that requires developing a library management system (LMS).
The requirement is to develop this GUI-based desktop application from scratch
using the C++ programming language. The project manager receives the ACD
of LMS from the business analyst. The project manager can now easily calculate
the metrics from this ACD. Assume that the values of these metrics for LMS are
those shown in Table 11, Step 1. The project manager can then calculate the
WEOCP using Equation (3), as shown in Table 11, Step 2. Finally, this value (i.e.
WEOCP = 85) can be plugged into the proposed WEOCP-based SLOC estimation
model to estimate the SLOC of LMS (i.e. 6 518), as shown in Table 11, Step 3.

6 THREATS TO VALIDITY

In this section, we discuss the potential threats to the construct, internal, and exter-
nal validity of this study, as well as the steps we have taken to address and mitigate
these threats.

To address concerns about the construct validity of SLOC in the projects, we
calculated SLOC using an automated tool called Understand. We selected this tool
because it has been used in many existing software size estimation studies [6, 10, 11]
for the same purpose. The independent variables were simple counts and manually
calculated by the first author of this study based on the ACD available in the SRS
of each project. To ensure correctness, these calculations were thoroughly reviewed
by collaborators from academia and industry.
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Step 1: Extract metrics from ACD

NC = 13, NA = 47, NM = 23, NDep = 0, NAss = 10,
NComp = 2, NAgg = 1, NGen = 3,
NOOM = 1, NOMM = 9, NMMM = 3

Step 2: Calculate WEOCP

WEOCP = 1 ∗NC+ 0.749 ∗NA+ 0.889 ∗NM+ 0.003 ∗NDep + 0.622 ∗
NAss+0.226∗NComp+0.246∗NAgg+0.777∗NGen+0.243∗NOOM+
0.656 ∗NOMM+ 0.385 ∗NMMM
WEOCP = 1∗13+0.749∗47+0.889∗23+0.003∗0+0.622∗10+0.226∗
2 + 0.246 ∗ 1 + 0.777 ∗ 3 + 0.243 ∗ 1 + 0.656 ∗ 9 + 0.385 ∗ 3
WEOCP = 85

Step 3: Calculate estimated SLOC

SLOC = −2 523.185 + 106.371 ∗WEOCP
SLOC = −2 523.185 + 106.371 ∗ 85
SLOC = 6518

Table 11. Early software size (SLOC) estimation of a new software project

To reduce the threats related to the internal validity of this study, we used
a reliable and robust model validation method, i.e. LOOCV. To improve the gen-
eralizability of our results, we examined and compared the performance of the pro-
posed models using multiple accuracy measures and diverse datasets sourced from
academia and industry. This approach helped alleviate concerns regarding the ex-
ternal validity of this study.

The models presented in this study may not be used as-it-is for all types of
software applications. Nevertheless, we have presented a repeatable approach that
practitioners can adopt to estimate software size in the early phase of object-oriented
software development.

7 CONCLUSIONS AND FUTURE WORK

In this research, we have attempted to contribute to the domain of early software size
estimation by exploiting a couple of unexplored gaps. None of the previous works
has looked at the influence of different types of relationship multiplicities on software
size. Similarly, while ACD metrics have been aggregated before to determine their
influence on software size, the relative importance of these metrics (via weights) has
not been studied so far.

This research study introduced a new metric called EOCP by aggregating the
information about relationship multiplicities (present in an ACD) into the original
OCP metric. Later, a weighted variant of EOCP (i.e. WEOCP) was also proposed by
first empirically determining the weights for each of the different EOCP components
and then normalizing these weights using min-max normalization. Furthermore, the
study involved developing and validating separate regression-based SLOC estima-
tion models based on the original OCP metric and the newly proposed EOCP and
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WEOCP metrics. We then compared these models to determine their relative util-
ity for early software size (SLOC) estimation. Results have shown that the models
built using the newly proposed metrics (i.e. EOCP and WEOCP) perform better
with respect to early software size estimation accuracy.

In the future, this study can be repeated using larger sets of real-life projects de-
veloped in different programming languages and environments. Furthermore, other
normalization techniques may also be employed to determine weights for ACD met-
rics.
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