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Abstract. Semantic segmentation is one of the key technologies in the development
of autonomous vehicles. Practical applications are increasingly pursuing a balance
between effectiveness and efficiency. Many lightweight segmentation models nowa-
days have some problems, often making it difficult to predict small objects and
edges between different objects. In this work, we propose a model of encoder-
decoder structure, DeliteSeg. Firstly, we added deformable convolutional layers
to the encoder, leveraging the advantages of deformable convolution to enable the
model to better predict object edges. Then we proposed a new deep context aggre-
gation module DLPPM, which improves the context information aggregation ability
by fusing low-resolution feature maps of different scales multiple times, enabling the
model to better predict small objects. Finally, we designed a new lightweight atten-
tion decoder (LMD) that utilizes a spatial channel attention mechanism to refine
feature maps at different levels, effectively recovering information. After extensive
experiments, our network achieved 73.6% mIou and 123.7 FPS on the Cityscapes
dataset and 73.9% mIou and 116.4 FPS on the CamVid dataset. The experimental
results confirm that our proposed model can make appropriate trade-offs between
accuracy and real-time performance.
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1 INTRODUCTION

Semantic segmentation is a dense classification task in computer vision, which as-
signs corresponding labels to each pixel in the input image. It is used in many
aspects of life, including medical image segmentation, autonomous driving, virtual
reality, scene understanding, and so on. With the rise of deep learning technology,
some advanced semantic segmentation methods have made significant progress in
accuracy using convolutional neural networks (CNN). Since the proposal of fully
convolutional network (FCN) [1], many novel networks have emerged. Such as
DeepLab [2], PSPNet [3], DenseASPP [4], RefineNet [5], etc. However, in order
to extract more information, their structures are often complex with too many con-
volutional layers and feature channels. Due to their lack of lightweight, they are
not easy to use in some real-time scenarios. Therefore, designing a lightweight net-
work that can achieve real-time performance and meet accuracy requirements has
always been our goal. Nowadays, many lightweight semantic segmentation methods
have been proposed. In order to achieve high precision and speed, the methods
they use can be roughly divided into two categories: 1. Model compression: achiev-
ing network simplification by simplifying the model and removing its redundant
parts. The main implementation methods include pruning, knowledge distillation,
parameter quantification, architecture design, and dynamic computing. 2. Convolu-
tional decomposition: By using unique convolution methods to reduce the number of
model parameters, such as depthwise separable convolution and group convolution.
Like the classic network MobileNet [6], which uses depthwise separable convolution
to construct the backbone, reducing the number of parameters and running faster
than traditional convolution.

In recent years, the most advanced real-time semantic segmentation models are
mainly divided into dual branch structure, encoder decoder, and multi branch struc-
ture. For encoding and decoding structures, the information extraction ability of
the encoder has a significant impact on the accuracy of the model. In order to better
predict the edge contours between small objects and different objects, many high-
performance information extraction modules have been proposed. STDCNet [7]
designs an efficient and simple feature extraction module called STDC by reducing
the dimensionality of feature maps and utilizing their aggregation for image repre-
sentation. DWRSeg [8] proposes a new efficient feature extraction module, DWR,
to collect detailed semantic information.

In this paper, we propose a new lightweight semantic segmentation method,
DeliteSeg, using an encoding and decoding structure. Our model encoder is com-
posed of deSTDC blocks and utilizes deformable convolution to enhance the mod-
ule’s ability to extract features. We propose the DLPPM module, which enhances
feature aggregation between different pooling layers, allowing the model to obtain
more useful contextual information and better predict small objects. We have de-
signed a new lightweight decoder LMD, which integrates different features multiple
times and uses channel and spatial attention mechanisms to effectively restore fea-
ture maps. Figure 1 shows our comparison results with other networks.
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Figure 1. The comparison of segmentation accuracy (mIoU) and inference speed (FPS)
on the Cityscapes test set. The red mark represents our net.

Our main contributions are summarized as follows:

• We propose the deSTDC module, which improves the STDC module by incorpo-
rating deformable convolutions, enabling the model to better predict the edges
of objects.

• We propose a new deep context aggregation module DLPPM, which enhances
feature aggregation between different pooling layers, enabling the model to bet-
ter predict objects of different scales. In addition, its position is in the low res-
olution stage, so the inference time during network execution will not increase
too much.

• We have designed a new lightweight attention decoder that can effectively recover
information. It adopts a spatial channel attention mechanism to refine feature
maps at different levels and employs multiple fusion methods to restore features.

• Our network achieved competitive results, achieving 73.6% and 73.9% mIoU on
the Cityscapes and CamVid test sets, with FPS of 123.7 and 116.4, respectively.

2 RELATED WORK

In this section, we will review some related works on semantic segmentation, includ-
ing lightweight semantic models, different convolutional methods, attention modules,
and context information extraction module.
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2.1 Lightweight Semantic Network

In real life, many scenarios require efficient and fast semantic segmentation tech-
niques, so lightweight semantic segmentation has begun to develop. The earlier
lightweight network ENet [9] was modified from SegNet [10], which used an asym-
metric network structure and asymmetric convolution to reduce parameters. Later,
ICNet [11] proposed a new image cascade network that utilizes both low resolution
and high resolution information for effective segmentation. ESPNet [12] proposed
an ESP module, which includes point wise convolution and dilated convolution pyra-
mids, which can reduce computational complexity and perform multi domain feature
extraction. BiseNet [13] proposed a dual branch structure network, where the con-
textual branch is used to extract contextual information, the spatial branch is used
to extract spatial information, and finally the information from the two branches
is fused. Both BiseNetv2 [14] and STDC-Seg [7] are improvements based on it,
resulting in more efficient and accurate results.

2.2 Convolution Method

In addition to standard convolution, people have proposed various convolution meth-
ods to better meet their needs. As AlexNet [15] proposed group convolution, it
divides the input feature map of the convolution into multiple groups, and also
divides each convolution kernel into multiple groups. Convolution is performed
within the corresponding groups, which can achieve the goal of reducing parame-
ters. DeepLab [2] proposed dilated convolution, which reduces downsampling steps
by expanding the receptive field, as excessive downsampling can result in informa-
tion loss. MobileNet [6] proposed depthwise separable convolution, which divides
the standard convolution into two steps: depth convolution and point convolution.
This can reduce a large number of parameters, making it more suitable for use in
lightweight networks. ACNet [16] proposed asymmetric convolution, whose core idea
is to decompose the standard convolution and formally utilize spatially separable
convolution to reduce the number of parameters. Deformable Convolutional Net-
works [17] proposed deformable convolution, which works by adding an additional
parameter direction parameter to each element in the convolution kernel. This al-
lows the kernel to expand to a large range during training, allowing it to adjust its
shape according to actual conditions and better extract input features.

2.3 Attention Module

In order to improve the accuracy of the network, people add attention modules to
the model. There are many categories of attention modules, including channels,
space, self attention, etc. SENet [18] proposed the Channel Attention SE module,
which extracts important channel features through average pooling. GeNet [19] also
proposed using spatial attention to mine contextual information between features.
CBAM [20] proposed a model that combines channel attention and spatial attention,



DeliteSeg 75

aiming to enhance the attention ability of convolutional neural networks to images.
DANet [21] proposed the idea of simultaneously introducing self attention into the
channel space attention module. Polarized Self-Attention [22] proposed the PSA
module, which can maintain high latitude in both channel and space to reduce
information loss caused by dimensionality reduction, thereby improving the accuracy
of the model.

2.4 Context Information Extraction Module

Predicting small objects has always been a challenge in semantic segmentation, and
one effective method is to improve the model’s ability to capture contextual informa-
tion. Many models have proposed relevant solutions for this. DeepLab [2] proposed
the ASPP module, which allows the model to capture information at different scales
by using dilated convolutions with different dilation rates, and dilated convolutions
can expand the receptive field. PSPNet [3] proposed the Spatial Pyramid Pool-
ing Module (PPM), which utilizes different pooling kernels for image pooling, and
its performance is better than ASPP. Later, the model utilized self attention to
enhance feature extraction capabilities. Unlike the local characteristics of convolu-
tional kernels, self attention mechanisms are good at capturing global dependencies.
DANet [21] further improves feature representation by utilizing both positional and
channel attention in parallel. Later, Object Context Network (OCNet) [23] utilized
self attention mechanism for scene parsing, which defined object context as a set of
pixels belonging to the same object category. However, the self attention mechanism
also has its drawbacks, as it has high computational complexity. Later, CCNet [24]
proposed the CCA module to replace the self attention mechanism, which is more
effective in obtaining contextual information. PPlitesSeg [25] also proposed the fu-
sion context information module SPPM, which is a simplified version of PPM and
is more suitable for lightweight networks. It improves model speed by removing
unnecessary branches.

3 PROPOSED METHOD

In this section, we will introduce the components of our DeliteSeg, including the
deSTDC module, DLPPM module, and decoder LMD. Our DeliteSeg architecture
design will be discussed at the end of this section.

3.1 DeSTDC Module

Our encoder uses the deSTDC module, which is an improvement from the STDC
module.The STDC module was proposed by STDC-Seg [7]. Its structure is very
simple, consisting of a 1 × 1 size convolutional block and three 3 × 3 size convolu-
tional blocks. During the convolution process, its number of channels will decrease,
and the previous results will be fused at the end of the module to enhance the
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Figure 2. DeSTDC module structure

ability of feature extraction. Its advantage is that it can extract multi-scale fea-
tures with fewer parameter quantities. The commonly used convolution kernels
are square, while the shapes of objects in images are irregular, so block shaped
convolution kernels cannot effectively extract the contour features of objects. The
schematic of deformable convolution is as follows, its convolution kernel adds an
extra direction parameter to each element so that the convolution kernel can be
extended to a large range during training, allowing the convolution kernel to ad-
just its own shape according to the actual situation, and better extract the input
features. Considering deformable convolution improves the accuracy of the model,
but the complexity of the operations reduces the speed of the model. Therefore, we
change the fourth nugget of the STDC module to deformable convolution, where the
number of channels in this layer of the module is less, so the number of parameters
involved is also less, and it does not have too much impact on the model speed.
When the step size is different, the structure of the deSTDC module also varies.
Figure 2 shows the structure of the deSTDC module with step sizes of 1 and 2,
respectively.

3.2 DLPPM Module

We propose a new Deep Context Aggregation Module (DLPPM), which is an im-
proved version of PPM. It processes feature maps through multi-scale pooling, en-
abling the model to better predict small objects. Figure 4 is its internal structure
diagram. Inspired by Res2Net [26], we added three small convolutional blocks to
blend multi-scale contextual information. Additionally, we enhanced the informa-
tion fusion between different branches, further enhancing the module’s ability to
extract context. Firstly, it takes the feature maps of the original image at 1/32 reso-
lution as input, and then generates feature maps of different scales through different
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Figure 3. Deformable convolution

pooling kernels. Then further upsampling the output features, interacting with adja-
cent branches for information exchange, and finally integrating the features through
small convolutional blocks. Finally, the feature map is restored through concatena-
tion and convolution operations. Experimental results have shown that our module
can effectively improve its ability to fuse contextual information.
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3.3 Lightweight Attention Module Decoder (LMD)

We have designed a new decoder (LMD) to restore feature maps, and the perfor-
mance of the decoder is crucial for the entire model. The structure of our decoder
is shown in Figure 6. In order to better restore features, we used two different at-
tention modules, with the spatial attention module (SAM) used to refine low-level
feature maps and the channel attention module (CAM) used to refine high-level
feature maps. We perform channel dimensionality reduction on the output of the
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fourth layer, then use SAM to process it, and additionally use CAM to process
the output of the aggregation context module (DLPPM). Then add the results to-
gether. After upsampling, concatenate with the output of the third layer. Finally,
after passing through several convolutional layers, the image is restored. We have
added several 3 × 3 convolutional layers to the decoder, which are used to fur-
ther mix information. After each 3 × 3 convolutions, BatchNorm and ReLU are
added.

3.3.1 Spatial Attention Module

We use the Spatial Attention Module (SAM) to process low-level feature maps.
As shown in Figure 5, for low-level input Flow ∈ RC×H×W , let us first perform
maximum and mean operations along the channel. Then, concatenate the obtained
feature maps and perform convolution and sigmoid operations to obtain the spatial
attention map Plow. Finally, Plow is multiplied element by element with the input
Flow to obtain a refined feature Mlow.

The calculation formula for spatial attention graph Plow is as follows:

Plow = σ (fconvfcat (fmean, fmax)) . (1)

In formula (1), σ represents the sigmoid function. The shape of the transformed
low-level feature map is represented by C × H ×W becomes 1 × H ×W . fconv is
a regular convolution operation, and fmean and fmax are the mean and maximum
values of channel dimensions, respectively.

Refined features Mlow:
Mlow = P ⊗ Flow. (2)

Among them, ⊗ represents element by element multiplication.

3.3.2 Channel Attention Module

We use Channel Attention Module (CAM) to process high-level feature maps. As
shown in Figure 5, for high-level inputs Fhigh ∈ RC×H×W . The module utilizes max
pooling and average pooling operations to compress the spatial dimension of input
features. Then, concatenate the obtained feature maps and perform convolution
and sigmoid operations to obtain the spatial attention map Phigh. Finally, Phigh

performs a multiplication operation with the input Fhigh to obtain a refined feature
Mhigh.

The calculation formula for channel attention graph Phigh is as follows:

Phigh = σ(fconvfcat(favgpool, fmaxpool)). (3)

In formula (3), σ represents the sigmoid function. fconv is a regular convolu-
tion operation, and favgpool and fmaxpool are average pooling and maximum pooling
operations, respectively.
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Refined features Mhigh:

Mhigh = P ⊗ Fhigh. (4)
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Figure 5. Attention module structure diagram

3.4 Network Structure

The structure of our proposed DeliteSeg is shown in Figure 5 and is listed in Table 1,
which adopts an encoder decoder architecture. It mainly consists of three modules:
an encoder composed of an improved deSTDC module, a deep aggregation module
DLPPM for extracting contextual information, and a lightweight attention decoder
(LMD).

Firstly, our encoder has a total of 5 layers in its structure. Considering the high
computational cost of deformable convolution, we chose to use the deSTDC module
in the last two layers with lower resolution. The first three layers use the same
structure as STDC-Seg [7], consisting of two simple convolutions and one STDC
module layer. Their advantages are simple structure and strong feature extraction
ability. In the last two layers, we chose to add a deformable convolutional deSTDC
module, which can further improve the encoder’s ability to extract features and
better segment the edges of objects.

Secondly, for information aggregation, we used a new deep aggregation context
module DLPPM, which inputs low resolution feature maps, extracts multi-scale
context information, and concatenates them in a cascading manner to generate
features containing global context information.

Finally, we use an LMD decoder to restore the feature map. LMD adopts
different attention mechanisms for different levels of feature mapping, which can
produce more accurate output.
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Figure 6. Network structure

Module Composition Channel Number Output Size

Stage1 3× 3 Conv 32 256× 512
Stage2 3× 3 Conv 64 128× 256
Stage3 2× STDC module 256 64× 128
Stage4 2× deSTDC module 512 32× 64
Stage5 2× deSTDC module 1 024 16× 32
DLPPM DLPPM 128 16× 32
LMD LMD Number classes 512× 1 024

Table 1. The structural composition of DeliteSeg

4 EXPERIMENTS

In this section, we will first introduce the two datasets used in the experiment,
Cityscapes and CamVid datasets. Then, introduce the parameter settings and ex-
perimental process of our experiment. Subsequently, we will conduct ablation ex-
periments on the improved module and analyze the results. Finally, we will compare
the performance with other models.

4.1 Datasets

Cityscapes: The Cityscapes dataset is a semantic segmentation dataset that fo-
cuses on urban scene analysis. There are a total of 5 000 images in the Cityscapes
dataset, of which 2 975 are used for network training, 500 are used for net-
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work validation, and 1 525 are used for network testing. It is used for se-
mantic segmentation tasks in 19 categories. Its each image size is 1 024 ×
2 048.

CamVid: The CamVid dataset is another famous urban scene dataset. It has a to-
tal of 701 images, of which 367 are used for training, 101 are used for validation,
and 233 are used for testing. The image size of the CamVid dataset is 720×960.
It is used for semantic segmentation tasks in 11 categories.

4.2 Training and Inference Settings

Training settings: We select the Random Gradient Descent (SGD) algorithm with
a momentum of 0.9 as the optimizer. We also adopted a preheating strategy and
a “multiple” learning rate scheduling. The training rounds for both datasets are
1 000 rounds. For Cityscapes, the batch size is 10, the initial learning rate is
0.005, and the weight decay in the optimizer is 5e−4. For CamVid, the batch
size is 16, the initial learning rate is 0.01, and the weight decay is 1e−4. For
data augmentation, we use random scaling, random cropping, random horizontal
flipping, random color jitter, and normalization. The random scale ranges of
Cityscapes and CamVid are [0.125, 1.5], [0.5, 2.5], respectively. The cropping
resolution of Cityscapes is 512 × 1 024, CamVid has a cropping resolution of
720× 960.

Inference settings: For the Cityscapes dataset, adjust the image size to 512 ×
1 024, then the inference model generates a predicted image from the scaled
image, and finally adjusts the predicted image to the original size of the input
image. The time required for these three steps is calculated as inference time.
For CamVid, the input image resolution is 720× 960.

All experiments are conducted on NVIDIA RTX 3090 GPU, CUDA 11.6,
CUDNN v8, PyTorch platform, Ubuntu 20.04 operating system, and 32GB memory
environment.

4.3 Quantitative Analysis

In this section, we conducted ablation studies on the deSTDC module, DSPPM
module, and decoder LMD to verify the effectiveness of the proposed modules. We
conducted all ablation experiments on the Cityscapes dataset.

4.3.1 The Ablation of DeSTDC Modules

Our encoder is mainly composed of deSTDC modules. Due to the time-consuming
operation of deformable convolution, in order to achieve a balance between accu-
racy and speed, the number of deSTDC modules should be appropriate. We de-
signed ablation experiments to determine whether selecting different numbers of
deSTDC modules would affect network performance. From Table 2, it can be seen
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that adding a deformable convolutional layer to the STDC module can improve
the performance of the benchmark network, although the number of parameters
may increase slightly. When the deSTDC module is used in the last three layers of
the encoder, the parameter count increases by 0.22 M, resulting in the best model
performance. However, due to the slightly more computational complexity of de-
formable convolution compared to regular convolution, the speed of the model is
not fast. When using a layer of deSTDC module, the number of model parame-
ters increased by 0.06 M and mIoU increased by 0.3%, but the improvement was
not significant. Therefore, we choose to use the deSTDC module in the last two
layers of the encoder to achieve a balance of speed accuracy. Compared to the base-
line, our parameter count has increased by 0.12 M, but our mIoU has increased by
0.7%.

Method FPS mIoU (%) Parameters (M)

DeliteSeg-Baseline 202.6 72.9 6.49
Baseline (deSTDC = 2) 146.5 73.2 6.54
Baseline (deSTDC = 4) 123.7 73.6 6.61
Baseline (deSTDC = 6) 87.2 73.8 6.71

Table 2. Experiment results on deSTDC modules

4.3.2 The Ablation of DLPPM Module

We compare DLPPM with Pyramid Pooling Module (PPM), Simple Pyramid Pool-
ing Module (SPPM), and Self-Attention Module (Base OC), all of which enhance
the model’s ability to obtain contextual information. From the results of Table 3, it
can be inferred that compared to other modules, the DLPPM module can achieve
better performance in the model. Compared to the PPM module, the mIoU of the
model has been improved by 0.5 points. Compared to the SPPM module, the model
mIoU has been improved by one point. Compared to the Base OC module, the
mIoU of the model has been improved by 1.7 points. Compared to other modules,
our DLPPM adds several internal convolutions to better fuse features from differ-
ent branches, improving the model’s ability to extract contextual information and
better predict small objects.

Model Module Flops Parameters mIoU
PPM SPPM Base-OC DLPPM (G) (M) (%)

DeliteSeg
√

9.06 6.46 73.1
DeliteSeg

√
8.94 6.39 72.6

DeliteSeg
√

8.62 6.15 71.9
DeliteSeg

√
9.12 6.61 73.6

Table 3. Experiment results on DLPPM modules
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4.3.3 Decoder LMD Ablation

Decoder LMD is used to restore feature maps. We compare LMD with decoders of
other models, using metrics such as intersection to union ratio (mIoU) and FPS.
From Table 4, it can be seen that when using LMD, the mIoU of DeliteSeg reaches
73.6%. Compared to the PPliteSeg’s decoder, it has improved by 0.7 points, and
the decrease in speed is also very small. Compared to DABNet’s decoder, it has
improved by 1.8 points. Compared to LRASPP, it has improved by 1.4 points.
Compared to other decoders, our LMD utilizes both spatial attention module and
channel attention module. In addition, we added convolutional layers to fuse the fea-
ture maps multiple times, further restoring the features. Therefore, we can conclude
that a decoder (LMD) using two attention modules and multiple fusion methods can
improve segmentation accuracy.

Method Decoders Flops Parameters FPS mIoU
DABNet PPliteseg LRASPP LMD (G) (M) (%)

DeliteSeg
√

8.05 5.56 153.7 71.8
DeliteSeg

√
8.43 6.02 127.2 72.9

DeliteSeg
√

8.43 5.78 142.3 72.2
DeliteSeg

√
9.12 6.61 123.7 73.6

Table 4. Experiment results on LMD modules

5 COMPARISONS WITH OTHER WORKS

In this section, we compare the performance of DeliteSeg with some existing semantic
segmentation methods on the test sets of two datasets and analyze the advantages
of our network.

5.1 Comparisons on Cityscapes

Based on previous training and inference settings, we have chosen some networks
with the same settings as much as possible for comparison. Including STDC1-
Seg50 [7], ENet [9], ESPNet [12], BiSeNet V1 [13], PPliteSeg-T1 [25], etc. In ad-
dition, we also compared some traditional precision-oriented semantic segmentation
networks, such as DeepLabV2 and RefineNet, to show the progressiveness of our
DeliteSeg.

To provide a comprehensive comparison, Table 5 provides model information
for various methods, input resolution of images, forward inference speed (FPS),
and accuracy (mIoU), etc. As shown in Table 5, our DeliteSeg achieves 73.6%
mIoU at a speed of 123.7 FPS. Compared with some lightweight real-time semantic
segmentation methods, our network has made some progress in mIoU. Compared
with DFANet-A’ [27], our mIoU has increased by 3.3%, the parameter count has
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decreased by 1.19 M, and the model’s Flops has increased by 5.72 G, making our
network lighter and more efficient. Compared with STDC1-Seg [7], our model has
decreased FPS but increased mIoU by 1.7%. Compared with PPliteSeg-T1 [25],
our model has increased mIoU by 1.6%. We have also compared with some large
models. Compared to DeepLabV2 [28], our mIoU has increased by 3.2% and FPS
is much faster. Compared to RefineNet [5], our network has achieved the same level
of accuracy. But our speed and parameter count are better than it.

We also visually compared the results on the urban landscape validation set,
as shown in Figure 7. From the figure, it can be seen that our DeliteSeg performs
better in recognizing small objects and object edges than PPliteSeg-T1 [25]. Based
on the above discussion, it can be concluded that our DeliteSeg achieves a good bal-
ance between segmentation accuracy and operational efficiency on urban landscape
datasets.

a) Input image b) Ground truth c) PPliteSeg-T1 d) DeliteSeg

Figure 7. Visualized segmentation results on Cityscapes val set

5.2 Comparisons on CamVid

We also compared it with other models on CamVid. The image resolution used for
inference is 720× 960. Table 6 provides information on various methods, including
pre training, speed (FPS), and accuracy (mIoU). From the table, it can be seen
that our DeliteSeg performs well in terms of speed and accuracy. It reached 73.9
mIoU at a speed of 116.4 FPS. Compared to STDC1-Seg50 [7], the speed is slightly
lower, but the accuracy is improved by 0.9%. Compared to BiSeNet V2 [14], the
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Model Encoder Resolution GPU mIoU (%) FPS Flops Para-
val test (G) (M) meters

ENet
[9]

– 512× 1 024 TitanX – 58.3 76.9 4.4 0.4

ICNet
[11]

PSPNet50 1 024× 2 048 TitanX M – 69.5 15.4 28.3 26.5

ESPNet
[12]

ESPNet 512× 1 024 TitanX – 60.3 113 3.5 0.4

DFANet-A’
[27]

Xception A 512× 1 024 TitanX – 70.3 100 3.4 7.8

CAS
[29]

– 768× 1 536 TitanXp – 70.5 108.0 – –

BiSeNet V1
[13]

Xception39 768× 1 536
GTX
1080Ti

69.0 68.4 105.8 14.8 5.8

BiSeNet V2
[14]

– 512× 1 024
GTX
1080Ti

73.4 72.6 156 55.3 49

STDC1-Seg50
[7]

STDC1 512× 1 024
GTX
1080Ti

72.2 71.9 250.4 – –

PPliteSeg-T1
[25]

STDC1 512× 1 024
GTX
1080Ti

73.1 72.0 273.6 – –

Fast-SCNN
[30]

– 1 024× 2 048 TitanXp 68.6 68.0 123.5 – 1.1

DeepLabV2
[20]

– 512× 1 024
RTX
2080Ti

– 70.4 1 457 4

LMANet
[31]

– 512× 1 024
RTX

3090 – 70.6 112 – 0.95

RefineNet
[5]

ResNet101 512× 1 024
RTX
3090

– 73.6 9 428.3 118.1

DABNet
[32]

– 1 024× 2 048
RTX
3090

– 70.1 191 27.7 0.76

FBSNet
[33]

– 512× 1 024
RTX
3090

– 70.9 24 9.7 0.62

SeaFormer
[34]

– 512× 1 024
RTX
3090

– 72.2 45.2 – 8.6

DeliteSeg – 512× 1 024 RTX 3090 74.8 73.6 123.7 9.12 6.61

Table 5. Comparison with other semantic segmentation methods on Cityscapes test set
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accuracy has increased by 1.5%. Compared to AGLNet [35], DeliteSeg achieves
faster speed and higher accuracy. In addition, we conducted a visual comparison
with PPliteSeg-T1 [25] on the CamVid test set, as shown in Figure 8.

Model Pretrained GPU mIoU (%) FPS

ENet [9] – TitanX 51.3 61.2
DFANet-A [27] ImageNet TitanX 64.7 120
SFNet [35] ImageNet RTX 3090 72.58 134
SwiftNet [36] – GTX 1080Ti 72.58 –
BiSeNet V1 [13] – GTX 1080Ti 65.6 175
AGLNet [37] – RTX 3090 69.4 90.1
TD4-PSP18 [38] ImageNet RTX 3090 72.6 25
STDC1-Seg [7] – RTX 3090 73.0 197.6
PPliteSeg-T1 [25] – RTX 3090 73.3 222.3

DeliteSeg – RTX 3090 73.9 116.4

Table 6. Comparisons results on CamVid dataset with other works

a) Input image b) PPliteSeg-T1 c) DeliteSeg

Figure 8. Visualized segmentation results on CamVid test set
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6 CONCLUSION

In order to better predict small objects and object edges, this paper proposes a new
lightweight semantic segmentation method called DeliteSeg. Our model consists of
three main components: deSTDC block, DLPPM, and LMD. The deSTDC block
adds deformable convolution to the STDC module to enhance its ability to extract
features. The DLPPM module is mainly used to obtain more useful contextual
information to better predict small objects. The decoder LMD restores feature
maps by using channel space attention modules and using multiple feature fusion
methods. We also designed a series of ablation experiments to verify the effectiveness
of each module. We also conducted some comprehensive comparisons with other
methods on the Cityscape and CamVid datasets. Specifically, our DeliteSeg achieved
73.6% and 73.9% mIoU on the aforementioned dataset, with FPS of 123.7 and
116.4, respectively. In summary, our network has achieved a good balance between
segmentation accuracy and efficiency.
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