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Abstract. Community structure is a common feature of social networks and many
community discovery algorithms have emerged through the study of this feature.
The gravitational field model is an effective method to realize community division.
However, the current gravitational field model lacks a comprehensive consideration
of field properties such as the internal stability of the gravitational field. There-
fore, in this paper, we define and quantify the attributes of the gravitational field
by taking advantage of the field’s strength in describing the joint action of groups.
Then, we propose a social network gravitational field community detection model
(GF-CDM). GF-CDM selects the field kernel node based on a random walk and
then presents an adaptive expansion function of fusion field stability to divide the
observable network into overlapping and non-overlapping clusters. The model was
evaluated on four real network datasets and five artificial network datasets of differ-
ent sizes. Experimental results show that our proposed model outperforms the other
four benchmark algorithms in modularity, ARI index, and field average stability,
which can improve the quality of cluster division.

Keywords: Community structure, social network, internal stability, gravitational
field model, cluster division

1 INTRODUCTION

In social networks, individuals are grouped around a common interest, this grouping
is called “community” [1]. It is significant to discover various communities in social
networks, and potential relationships can be mined from them. With the continu-
ous deepening of research on social networks, community structure, as an important
attribute in complex networks, has been increasingly noticed. The community struc-
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ture defines that nodes in the same community are closely connected, while nodes in
different communities are sparsely connected [2]. The concept of a cluster is similar
to a community, both describing a collection of nodes in a social network. A cluster
is a group of nodes gathered together based on similarities or inter-node interactions,
focusing on functional or algorithmic grouping of nodes based on specific criteria.
At present, academic research has proposed several community detection methods
for the characteristics of complex network clusters, which can be generally classified
into global community detection and local community detection methods. Global
community detection uses the global information of the entire social network to
divide communities, which is difficult to apply in larger networks [3]. Local com-
munity detection uses local information to find the community where the seed node
is located [4]. Local methods improve the efficiency of the algorithm using widely
in the large network with dynamic changes and have a broader space for develop-
ment [5]. The community partition method based on seed nodes for local expansion
is to optimally partition the seed nodes and their neighbouring nodes into correct
communities [6]. The fitness function describes the tightness of a group of node con-
nections. A cluster is composed of a group of nodes that can obtain the maximum
fitness function value.

Extended cluster partitioning method based on fitness function selected the node
in which fitness value is maximum and positive to join the cluster. The nodes with
negative fitness values in the updated community were removed. These two processes
are iterated until all the neighbors of the community have negative fitness function
values. This method improves the quality of the detected communities. Due to the
increasing amount of data, the Global community detection is difficult to use for
larger networks. Therefore, it is particularly important to improve the accuracy of
cluster division with limited local information.

At present, cluster division is one of the popular projects in the research of grav-
itational field models in social networks. The gravitational field model in physics
regards each object in space as a particle with a certain mass. Similarly, there is
a virtual gravitational field in the social network that any object in the community
exists joint action and interaction with other objects. Gravitational fields have the
advantage of the joint action of groups on individuals. Modeling the interactions
of objects in a gravitational field leads to the self-organized aggregation of objects
into clusters. The goal of community discovery is to obtain these clusters. How-
ever, the existing researches extracted the description of the basic topology of the
network, however, lacked of the field characteristic attributes analysis leads to incom-
plete modeling information and cannot guarantee the rationality of the community
structure division. Community structure has more consistent emotional tendencies
considering the emotional factors, which contain stronger influence and cohesion as
a crucial character on social media.

The main contributions of this work are as follows:

• The theory of the physical gravitational field is introduced to present the com-
munity structure accurately in social networks. The attributes, i.e., the gravita-
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tional force between nodes and the internal stability of the gravitational cluster,
are integrated into the process of cluster division.

• The set of gravitational kernel nodes is constructed by the random wandering
idea, and the adaptive function of the fusion field force extends the cluster to
obtain the initial overlapping gravitational field. To further optimize the division
of the gravitational field, the overlapping fields can be fused or separated to
further obtain a non-overlapping gravitational field.

• Evaluations verify based on four real datasets and five artificial datasets. Com-
parisons are made with four baseline based on modularity, ARI index, and in-
ternal average stability metrics. The experimental results reflect the superiority
of the model in this paper.

The remaining of this paper is organized as follows. In Section 2, we discuss the
state-of-the-art works related to cluster partitioning and gravitational field modeling.
The GF-CDM algorithm is proposed in detail in Section 3. Section 4 compares
the GF-CDM algorithm with comparing algorithms for community discovery. The
analysis of the evaluation results is also discussed in this section. Section 5 concludes
the paper and provides an outlook on possible future directions of work.

2 RELATED WORK

In the area of complex network gravitational field research, Li and Du proposed
the construction of data fields for two-dimensional static data, and he established
the definition of topological potentials and field strengths over the whole space and
analyzed the corresponding properties by borrowing the idea of fields in physics [7].
Gan et al. regarded each network node as a field source with a certain quality, and
each node acted on other nodes located in the potential field, forming a virtual
potential field in the network topological space [8]. Yang et al. proposed a density-
based DBSCAN improved clustering method using the average potential difference
of each class in the field, which utilized the natural nested structure of equipotential
lines (surfaces) in the data potential field to achieve the division of data objects [9].
Ma et al. introduced the gravitational model into the field of influence maximization.
The model considered the k-shell value of a node as the node mass and the shortest
path between two nodes as the inter-node distance [10]. Li et al. proposed an
improved extended gravity model, which was used to identify influential nodes in
complex networks [11]. Combining the degree of node size, the model used the
information diffusion ability of nodes to characterize the quality of nodes. Li et al.
respectively introduced truncated radius and weighted gravity models to reduce
high-time complexity [12, 13]. Levy and Goldenberg found that the negative relation
between link probability and the inverse of the square of the distance, which is
similar to gravity and distance [14]. Wahid-Ul-Ashraf et al. proposed a heuristic link
prediction method based on the law of gravity, pointing out that the laws of physics
can also be applied to the field of social networks at the local level [15]. Bastami
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et al. proposed an unsupervised link prediction method based on the gravity model,
which significantly reduced the time complexity of the algorithm [16]. Overall, the
gravitational field model has many applications in the field of social networks, such
as link prediction, community discovery, and influence maximization. Some progress
has been made in terms of accuracy and computational complexity.

Using local information to partition communities in complex networks greatly
improves efficiency and accuracy. Shang et al. proposed a local community detec-
tion method based on high-order structure and edge information (HSEI), focusing on
network motif information to select seed nodes, and using the modularity function
of the fusion motif to expand the community [4]. Ma et al. adopted a high-order
graph clustering method, first identifying the triangular and quadrilateral struc-
tures whose connection ratio between internal nodes is tighter than that of external
nodes [17]. The structure used local expansion and achieved good performance in
high-order graphs. Whang et al. used the k-means algorithm to calculate the multi-
level weighted k-kernel of the clusters [18]. Distance function was used to calculate
the centroid vertices of each cluster. The neighborhood set of each centroid ver-
tex was used as the seed area of community detection, and then cluster expansion
was performed. Veldt et al. proposed an improved flow-based local graph clustering
method, which can better combine the semi-supervised information of the target
cluster [19]. This method has shown good robustness in experiments. Ding et al.
proposed a robust two-stage local community detection algorithm (RTLCD), which
selects seed nodes based on node centrality and edge relationship strength [20].
Community members used it as a starting point for community expansion.

The above studies all adopt the cluster partition method based on seed nodes
for local expansion. However, some other local division algorithms take a different
approach to this. Sheikholeslami and Giannakis developed a top-down method,
which regarded the social network graph as composed of some small subgraphs, and
used tensors to provide the representation ability of multi-dimensional features of
the network [21]. The method improved the quality of the detected communities.
The modeling and division of the gravitational field of social networks is proposed
based on the cluster division idea of seed expansion. The local fitness method
algorithm is the classical algorithm of this type [22]. This method first selected
some nodes or some node collections in the network as seed nodes in a certain way.
The expansion started from an arbitrary seed node to form a community and stopped
when the value of the local fitness function no longer increased until every node was
divided. The cluster division method based on seed expansion mainly includes two
steps: 1) selection of seed nodes; 2) taking seed nodes as source nodes of community
expansion, expanding according to certain function rules, and dividing the network
into community sets.

The algorithm based on local expansion assumes that the community is formed
around some seed nodes. Therefore selecting seed nodes is a very important step in
the local expansion method, which plays a crucial role in the quality of the cluster
discovery. Fiala et al. proposed to use the PageRank algorithm to calculate the im-
portance of nodes [23]. The nodes with the largest PageRank value or degree were
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deleted for community discovery. Whang et al. proposed an algorithm to first sort
the nodes in the network by descending order according to the number of neighbors
of the nodes, and then extract the top k nodes with the largest number of neighbors
as seeds for community discovery [18]. Yang and Zhang calculated the node impor-
tance based on the sum of similarities between a node and all its neighbors [24]. The
nodes are ranked in descending order and selected sequentially as unvisited nodes for
community discovery. Shang et al. find seed nodes by calculating the distribution of
similarity communities and obtain neighbouring nodes of similar communities to cor-
rect overlapping nodes according to non-central node correction strategy [25]. The
corrected overlapping communities are finally obtained. Zhang et al. fused topolog-
ical similarity and attribute similarity to find seed nodes and performed community
expansion based on maximising modularity [26]. For the problem of community
discovery in sparse networks, Yue et al. fused the first and second order structure
of nodes to select seed nodes to initialise the network, defined the label selection
mechanism by combining the neighbouring nodes and the label importance, and
updated the labels of nodes [27]. Meng and Liu filtered the community seed nodes
by using relative connectivity coefficients between the vertices [28]. The remaining
vertices are classified into the same sub-community where the nearest and denser
vertices are located.

However, there is a general lack of comprehensive consideration of field properties
such as internal stability of the field in the modeling of gravitational fields. The
method of selecting seed nodes based on global information has a relatively high
time complexity and cannot guarantee the diversity of seeds. To address these
issues, we incorporate the attribute of gravitational force between nodes in the seed
selection phase and local expansion phase respectively. We propose an algorithm for
local expansion community division based on gravity and random wandering ideas.

3 METHOD

This chapter first detects overlapping gravitational fields based on inter-nodal grav-
ity and random wandering ideas. Further optimization is done based on the stability
of the field itself thus obtaining the non-overlapping gravitational field.

3.1 System Framework

To achieve the goal of dividing the emotional gravitational field, we first calculate
and compare the magnitude of the forces on nodes by neighbouring fields. This is
used to delineate and construct the gravitational field based on the value of the inter-
nal stability increment of the gravitational field after the node joins. The algorithm
contains two stages: in the first stage, based on the idea of random wandering, the
gravitational force between nodes is involved via wandering probability calculation.
The N-step transfer probability matrix of nodes is obtained through iteration to get
the gravitational seed set. Extend the gravitational field according to the field’s
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force on the nodes to get the division of overlapping gravitational fields. In the sec-
ond stage, the overlapping fields are fused or separated according to the degree of
field overlap and field stability. Further adjustments are made to the attribution of
nodes in the overlapping fields to obtain the final delineation of the non-overlapping
gravitational fields. The framework of the system is shown in Figure 1.

Figure 1. Framework diagram

3.2 Node Properties Analysis Based on Gravitational Fields

To model the network structure more comprehensively and accurately, this paper
further mines and describes the characteristic properties of the gravitational field
and nodes.

3.2.1 Node Property Characteristics

In this paper, three attributes of nodes are considered: node influence, node sen-
timental tendency value and node quality to fully reflect the importance of nodes
in the network. Based on the law of degree centrality [29], taking into account the
node’s first-order neighbor and second-order neighbor, is expressed in terms of the
node’s topological importance. The node influence formula is expressed as:

inf(ui) =
1

2
(NUi + Σuj∈NUi

NUj), (1)

where NUi denotes the number of nodes ui the number of neighbouring nodes. Inf
denotes the topological importance of a node in the network.

Node sentimental tendency value indicates the sentiment tendency of a user
node towards an event, with positive values signify affirmative emotions, whereas
negative values imply adverse emotions. Node quality is calculated by combining
the topological importance of the user’s nodes and the strength of their sentimental
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tendencies. The larger the node quality, the more important it represents in the
gravitational field. It is represented as:

mi = ω1|USi|+ (1− ω1) inf(vi), (2)

where wi is the weighting parameter for assigning the node quality impact factor.

3.2.2 Characteristics of Gravitational Field Properties

The gravitational field consists of gravitational core nodes and intra-field nodes.
The gravitational core node set Vseed is the set of nodes with the highest local
influence in the field. The intra-field node Gkin refers to the node vi attributed to the
gravitational fieldGk. If node vi belongs to the gravitational fieldGk and has a direct
topologically connected edge with the node uj within the gravitational field Gj, then
vi is said to be an inter-field node Gkbetween

the fields Gk. Inter-field nodes are special
intra-field nodes that are bridges connecting several gravitational fields. They can
be affected by the forces of several gravitational fields. This subsection focuses on
calculating the quality of the gravitational field Mk and its stability Φk.

To accurately reflect the characteristics of social networks that include emotional
propagation, the attribute of emotional energy GSk of the gravitational field is
proposed. It is the sum of the sentimental tendency values of the intra-field nodes,
formula expressed as:

GSk =
∑
ui∈Gk

USi. (3)

Assuming the gravitational field G1 = {ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9}, and let-
ting its sentiment vector be S1 = {0.5, 0.2, 0.3, 0.3, 0.2,−0.3, 0.3, 0.0,−0.5}, then
the field G1 of sentiment energy denotes 1.0 according to formula (3).

The field qualityMk is used to measure the influence position of the gravitational
field in the network. It consists of the value of the gravitational field sentiment
energy and the quality of the nodes, and the formula expressed as follows:

Mk = |GSk|+
∑
ui∈Gk

mi. (4)

Inspired by Shannon’s information entropy formula [30], this paper defines the
emotion entropy σk to measure the degree of sentiment confusion within the gravi-
tational field Gk. The smaller its value the higher the sentiment consistency within
the field and the more stable the field. The formula is expressed as follows:

PPk =
CPk

CPk + CNk

PNk =
CNk

CPk + CNk

(5)

σk = PPk log

(
1

PPk

)
+ PNk log

(
1

PNk

)
,
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where CPk denotes the sum of positive sentiment tendency values, while CNk denotes
the sum of negative sentiment tendency values. PPk and PNk indicate the possibility
of positive and negative sentiment occurring during the propagation of emotions,
respectively.

The topological tightness of a gravitational field is denoted by φk. The higher
value indicates that the nodes in the field are more tightly connected. The equation
is expressed as

φk =

∑
ui∈Gk

|ei|
|Uk| · (|Uk| − 1)

, (6)

where |ei| denotes a field Gk node ui the number of contiguous edges with other
nodes in the field, and |Uk| denotes the number of edges of the field Gk the number
of nodes in the field.

Differences from existing gravitational field models, we denote the field stability
by the emotional entropy and the topological stability. It refers to the tightness of
the connections within the gravitational field.

Φk = ω2σk + (1− ω2)φk. (7)

3.2.3 Characteristics of Force Properties

Not only does the gravitational field exert a force on the nodes external to the field,
but the nodes directly connected to it likewise exert a force on it. The inter-node
force fij is given by the formula:

fij = η· mi ×mj

(lij)2
. (8)

mi and mj represent the masses of nodes ui and uj, respectively. η represents
the polarity of the force between two nodes, which is 1 if they are the same, and −1
if they are different. lij represents the shortest path distance between two nodes.

Here we define skj to denote the topological distance between the gravitational
field Gk and the extra-field node vj:

skj = lij

(
ui ∈ Gk ∩ ui ∈ NU (νj) ∩ inf (ui) = max

um∈NU(νj)
(inf (um))

)
, (9)

where NU (νj) denotes the neighborhood of the node νj, and ui is the node in the
field Gk with the greatest influence on νj.

According to Newton’s formula for universal gravitation [31], the force Fkj of the
gravitational field Gk on the extra-field node νj is computed, which can be expressed
as:

Fkj = η· Mk ×mj

(skj)2
. (10)
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3.3 Gravitational Field Clusters Detection Based on Random Wandering
Method of Inter-Node Gravity

Since the community structure is characterized by close connections between nodes
in the same community and sparse connections between nodes in different com-
munities. This leads to the basic idea of the random walks idea in community
discovery: during random walks, the majority of the wanderer’s walks are to nodes
in the same community. The probability of wandering between different commu-
nities is small. In complex networks, the core node is the most influential node,
which is better able to control the dissemination and flow of information. There-
fore the choice of core node is important. To obtain the core set of nodes, we first
use the inter-node forces as transfer probabilities for directly connected edges in
the network. Based on the random walk idea, the τstep transfer probability matrix
MN is calculated for each node using Markov dynamics. From this a node scoring
matrix SC is calculated, the higher the score on this matrix the more connected
the node pairs are to each other. Secondly, select the top k nodes in the node
scoring matrix as the field core node set Vseed. For its neighbouring nodes, the
inter-node forces are calculated to determine the attribution of the node, thereby
constructing the local gravitational cluster Gseed. For the remaining nodes in the
network, we determine their belonging based on the adaptive function fitness. The
seed field will be expanded and obtain the overlapping gravitational field division
result Ginitial = {Gin1, Gin2, . . . , Gink}. Finally, the non-overlapping judgment of
overlapping emotional gravitational fields is conducted through overlap compar-
isons.

3.3.1 Selection of Gravitational Field Core Nodes

As shown in Figure 2, pick the node v1 in community G1 as the initial extension
node, whose wandering direction has v2, v7, v8 three potential path options. Since
the v1, v2 is in the same community, so the node v1 chooses v2 with the highest
probability. Compared to the community G2, community G1 is the more attractive
to nodes v1. So v1 will choose those nodes in community G1 to wander during this
wandering process.

Figure 2. Schematic diagram of a community divided by random wandering
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To enhance model performance, normalize the inter-node gravitational force fij
and employ it as a walking probability. Represent the direct transition probabilities
between nodes with the transition probability matrix M . The initial probability
distribution vector of the node vi is L

1
i = (fi1, fi2, . . . , fin)

T , then the one-step prob-
ability transfer matrix is:

M =


0 v1 v2 · · · vn
v1 0 f12 · · · f1n
v2 f21 0 · · · f2n
...

...
...

. . .
...

vn fn1 fn2 · · · 0

 , (11)

where fij denotes the force between node vi and node vj.
The parameter h represents the probability that the walker will remain at the

current node. Conversely, 1− h denotes the probability of the walker transitioning
to an adjacent node. In this paper, h is set to 0.15. τ is the threshold of the number
of iterations. Based on the six-dimensional space theory [32], this paper sets τ as 6.
The calculation formula of the τstep probability distribution vector Lτ

i of node ui is:

Lτ
i = (1− h)×M × Lτ−1

i + h× L1
i . (12)

Equation (11) will iterate as the τ increases until reaches the convergence or the
number threshold E1. The node transfer probability matrix MN is represented as:

MN = (LT
1 , L

T
2 , . . . , L

T
n )

T . (13)

According to the τstep probability distribution vector Lτ , obtain the rating vector
SCi for node vi:

SCi =
τ∑

n=1

Ln
i . (14)

Each element SCi(νi, νj) in the vector SCi represents the score of the node vi
upon reaching the node uj after walking τ steps. Taking into account both global
and local information, the model arranges all elements of the node score matrix
SC = (SC1, SC2, . . . , SCn). Select the k core nodes with the largest scores. The
selected core nodes become the core of the cluster in the following stage.

3.3.2 Expansion of Local Gravitational Clusters

Calculate the attraction of the gravitational core node set to its adjacent nodes
according to the field force Equation (8), and the neighbouring nodes affected by the
larger gravitational force are added to the field kernel to form a local gravitational
cluster Gseed.

The fitness function can be effective for community discovery. In this paper, the
fitness function is improved by the field forces. Divide the nodes into clusters that
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make the fitness function increase until every node is divided into this cluster. Thus
we get the overlapping gravitational field set G = {G1, G2, . . . , GN}. The addition of
nodes increases the field force in this field, so the improved adaptive fitness function
based on the gravitational field is expressed as follows:

fitness (Gk) =
Fin

Fin + Fout

, (15)

where Fin denotes the cluster Gk the sum of the internal gravitational forces, and
Fout denotes the sum of the Gk the sum of the external gravitational forces.

3.4 Overlapping Gravitational Field Optimization Algorithm
for Fusion Field Stability

As the cluster expands, a node may belong to multiple gravitational fields. Since
overlapping field is not conducive to the study of group affective convergence, the
following two aspects need to be carried out: (i) to judge the fusion or separation of
overlapping fields; (ii) to distinguish the field affiliation of nodes in the overlapping
fields that need to be separated.

We use Equation (16) in this paper to calculate the field overlapping degree,
where |E (Gi) | denotes the number of nodes in the field Gi.

OL (Gi, Gj) =
|E (Gi) ∩ E (Gj)|
|E (Gi)|+ |E (Gj)|

. (16)

We define a set of overlapping nodes, OLG, and add nodes belonging to more
than one field to the set, OLG = {ol1, ol2, . . . , oln}.

The field delineation and the attribution of overlapping nodes reflect the degree
of overlap and field stability:

• If OL (Gi, Gj) ≥ ε, where shows that the fields Gi and Gj have a high enough
overlap. The algorithm merges two fields (Gi, Gj) and forms a new gravitation
field.

• If OL(Gi, Gj) < ε, the fields Gi and Gj need to be separated, as well as the over-
lapping nodes, which need to be reasonably divided by one of the field uniquely.
The decision on overlapping nodes’ attribution depends on the following rules:
this algorithm uses the increment of the field stability itself as the main factor in
determining the belonging of the nodes. Based on the method, the node is con-
sidered to be beneficial to the optimization of the community structure, when
the addition of a node outside the field will make the increment of field stability
greater than a threshold value. Therefore, this algorithm will calculate sepa-
rately the effect of overlapping nodes oli on the stability of the field Gij stability
and select the node with the largest incremental field stability ∆Φ. The field
with the largest incremental field stability is selected as the unique attribution
of the node.
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Figure 3. Flowchart of GF-CDM1

GF-CDM1: First, the social network model (U, S,E) is established. The node
transfer probability matrix MM is constructed using the inter-node force of
gravity based on the random wandering thought. Thus, the node scoring matrix
SC = (SC1, SC2, . . . , SCn) is calculated to select the top k nodes as seed nodes.
The local gravitational cluster is extended using the adaptive function fitness
of the fusion field force values, and the overlapping gravitational field division
results are output Gin = {Gin1, Gin2, . . . , GinN}. The algorithm for this phase is
divided into two sub-algorithms, i.e. The core node selection algorithm and the
cluster expansion algorithm, whose pseudo-codes are shown as Algorithm 1 and
Algorithm 2.

GF-CDM2: By comparing the degree of field overlap with a predefined threshold,
separation or fusion operations are applied to overlapping fields based on the
results. The output is a non-overlapping gravitational field cluster. The specific
algorithm for this phase is in Algorithm 3.
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Figure 4. Flowchart of GF-CDM2

3.5 Complexity Analysis

Assuming the graph has n nodes. In Algorithm 1, lines 3–8 calculate the gravi-
tational magnitude and one-step transfer probability matrix between nodes in the
network with a time complexity of O(a·n). Here a is the neighborhood size of a sin-
gle node, a << n. Lines 9–17 iteratively compute τ step transfer probability matrix
MN and obtain the node scoring matrix SCi with time complexity is O(τ · n2).
Here τ is the number of iterations with τ << n. Based on the node scoring matrix
SC, the set of field core nodes is selected Vseed with time complexity of O(a· k) as
lines 18–27, where k is the threshold of the number of field core nodes. Therefore,
the total time complexity of the field core node selection algorithm via inter-node
gravity and random wandering is O(τ · n2 + a· (n + k)), which is approximated to
O(τ · n2).

In Algorithm 2, lines 3–12 construct the local gravitational group set Gseed with
a time complexity of O(a·k), where a is the neighborhood size of the field core nodes,
and k is the number of field core nodes. Lines 13–22 extend the local gravitational
field using the adaptive function fitness with a time complexity of O(k·b), where b
is the neighborhood size of the local gravitational cluster. Lines 23–29 determine
the field attribution of free nodes, with time complexity O (k · (n− c)). n is the
number of network nodes, and c is the size of the local gravitational cluster with
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Algorithm 1: Gravitational field core node selection algorithm

Input: Network diagram H = (U,E, S), Neighborhood NU , parameters ω1,
parameters k

Output: Gravitational field core node set Vseed

1 Initialize the node transfer probability matrix MN , node scoring matrix
SCi, Field kernel node set Vseed ;

2 for i = 1 to |E| do
3 for j = 1 to |NUi| do
4 Calculate the nodes according to Equation (9) ui and uj the

gravitational force between fij. uj ∈ NUi ;

5 Normalize fij After normalization, a one-step transfer probability vector
is obtained L1

i ;

6 for i = 1 to |E| do
7 for τ = 2 to ϵ1 do
8 Lτ

i = (1− h)×M × Lτ−1
i + h×mi ;

9 SCi = SCi + Lτ
i ;

10 if Lτ
i == Lτ−1

i then
11 break ;

12 Score Node Scoring Matrix SC = (SC1, SC2, . . . , SCn) ;
13 for nodes in U do
14 if SCi > SCNUi

then
15 vi ∈ Vseed ;
16 U = U − vi − τ −NUi ;
17 cnt = cnt+ 1 ;

18 if U = ∅ or cnt = k then
19 break ;

20 return Vseed ;

a, k ≪ n. Therefore, the total time complexity of the overlapping gravitational
field cluster detection algorithm is O(k · (n+ a+ b− c)), which is approximated by
O(k·n).

In Algorithm 3, lines 3–15 merge two fields with overlapping degrees over the
threshold value with a time complexity of O(k·k), where k denotes the number of
fields. Lines 16–26 determine the attribution of the field to the remaining nodes in
the set of overlapping nodes. Choose the field with the largest incremental stability
∆Φ with a time complexity of O(a·n), where n denotes the number of remaining
nodes, a denotes the number of nodal neighbouring fields. a, k ≪ n. Therefore, the
total time complexity of the non-overlapping gravitational field cluster detection
method is O(a·n+ k· k), which is approximated by O(a·n).
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Algorithm 2: Overlapping Gravitational Field Partitioning Algorithm

Input: Network diagram H = (U,E, St0), Field Node Set Vseed

Output: Overlapping gravitational field division
Ginitial = {Gin1, Gin2, . . . , Gink}

1 Initialize local gravitational cluster sets Gseed = {Vseed}, the set of free
nodes UF = U − Vseed;

2 for i = 1 to k do
3 for j = 1 to NUi do
4 Calculate the gravity fij between the field core node seedi and the

node uj according to Equation (8), uj ∈ NUi;
5 if (fij ≥ ε2) then
6 Adding nodes uj to local gravity group Gseedi ;

7 Local gravitational clusters Gseed = {Gseed1 , Gseed2 , . . . , Gseedk}, and Free
Node Set UF = U −Gseed;

8 for i = 1 to k do
9 for uj ∈ NUGseedi

do

10 if (fitness(Gseedi + uj) > fitness(Gseedi)) then
11 Adding nodes uj to local gravity group Gseedi ;
12 if (uj ∈ UF ) then
13 UF = U − uj

14 while (UF ̸= ∅) do
15 for uj ∈ UF, Gseedk ∈ NUj do
16 ∆fitness(uj) = fitness(Gseedk + uj)− fitness(Gseedk);
17 Select the field with the largest ∆fitness to join;
18 UF = UF − uj

19 return Ginitial = {Gin1, Gin2, . . . , Gink}

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the performance with experiments on four real and five
synthetic network datasets to verify the effectiveness of the proposed GF-CDM. The
processor used in the experiment is a dual-core Intel Core i5 running at 1.8GHz,
and the memory is 8.0GB 1 600MHz DDR3.

4.1 Experimental Dataset

To evaluate the performance of the proposed GF-CDM1 and GF-CDM2 cluster de-
tection models, we experiment on real and synthetic network datasets. The average
value obtained from 10 runs of each simulation is used as the final result.
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Algorithm 3: Non-overlapping gravitational field cluster detection algo-
rithm
Input: Overlapping gravitational field division

Ginitial = {Gin1, Gin2, . . . , Gink}, set of overlapping fields OLG,
overlap threshold parameter ε

Output: Non-overlapping gravitational field division
G = {G1, G2, . . . , GN}

1 Initialize the set of overlapping nodes OLG = {ol1, ol2, . . . , oln}, the set of
overlapping node neighborhood fields NUG ;

2 for i = 1 to k do
3 for j = i to k do
4 if Gini ∩Ginj ̸= ∅ then
5 Calculate the field overlap according to Equation (16)

OL(Gini, Ginj) ;
6 Calculate the field stability according to Equation (7) Φini,inj ;
7 if OL(Gini, Ginj) ≥ ε then
8 Gi = Gini +Ginj −OLGini,inj ;
9 Gini = Gi ;

10 OLG = OLG−OLGini,inj ;

11 while OLG ̸= ∅ do
12 for i = 1 to |OLG| do
13 for j = 1 to |NUG| do
14 Calculated from Equation (7) ∆Φj = ΦGnu−oli − ΦGnu ;
15 k = argmax∆Φj ;

16 Gk = Gk + oli ;
17 OLG = OLG− oli ;

18 return G = {G1, G2, . . . , GN}

1. Real network dataset

• Dolphins [33], the Dolphin Network, is a non-directional social network
formed by regular communication between 62 dolphins living in New Zealand;

• Email-univ [34], which is the topology of an email link between university
colleges;

• Amherst41 [35], which is a network of social friends extracted from Face-
book;

• Advogato [36], which is a social community platform, where user can ex-
plicitly express their weighted trust relationships with each other.

The details of 4 real databases are listed in Table 1.
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Dataset
Number
of Nodes

Number
of Consecutive Edges

Average Clustering
Coefficient

Dolphins 62 159 0.2590
Email-univ 1 133 5 451 0.2202
Amherst41 2 235 90 954 0.3104
Advogato 6 551 51 332 0.2868

Table 1. Basic information on the real data set

2. Synthetic network dataset

Due to the good representation of node degree and community size heterogeneity,
LFR-benchmark is widely used for generating synthetic networks [37]. In this
experiment, five sets of artificially simulated networks were generated using the
LFR-benchmark program, their vertex numbers are 1 000, 2 000, 3 000, 4 000 and
5 000. The basic information of each LFR network is shown in Table 2. The
parameter µ denotes the mixing parameter. The higher the µ of the network,
the more dispersed the community is; the smaller the µ, the more compact the
community is. In the experiments of this paper, it is set to 0.3.

Parameter Name Description Value

N Number of nodes [1 000, 5 000]
µ Mixing parameters 0.3
k Average node degree 20
kmax Maximum node degree 50
Cmax Maximum number of community nodes 100
Cmin Minimum number of community nodes 20

Table 2. Basic information on the LFR artificial network dataset

4.2 Comparison Algorithm

The experiments compared with the following 4 classical community detection al-
gorithms.

• FastQ [38] is a fast modularity optimization algorithm. It merges clusters con-
tinuously depending on the largest increment and the smallest decrement of
modularity to find the optimal graph partition with the maximum modularity.

• LFM [22] is a locally extended overlapping cluster detection algorithm based on
the definition of an adaptive degree function fitness, where a community consists
of a set of nodes that maximize fitness.

• LPA [39] is a label propagation algorithm, the nodes in the network are initial-
ized with different labels, randomly ordered and updated label as the majority
label of its nearest neighbors.
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• WalkTrap [40] is a random walk algorithm that uses a finite steps random walk
process on a network to calculate the probability of one point reaching another
point in the network. The similarity between the two points is also analyzed,
using hierarchical clusters with different levels.

4.3 Evaluation Indicators

This experiment uses modularity, ARI index, and internal average stability as met-
rics for the evaluations.

1. Modularity

Modularity is to measure the effectiveness of community segmentation. When
the similarity of nodes within a community is relatively high and the similarity
of nodes outside the community is relatively low, it is considered a more de-
sirable community detection result. The formula for calculating the degree of
modularity is as follows:

Q =
∑
C

[∑
in

2m
−
(∑

out

2m

)2
]
=

∑
C

[
ec − a2c

]
, (17)

where
∑

in denotes the sum of inter-node forces within the community ci, and∑
out denotes the sum of the external force connected to the community ci

denotes the sum of the external edge weights connected to the community, and
m denotes the sum of the number of edges in all communities, and the higher
the value of the modularity, the better the community detection.

2. ARI Index

ARI is used to evaluate the effectiveness of clustering that denotes:

ARI =

(a11+a01)(a11+a10)
a00

(a11+a01)+(a11+a10)
2

− (a11+a01)(a11+a10)
a00

, (18)

where a11 denotes the number of pairs of nodes belonging to the same community
in both the real and experimental community divisions. a00 is the number of
pairs of nodes that do not belong to the same community in both the real and
the experimental community divisions. a10 is the number of pairs of nodes that
belong to the same community in the real community but not in the experimental
community. a01 denotes the number of pairs of nodes that do not belong to the
same community in the real community but belong to the same community in
the experiment.

3. Internal average stability

φ is used to measure the average stability within a community. Higher values
indicate stronger connections between nodes within the community. The formula
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is expressed as:

φ =
∑
c

∑
ui∈Ck

|ei|
|Uk| · (|Uk| − 1)

/K, (19)

where |ei| denotes a field Gk node ui the number of contiguous edges with other
nodes in the field, and |Uk| denotes the number of edges of the field Gk the
number of nodes within the field, and K denotes the total number of network
communities obtained by the algorithm division.

4.4 Experimental Results

In this section, we will analyze the experimental results. We have chosen modularity
and average stability as the evaluation metrics for real network partitions. As real
network datasets often lack clear ground truth community annotations, we employ
the Adjusted Rand Index (ARI) as the evaluation metric for synthetic network
partitions.

4.4.1 Real Dataset Experimental Results

1. Performances of modularity

As shown in Table 3, the experiment was conducted on four real network datasets
and the results of the communities classified by each algorithm were evaluated
using the modularity metric.

FastQ LFM LPA WalkTrap GF-CDM1 GF-CDM2

Dolphins 0.5048 0.3656 0.3804 0.5137 0.4955 0.5004
Email-univ 0.4847 0.4365 0.4342 0.4866 0.4815 0.4923
Advogato 0.3368 0.2883 0.0537 0.3123 0.3434 0.3375
Amherst41 0.3669 0.3304 0.3120 0.3745 0.3677 0.3750

Table 3. Performances of modularity metrics

From Figure 5, it can be observed that our method performs relatively well,
especially when dealing with a larger number of communities. In most cases,
the results of GF-CDM2 are superior to GF-CDM1. This improvement in mod-
ularity is due to GF-CDM2’s optimization for non-overlapping community par-
titioning based on field stability, building upon GF-CDM1. When the number
of communities is small, WalkTrap is an algorithm that terminates with global
maximization of modularity. Although our method is intermediate, the differ-
ence compared to the optimal results is minimal. Our approach is based on the
LFM algorithm, and the results indicate that our method outperforms LFM in
terms of performance. This demonstrates that the proposed algorithm is based
on iterative random walk algorithms to obtain a probability matrix, from which
a node score matrix is derived. The improvement in field kernel node selection
based on this method is effective.
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Figure 5. Comparison of modularity metrics within each algorithmic community

2. Comparison of average internal stability

This experiment was conducted on four real network datasets, using internal
average stability as an evaluation metric.

The analysis of Figure 6 indicates that the GF-CDM algorithm proposed in this
study, when applied to the Dolphins dataset, exhibits a slightly lower average
stability within communities compared to the WalkTrap algorithm. However,
on other real networks, the modularity of GF-CDM surpasses that of other algo-
rithms. For datasets with a smaller number of nodes, the WalkTrap algorithm,
based on random walks, performs well, with minimal differences compared to the
algorithm proposed in this study. Among the six algorithms, their performance
generally declines on the Advogato dataset. This is primarily attributed to the
less pronounced community structure of the dataset, making it challenging to
achieve effective community partitioning. The proposed algorithm, in its sec-
ond stage, optimizes community partitioning through the fusion of field forces
and field stability, resulting in a significant improvement in the average stability
within communities.
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Figure 6. Comparison of average stability metrics within each algorithmic community

4.4.2 Synthetic Network Experimental Results

This experiment was conducted in five artificial networks generated by the LFR-
Benchmark program, and the community segmentation results of each algorithm
were compared with the community labels in the artificial network dataset for the
ARI metrics, and the experimental results are shown in Figure 7.

Analysis of Figure 7 reveals that, with the increase in network size, the Ad-
justed Rand Index (ARI) of all six algorithms shows a declining trend. However,
the proposed GF-CDM algorithm generally maintains a relatively stable level. This
is attributed to the GF-CDM algorithm’s utilization of sentiment field forces for lo-
cal expansion, coupled with the consideration of the superiority of group interactions
over individual interactions, thus enhancing the quality of community discovery. At
a node count of 3 000, the performance of the proposed algorithm exhibits a slight
decrease compared to FastQ and WalkTrap algorithms, although the difference is
marginal. In contrast to the LFM algorithm, the proposed algorithm demonstrates
a significant improvement, validating the effectiveness of the improvement strategy
that comprehensively considers both global and local information during the selec-
tion of core nodes in the field and the cluster expansion phase. Consequently, this
enhances the quality of clusters obtained by the partitioning algorithm.
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Figure 7. Experimental results of each algorithm in synthetic networks of different sizes

4.5 Discussion

To validate the superior performance of our model in community partitioning, we
conducted experiments covering four real network datasets and five artificially gener-
ated datasets with varying scales. We compared the experimental results with those
of four benchmark algorithms. The results significantly demonstrate the excellence
of our model in terms of modularity, ARI index, and average stability compared to
the benchmark algorithms. This superiority stems from our comprehensive consid-
eration of both global and local information during the selection of field core nodes
and the expansion phase of community clusters in the algorithm. In the second
stage, we optimized community partitioning by integrating field forces and field sta-
bility. The successful implementation of these improvement strategies underscores
our meticulous algorithm design, ensuring the consistency of results.

5 CONCLUSION

In this paper, we introduce the gravitational field theory in physics and propose
a new gravitational field modeling and partitioning method named GF-CDM. First,
it defines the various characteristics of nodes and gravitational fields that contain
emotional properties. Two stages of field model partitioning realize the overlapping
and non-overlapping clusters. The first stage depends on inter-node gravitational
force and random wandering idea, which extends local overlapping cluster discov-
ery. Firstly, we determine the transfer probability matrix through the random walk
idea. The node scoring matrix is calculated according to the transfer probability
matrix to construct the gravitational core node set. The local gravitational cluster
is extended according to the adaptive function of the fusion field force to obtain



66 M. Li, Y. Gu, Q. Zhai, X. Guo, Z. Zheng, C. Guo

the overlapping gravitational field cluster. The second stage fuses field stability
to optimize overlapping gravitational fields. Based on the degree of overlap, the
resulting overlapping fields are fused or separated. The belonging calculation is per-
formed on the overlapping nodes. Non-overlapping gravitational field is obtained.
The proposed model GF-CDM is compared to four benchmark algorithms in terms
of modularity, ARI index, and internal average stability. This model outperforms
the other baselines and is more interpretable. In future work, adequate modeling
of user node characteristics of real networks can be considered to achieve better
partitioning results.
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