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Abstract. Few-shot semantic segmentation is a challenging task aimed at seg-
menting new objects in the query image with only a few annotated support images.
Most advanced methods for this task mainly focus on either global or local proto-
type learning through global average pooling (GAP) or clustering. However, due to
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the limitation of average and cluster operation, these methods still fail to exploit
the object information from support images entirely. To address these limitations,
we propose a generalization of prototype learning in the frequency domain through
multi-frequency pooling (MFP) to mine both local and global object information.
Based on the MFP, we further build a Frequency Prototype Network (FPNet) con-
sisting of three novel designs. Firstly, the Frequency Prototype Generation Module
(FPGM) extracts frequency prototypes by MFP in the DCT domain to provide
complete object guidance information. Then, the Prior Attention Mask Module
(PAMM) produces a prior attention mask to identify a query target more precisely
and retain high generalization. Finally, the Frequency Prototype Selection Mod-
ule (FPSM) selects the most effective support prototypes to reduce redundancy.
Extensive experiments on PASCAL-5i and COCO-20i demonstrate that our model
achieves state-of-the-art performances in both 1-shot and 5-shot settings.

Keywords: Few-shot segmentation, few-shot learning, prototype learning, fre-
quency domain learning

1 INTRODUCTION

In recent years, significant progress has been made in various computer vision tasks,
particularly in semantic segmentation [1, 2, 3], owing to the remarkable advance-
ments of deep convolutional neural networks [4, 5, 6]. Semantic segmentation aims
to assign each pixel to a specific class. However, traditional semantic segmentation
heavily relies on large amounts of annotated images [7], which are time-consuming
and labour-intensive. Furthermore, when there is a lack of densely annotated train-
ing images, the performance of these frameworks drops dramatically.

To tackle this issue, the few-shot image segmentation [8, 9, 10, 11, 12] is proposed
to segment novel class objects in a query image with one or a few annotated support
images. The keys to the few-shot image segmentation are:

1. How to mine the support object information to guide the segmentation of query
images;

2. How to generalize the trained model to the novel classes.

For the first key, most current methods [13, 14, 15, 16, 17] usually extract only
a single prototype by masked global average pooling (GAP) from support images
to store the object information and guide the segmentation process, as shown in
Figure 1 a). However, the single prototype is prone to losing object details, essential
clues for complete segmentation. Later, as shown in Figure 1 b), some methods [18,
19] extract prototypes by clustering the local features. Unfortunately, they ignore
the global recognition of the object. Besides, other models [20, 21, 22] concurrently
make predictions for both the support and query images to find the co-occurrent
objects or mine lost critical information. However, the support image prediction
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Figure 1. Illustrating the model difference between a) the global prototype model, b) the
local prototype model, and c) the proposed multi-frequency prototype model. The global
prototype model produces a single prototype by average pooling from the global perspec-
tive, and the local prototype model produces multi prototypes by clustering from the local
perspective. In contrast, we utilize different frequency components to generate multi pro-
totypes by multi-frequency pooling from global and local perspectives.

often increases the burden of the model and leads to more parameters toward base
classes. For the second key, some existing models [14, 23, 24] retain the generalization
with the attention map. However, these attention maps also have several limitations,
like positioning imprecisely [14], introducing excessive learnable parameters [23],
incurring background noises [24], etc. This paper investigates the two keys from the
frequency domain to address the above problems.

For the first key, we generalize prototype learning in the frequency domain and
propose multi-frequency pooling (MFP). Compared to GAP and clustering, MFP
entirely mines the support object information with some frequency components of



Few-Shot Semantic Segmentation with Frequency Prototype Learning 95

a) Original image b) Map 0

c) Map 1 d) Map 2

Figure 2. Visualization of activation maps generated by multi-frequency pooling. Map 0
generated from DCT0 focuses on the global features like the airplane’s fuselage, but Map 1
and Map 2 generated from DCT2 and DCT5 pay more attention to the local features like
the empennage and wheel of the airplane. Note that Map 0 is equal to the map generated
by GAP. Best viewed in color.

discrete cosine transform (DCT) from both a global and local perspective. As shown
in Figure 2, MFP guides the activation of global and local features in the target
image, e.g., the fuselage, empennage, and wheel in the airplane, while GAP only
guides the activation of the fuselage. Moreover, MFP also focuses on the object
edge and background information ignored by GAP and clustering (Figure 9 shows
more details about MFP). Based on the MFP, we propose Frequency Prototype
Generation Module (FPGM) to generate frequency prototypes containing complete
and rich support image information.

For the second key, we propose the Prior Attention Mask Module (PAMM) to
obtain a prior attention mask for query images by uniting the different frequency
prototypes. Different from previous attention maps [14, 23, 24], our prior attention
mask is training-free, more precise, and less noisy. Specifically, we utilize the mid-
level features and some low background similarity frequency prototypes to produce
the fine attention mask for the query image, which contains both the global and local
information of the object. However, this mask also incurs background noise similar
to the target features. Therefore, we use the high-level features to obtain the coarse
prior attention mask to filter the noise in the background. By combining the fine
prior attention mask and the coarse prior attention mask, we get the final mask to
enhance the model’s generalization capability and improve the model’s segmentation
performance.

Based on the two modules proposed above, we establish the Frequency Prototype
Network (FPNet), as shown in Figure 1 c). Moreover, to reduce model complexity
and computational burden, we introduce the Frequency Prototype Selection Module
(FPSM) in FPNet to select the most representative prototypes (base prototype and



96 C. Wen, H. Hui, Y. Ma, F. Yuan, H. Zhu, P. Zhu

complement prototype) from all frequency prototypes. The base prototype contains
the global object information from the low-frequency component and the comple-
ment prototype compresses the object details from the other frequency components.
Given the prior attention mask, query features, and prototypes, we use the FEM [24]
to predict the final query results.

In summary, the main contributions of this paper are listed as follows:

• To overcome the limitation of average and cluster operation, we generalize tradi-
tional GAP in the frequency domain and propose a novel multi-frequency pool-
ing (MFP) method. It not only inherits the merits of GAP to capture inherent
global features of the object but also focuses on local details.

• We propose the Prior Attention Mask Module (PAMM) to generate a prior at-
tention mask established on frequency prototypes. This mask can help to focus
on the query target more precisely and enhance generalization capability. To
improve the model efficiency, we propose Frequency Prototype Selection Mod-
ule (FPSM) that selects the most effective guidance prototypes from all the
frequency prototypes.

• Our FPNet achieves the state-of-the-art results on PASCAL-5i and COCO-20i

datasets. Extensive experiments validate the effectiveness of each component in
our FPNet.

2 RELATED WORK

2.1 Semantic Segmentation

Semantic segmentation has achieved astonishing success in recent years, aiming to
classify each image pixel based on large-scale labeled datasets [25, 26]. Most seman-
tic segmentation methods are based on a fully convolutional network (FCN) [1] that
replaces the fully connected layer with the convolution layer. Then, the state-of-the-
art models are typically attentive to the larger receptive field [27, 28], the multi-scale
feature aggregation [2, 29], and the encoder-decoder architecture [3, 30, 31, 32]. For
example, DeepLab [27, 28] uses dilated convolutions to capture a larger context and
design an Atrous Spatial Pyramid Pooling (ASPP). PSPNet [2] utilizes a Pyramid
Pooling Module (PPM) to fuse multi-scale features. U-Net [3] proposes a symmetric
encoder-decoder network to reconstruct high-resolution prediction maps. However,
powerful traditional segmentation models cannot generalize well with a few anno-
tated samples when segmenting objects of unseen classes.

2.2 Few-Shot Segmentations

In contrast to traditional semantic segmentation, few-shot segmentation is estab-
lished to segment new classes in an image with only a few support examples.
OSLSM [8] firstly proposes a two-branch network to solve the task, which con-
sists of the condition branch to extract object information from the support images
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and the segmentation branch to segment the object in the query images with the
guidance of extracted information. Inspired by prototypical networks, PL [13] learns
the prototype by GAP from the support set to segment query targets. The subse-
quent works [14, 15, 16, 17, 20] follow the prototype-based methods. SG-One [17]
computes the cosine similarity to build the relationship between the guidance in-
formation and the query features to improve the prediction. PFENet [14] over-
comes spatial inconsistency by designing the Feature Enrichment Module (FEM)
to enrich query features with support features and prior masks adaptively. How-
ever, all the above approaches use a single prototype from the GAP, represent-
ing only the global support image information. Later studies [24, 33, 18, 34] fo-
cus on multiple prototypes to enhance the single prototype model. Based on the
expectation-maximization (EM) algorithm, RPMM [33] generates multiple proto-
types correlating diverse image regions. REF [24] harvests sufficient and pros-
perous guidance from global, peak, and adaptive embedding. However, they fail
to recognize the object from global and local perspectives. Besides, some stud-
ies [21, 22] generate prototypes from other perspectives to capture more informa-
tion. SCL [21] mines the lost critical information and aggregates both primary
and auxiliary support vectors for better segmentation performance. DPCN [22] uti-
lizes the visual reasoning results of support images to derive many different ?prox-
ies? from a broader episodic perspective. However, the additional prototypes are
generated by predicting the support image, leading to excessive learnable parame-
ters and generalization ability reduction. Unlike all the existing few-shot semantic
segmentation methods, we produce multiple prototypes in the frequency domain
that could capture rich and complete object features without learnable parame-
ters.

2.3 Frequency Domain Learning

Frequency analysis has been widely adopted to process image tasks in recent years.
Some studies [35, 36] introduce frequency information into the model to reduce com-
plexity or boost reasoning. In [36], the proposed method applies a learning-based
dynamic channel selection strategy to remove the trivial frequency components in
the input. Gueguen et al. [35] directly compute the block-wise DCT coefficients
as part of the JPEG codec to accelerate image processing in the training stage.
Other studies [37, 38, 39, 40] focus on the performance of the low-frequency and
high-frequency components. Wang et al. [39] show that CNN may capture high-
frequency components (HFC) to improve accuracy, which is misaligned with hu-
man visual preference. The research in [40] demonstrates that CNN shows a more
significant bias towards learning low-frequency local features than humans. SF-
TransT [37] jointly models Gaussian spatial prior and low-/high- frequency in-
formation for visual object tracking. MSFS-Net [38] restores the high-frequency
features and retains the low-frequency features during the process of deblurring.
Besides, FcaNet [41] proposes a novel multi-spectral channel attention in the fre-
quency domain. DoG-LSTM [42] integrates a pyramid of Difference of Gaussians
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(DOG) to attenuate high-frequency local components in the feature space and re-
duce the inductive texture bias on CNNs. SSAH [43] introduces the low-frequency
constraint to limit perturbations within high-frequency components to ensure per-
ceptual similarity between adversarial examples and origin. In this paper, our work
focuses on prototype learning in the frequency domain to enhance the prototype
representation.

3 METHOD

In this section, we introduce the proposed FPNet for few-shot image segmenta-
tion. Firstly, we introduce the task definition and illustrate the overall network
architecture of FPNet from a global perspective. Then, we describe three mod-
ules of FPNet in detail, respectively: the Frequency Prototype Generation Module
(FPGM), the Prior Attention Mask Module (PAMM), and the Frequency Proto-
type Selection Module (FPSM). Finally, we elaborate on the k-shot setting in FP-
Net.

3.1 Task Definition

We follow the standard few-shot semantic segmentation setting [8, 14]. The dataset
is divided into a training set Dtrain and a testing set Dtest. The classes in the training
set Dtrain are named base classes Cbase, and the classes in the testing set Dtest are
named novel classes Cnovel, Cbase ∩ Cnovel = ⊘. In episodes, the model is trained on
Cbase. After that, it is directly tested on Cnovel. Each episode is formed by a support
set S and a query set Q of class C. The support set S has k support images Is, and
the query set Q has only one query image Iq, which is called the k-shot segmentation
task. Specifically, S = {(I is,M i

s)}ki=1 contains the support images I is ∈ RH×W×3 with
their corresponding ground truth annotations M i

s ∈ {0, 1}H×W , and Q = {(Iq,Mq)}
contains the query image Iq and its mask Mq ∈ {0, 1}H×W . Note that Mq is in-
visible to the model and is used to evaluate the prediction on the query image in
each episode. During the training, the model is trained on Dtrain = {(Is/q,Ms/q)} in
Cbase. Then, the trained model is generalized to Cnovel with Dtest = {(Is/q,Ms/q)}
in the testing stage.

3.2 FPNet

In this paper, we propose the frequency prototype network (FPNet) for few-shot
semantic segmentation, as shown in Figure 3. FPNet addresses the incomplete
support-guided information problem caused by the limitation of GAP and cluster-
ing. To this end, FPNet generates multiple prototypes in the DCT domain from
global and local perspectives. Based on comprehensive and informative frequency
prototypes, FPNet further produces a prior attention mask and selects the most rep-
resentative frequency prototype to enhance the generalization ability and improve
the segmentation performance.
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Figure 3. Overview of our proposed FPNet for few-shot segmentation. Our model mainly
consists of a pretrained feature extractor, a Frequency Prototype Generation Module
(FPGM), a Prior Attention Mask Module (PAMM), a Frequency Prototype Selection
Module (FPSM), and a FEM [14]. Specifically, FPGM (green) first generates all fre-
quency prototypes by multi-frequency pooling in the DCT domain from the global and
local perspectives. Then, a prior attention mask is obtained by PAMM (orange) to retain
the high generalization. Next, FPSM (purple) selects the most representative prototype
from all frequency prototypes. Finally, the fusion of the prior attention mask, support
guided prototypes, and query feature are fed into the FEM (black) for the final query
segmentation mask prediction.

Firstly, the support image Is and query image Iq are fed into the feature ex-
tractor, like the backbone of VGG [5] and ResNet [4], to extract multiple-level
features. Similar to the previous few-shot segmentation work [14, 44], the feature
extractor is pre-trained on ImageNet [45] and fixed during the training and testing
process.

Then, the feature of different levels in the backbone is sent to different modules,
respectively. CANet [16] proposes that block3 in the feature extractor performs the
best when a single block is used. As a result, we feed the support features of block3
(FM

s3 ) and the support mask Ms into the Frequency Prototypes Generation Module
(FPGM) to obtain all frequency prototypes PM

All, described in Section 3.3.

Previous studies prove that the semantic information contained in the high-
level feature is more class-specific [14], and the block3 generalizes better to unseen
classes [16]. Therefore, the block4’s high-level feature (FH

s/q) and the block3’s mid-

level feature (FM
s3/q3) are inputted into the Prior Attention Mask Module (PAMM).

Meanwhile, we also feed PM
All and Ms into PAMM. After that, we get the outputs of

this module: the prior attention mask MA, all support frequency prototype masks
MAS, and the T lowest background similarity prototype indexes IDT . Section 3.4
shows the details of PAMM.
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CANet [16] also proposes that when multiple blocks are used for comparison,
the combination of block2 and block3 achieves the best segmentation result. So we
adopt the mid-level features of block2 (FM

s2/q2) and block3 (FM
s3/q3) to generate the

Conv Feature FC
s/q for bringing more object information. With the input: MAS,

IDT , Ms, and FC
s , the Frequency Prototype Selection Module (FPSM) generates

the base prototype PC
b and the complement prototype PC

c . Section 3.5 illustrates
this procedure.

Finally, we expand PC
b and PC

c to the same shape as the FC
q and concatenate

them with MA under the channel dimension to get the final concatenated feature Ff .
It is taken as the input of the Feature Enrichment Module (FEM) [14] to produce
the final predicted query output M

′
q.

During training, the segmentation network is optimized end-to-end, driven by
the Binary Cross Entropy (BCE) loss between the ground truth and the segmenta-
tion mask L(Mq,M

′
q).
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3.3 Frequency Prototype Generation Module

To fully mine support object information from the global and local perspective,
we introduce multi-frequency pooling and propose FPGM. Figure 4 illustrates the
details of our FPGM. Specifically, the support feature FM

s3 ∈ Rh×w×c is first multi-
plied with the ground-truth support mask Ms ∈ {0, 1}h×w to filter out background
features. The resulting feature FM ′

s3 ∈ Rh×w×c is generated as:

FM ′

s3 = FM
s3 · [Ms = 1], (1)
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where the Ms is resized to the same size as FM
s3 . The Ms = 1 denotes that the pixel

at the corresponding spatial position is class C. The [·] is the Iverson bracket that
equals 1, if the condition in square brackets is satisfied, otherwise, it equals 0.

Then, the expanded DCT bases B, the variant of the basic DCT formula, is
computed as:

B = {B0, B1, . . . , BN−1}, (2)

Bt = Expand(DCT(u, v)), t ∈ {0, 1, . . . , N − 1},

u ∈ {0, 1, . . . , K − 1} × h̄, v ∈ {0, 1, . . . , K − 1} × w̄,

h̄ = ⌊h/K⌋, w̄ = ⌊w/K⌋, N = K ×K, (3)

where Bt ∈ Rh×w×c means the tth of the bases B ∈ RN×h×w×c; h and w represent the
height and width of Bt, same as FM ′

s3 . The 2D DCT frequency space is divided into
K×K parts (as illustrated in [22], K = 7), so h and w are also resized into h̄ and w̄.
Moreover, Expand(·) denotes expanding to the same channel as FM ′

s3 . DCT(u, v) is
the value of DCT at the corresponding generalized frequency (u, v):

DCT(u, v) = α(u)α(v) cos

(
πu

h

(
i+

1

2

))
cos

(
πv

w

(
j +

1

2

))
, (4)

α(x) =

{
1, x = 0,√
2, x ̸= 0,

i ∈ {0, 1, . . . , h− 1}, j ∈ {0, 1, . . . , w − 1}, (5)

where α(u) and α(v) are the coefficients of DCT(u, v), and their value are obtained
by Equation (5). i and j represent the spatial position in the Bt.

Finally, FM ′
s3 is duplicated to n copies and multiplied with the corresponding

expanded DCT bases B respectively to produce all support frequency prototypes
PM
All, which is called the multi-frequency pooling (MFP) in the DCT domain:

PM
All = {PM

0 , PM
1 , . . . , PM

N−1}, (6)

PM
t =

∑h
i=1

∑w
j=1 F

M ′
s3 (i, j) ·Bt(i, j)∑h

i=1

∑w
j=1[Ms(i, j) = 1]

, (7)

t ∈ {0, 1, . . . , N − 1},
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PM
0 =

∑h
i=1

∑w
j=1 F

M ′
s3 (i, j) ·B0(i, j)∑h

i=1

∑w
j=1[Ms(i, j) = 1]

=

∑h
i=1

∑w
j=1 F

M
s3 (i, j) · [Ms(i, j) = 1]∑h

i=1

∑w
j=1[Ms(i, j) = 1]

, (8)

B0 = Expand(DCT(0, 0)),

where the PM
t ∈ R1×1×c is the tth of the prototypes PM

All ∈ RN×1×1×c. PM
0 is the

lowest frequency support prototype for PM
All, equal to the prototype generated by

the masked GAP. Equation (8) also indicates that the prototype generated from
the masked GAP only preserves the lowest frequency component while discarding
the other frequency components. Different from GAP, FPGM utilizes the informa-
tion of the lowest frequency and the other frequencies to produce more informative
support frequency prototypes that guide the following feature matching and learn-
ing.
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3.4 Prior Attention Mask Module

Most previous methods [14, 23, 24] apply the attention map to achieve general-
ization. However, these attention maps always introduce many learnable param-
eters and background noises, resulting in generalization reduction and incorrect
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predictions. Thus, we propose the PAMM to fuse rich object information from
frequency prototypes into the attention map and produce a training-free, more pre-
cise, and less noisy prior attention mask MA. Figure 5 illustrates the process of
PAMM.

To produce high-quality MA, we introduce the High-level Cosine Similarity and
the Mid-level Cosine Similarity, which generate the prior masks of different levels
by frequency prototypes. Specifically, the prior high-level query mask MH

q could
filter out the background noise, and the prior mid-level query mask MM

q could
capture more object information. Therefore, we first produce MH

q and MM
q , then

generate MA.

Prior High-Level Query Mask. Firstly, the binary mask Ms is bilinearly down-
sampled to the same spatial size as the feature map FH

s . According to Equa-
tion (1), the masked high-level support feature FH′

s is extracted from FH
s . Given

the feature vectors fH
q′ ∈ FH

q and fH
s′ ∈ FH′

s , we compute the pixel-wise cosine
similarity map by the High-level Cosine Similarity:

cos
(
fH
q′ , f

H
s′

)
=

(
fH
q′

)T
fH
s′

∥fH
q′ ∥∥fH

s′ ∥
, q′, s′ ∈ {0, 1, . . . , hw − 1}. (9)

For each fH
q′ , we take the maximum similarity among all support nodes as the

value of the prior high-level query probability map mapHq′ ∈ R:

mapHq′ =
max

s′∈{0,1,...,hw−1}
(
cos

(
fH
q′ , f

H
s′

))
, (10)

MH
q =

{
mapH0 ,mapH1 , . . . ,mapHhw−1

}
∈ Rhw×1. (11)

Then, all the values in MH
q are normalized to [0, 1] by min-max normalization:

MH
q =

MH
q −min

(
MH

q

)
max

(
MH

q

)
−min

(
MH

q

)
+ ϵ

, (12)

where ϵ is set to 1e− 7. Finally, MH
q is resized into h× w × 1.

Prior Mid-Level Query Mask. To capture complete and rich object information
and fuse them into MM

q , we analyze and process all frequency prototypes PM
All.

Based on the object guidance information in prototypes, we produce all support
frequency prototype masks MAS for the support image. Because the object
guidance information in different prototypes can predict different results, we
judge the quality of prototypes by the segmentation results (MAS). To this end,
we apply background similarity as the evaluation criterion and select the better
prototypes from PM

All to guide the generation of MM
q . The specific process is

described below.
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Given fM
s′ ∈ FM

s3 and PM
t ∈ PM

All, we apply Mid-level Cosine Similarity to produce
the single similarity map mapASt ∈ MAS:

mapASt = cos
(
fM
s′ , P

M
t

)
=

(
fM
s′

)T
PM
t

∥fM
s′ ∥∥PM

t ∥
∈ Rhw×1, (13)

s′ ∈ {0, 1, . . . , hw − 1}, t ∈ {0, 1, . . . , N − 1}. (14)

MAS = {mapAS0,mapAS1, . . . ,mapASN−1}. (15)

Then, we normalize mapASt according to Equation (12) and reshape them to
get final MAS ∈ N × h× w × 1.

PAMM aims to fuse more object information and less background noise into the
prior attention mask. However, the features extracted by the foreground similar-
ity always contain many background noises similar to the object. Therefore, we
apply the background similarity to select MAS. Firstly, we filter out foreground
by pixel-wised multiplication with the ground-truth support mask Ms and get
MB

AS:
MB

AS = MAS · [Ms = 0], (16)

where Ms is reshaped and expanded into N × h × w × 1. Then, we compute
background similarity SB:

SB =

∑h
i=1

∑w
j=1M

B
AS(i, j)∑h

i=1

∑w
j=1[Ms(i, j) = 0]

. (17)

After obtaining SB, we take out the indexes of the T lowest background similarity
prototypes, denoted IDT . The specific function is as follows:

IDT = FIndex(FLow(SB, T )), (18)

where FLow(·, T ) represents selecting the T lowest background similarities, and
FIndex(·) represents taking out the corresponding background similarity proto-
type indexes.

Based on IDT , we can get the prior mid-level query mask MM
q . Specifically, we

first feed the matched prototypes and mid-level query feature into the Mid-level
Cosine Similarity. Then, we obtain the T query frequency prototype masks
MTQ ∈ RT×h×w×1, which contain rich object information from the frequency
prototype. Finally, MM

q ∈ Rh×w×1 is generated by extracting the maximum
pixel value on each position of the MTQ:

MM
q = max(MTQ), (19)

where Max(·) is the pixel-level maximum value operation.



Few-Shot Semantic Segmentation with Frequency Prototype Learning 105

Prior Attention Mask. MH
q is more coarse and whole so that it can identify the

approximate position of the object. Moreover, we fuse rich frequency prototype
information into MM

q . Therefore, MM
q contains fine and detailed object infor-

mation. In the end, we produce MA by averaging the MH
q and MM

q to boost
object information and suppress background noises:

MA =
MH

q +MM
q

2
. (20)

In our model, we also integrate the result of the base learner in BAM [46] to
produce a more precise prior attention mask.

The  Lowest Background 

Similarity Prototype 

Indexes IDT

20

0

…

42

48

Support Mask MS

All Support Frequency 

Prototype Masks MAS

OSTU

OSTU Mask MOSTU apOSTU0
Rest OSTU Mask MROSTU

Match and Select

Max Rest 

OSTU 

Prototype 

Index IDc

2

Conv Support Feature Fs
C

Generate Frequency 

Prototype  Module 

Max Rest OSTU 

Prototype Index

IDc

2Support Mask  MS

Match

Prototype0  

Index IDb

0

Generate  Max Rest OSTU Prototype Index

Generate Final Support Prototypes

Base Prototype Pb
C

Complement Prototype Pc
C

Figure 6. Illustration of Frequency Prototype Selection Module (FPSM). The upper part
is the process of generating the max rest OSTU prototype index. The lower part is the
process of generating final support prototypes.

3.5 Frequency Prototype Selection Module

Applying all the prototypes for object prediction consumes enormous computa-
tional power and storage space. So we propose FPSM to select more representative
prototypes (the base prototype PC

b and the complemnet prototype PC
c ) based on

IDT . PC
b from B0 captures the global information of the target, and PC

c from
Bt(t > 0) guides the best local segmentation. Figures 2 and 9 show more details
about the frequency prototype visualization. By concatenating and expanding the
above prototypes, we introduce rich and complete support information to guide
the query target segmentation while reducing model complexity and computational
burden.
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Firstly, we use Ms to filter out the background masks of MAS (Equation 1) and
get M

′
AS. Then, the OSTU is applied to segment M

′
AS:

M
′

AS = {map
′

AS0,map
′

AS1, . . . ,map
′

ASN−1}, (21)

mapOSTUt(i, j) = [map
′

ASt(i, j) ≥ τ ], (22)

t ∈ {0, 1, . . . , N − 1}, i ∈ {0, 1, . . . , h− 1},

j ∈ {0, 1, . . . , w − 1},

MOSTU = {mapOSTU0,mapOSTU1, . . . ,mapOSTUN−1}, (23)

where the τ is the segmentation threshold from map
′
AS0, and the MOSTU is the

segmentation result of M
′
AS. By pixel-wised subtracting mapOSTU0 from MOSTU , all

the rest threshold segmentation masks MROSTU is generated:

MROSTU = MOSTU −mapOSTU0, (24)

where the mapOSTU0 is expanded into N × h× w × 1 first. By matching the indexes
of MROSTU with IDT and selecting the max rest masks from them, we obtain the
IDc of P

C
c . In this way, we obtain two complemental prototypes to capture global

and local object information without learnable parameters. Finally, given FC
s and

Ms, we employ the FPGM again to produce the final prototype PC
b and PC

c with
the indexes of IDb and IDc (IDb = 0).

3.6 k-Shot Setting

In the k-shot setting, k support images are given to extract the object information.
For extending 1-shot segmentation to k-shot, we propose the appropriate way for
different modules.

For PAMM, we apply two schemes because of the diversity of the support images:
Masks Average Fusion (MAF) and Masks Max Fusion (MMF). MAF produces the
final MA by averaging operation. Since the same class objects in different images
usually have different features, we apply MMF to capture more object information.
Firstly, MMF takes out the pixel-wised maximum value of all MM

q as the final MM
q

and the average of all MH
q as the final MH

q . Then, the average of MM
q and MH

q are
taken as the final MA. According to the ablation experiment results on the 5-shot
setting in Section 4.3, we use MMF in this paper.

As for FPSM, we take the average of all the base and complement prototypes
as the final PC

b and PC
c .
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4 EXPERIMENTS

4.1 Implementation Details

Datasets. Our model has evaluated on PASCAL-5i [8] and COCO-20i [47] datasets,
which are usually used for previous few-shot semantic segmentation [48, 19].
The PASCAL-5i consists of PASCAL VOC 2012 [49] and augmented SDS [50]
datasets. Following OSLSM [8], we evenly split the 20 classes of the PASCAL-5i

into 4 folds with 5 classes per fold. The cross-validation experiment evalu-
ates the proposed model: three for training and one for testing. For COCO-
20i, following FWB [47], we evenly divide the 80 classes in MSCOCO [51]
into 4 folds with the same cross-validation strategy, and each fold contains 20
classes.

Experimental Setting. We construct our framework on PyTorch. For a fair com-
parison, we apply different backbones, including VGG-16 [5] and ResNet-50 [4],
where VGG is the original version, and the ResNet is the dilated version sim-
ilar to previous works [11, 14, 16]. The SGD is adopted as the optimizer for
training. The momentum and weight decay are set to 0.9 and 0.0001, respec-
tively. During training, we also use the data augmentation strategies such as
random scale, Gaussian filtering, horizontal flip, and random rotation. Then,
the processed images are cropped into 473×473 (Pascal) or 641×641 (COCO)
as training samples. We set the initial learning rate to 0.005 with batch size
4 on PASCAL-5i and 0.005 with batch size 8 on COCO-20i. The final test-
ing result is computed by averaging the results of 5 trials with different ran-
dom seeds to ensure its reliability. Our experiments run on Nvidia Tesla V100
GPUs.

Evaluation Metrics. Following the previous work in [14, 16, 47], we adopt the
mean intersection-over-union (mIoU) as the performance evaluation metric. For
class c, the IoU is defined as IoU c = TP c/(TP c + FP c + FN c), where TP c,
FP c, and FN c are the numbers of true positives, false positives, and false
negatives, respectively. The mIoU is defined as the mean IoUs of all image
classes.

4.2 Comparison with State-of-the-Art

PASCAL-5i. As shown in Table 1, we build our model on two backbones, includ-
ing VGG-16 and ResNet-50, and compare our model with the state-of-the-art
approaches on PASCAL-5i. It can be seen that the FPNet achieves state-of-
the-art performance on both 1-shot and 5-shot tasks with the two backbones.
With VGG-16 as the backbone, our model outperforms previous state-of-the-art
results with a margin of 1.4% for 1-shot. With ResNet-50 as a backbone, FPNet
is comparable to the state-of-the-art approaches, and the mIoU increases 0.3%
on the 5-shot task.
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OSLSM [8]
(BMVC ’17)

V
G
G
-1
6

33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9

PANet [15]
(ICCV ’19)

42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7

SG-One [17]
(TCYB ’20)

40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1

PFENet [14]
(TPAM ’20)

56.9 68.2 54.4 52.4 58.0 59.0 69.1 54.8 52.9 59.0

HSNet [52]
(ICCV ’21)

59.6 65.7 59.6 54.0 59.7 64.9 69.0 64.1 58.6 64.1

DPCN [22]
(CVPR ’22)

58.9 69.1 63.2 55.7 61.7 63.4 70.7 68.1 59.0 65.3

BAM [46]
(CVPR ’22)

63.2 70.8 66.1 57.5 64.4 67.4 73.1 70.6 64.0 68.8

FPNet
(ours)

67.0 72.6 66.8 56.8 65.8 69.2 73.4 70.1 62.6 68.8

CANet [16]
(CVPR ’19)

R
es
N
et
-5
0

52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1

PGNet [44]
(ICCV ’19)

56.0 66.9 50.6 56.0 57.7 57.7 68.7 52.9 54.6 58.5

RPMM [33]
(ECCV ’20)

55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3

PFENet [24]
(TPAM ’20)

61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

ASGNet [18]
(CVPR ’21)

58.8 67.9 56.8 53.7 59.3 63.7 70.6 64.2 57.4 63.9

MMNet [53]
(CVPR ’21)

62.7 70.2 57.3 57.0 61.8 62.2 71.5 57.5 62.4 63.4

HSNet [52]
(ICCV ’21)

64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5

DPNet [54]
(AAAI ’22)

60.7 69.5 62.8 58.0 62.7 64.7 70.8 69.0 60.1 66.2

DPCN [22]
(CVPR ’22)

65.7 71.6 69.1 60.6 66.7 70.0 73.2 70.9 65.5 69.9

BAM [46]
(CVPR ’22)

69.0 73.6 67.6 61.1 67.8 70.6 75.1 70.8 67.2 70.9

FPNet
(ours)

69.4 73.8 68.8 60.0 68.0 73.0 75.8 71.2 64.5 71.2

Table 1. The mIoU performance of 1-shot and 5-shot segmentation on PASCAL-5i. The
best performances are highlighted in bold.
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Query
Mask

Map 0 MM
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q MA Ours

Figure 7. Visual results of our model on fold-0 of the PASCAL-5i dataset. Each column
from left to right represents the support image, support mask, query image, query mask,
activation map generated by GAP, prior mid-level query mask, prior high-level query
mask, prior attention mask, and prediction of our proposed FPNet, respectively. Best
viewed in color and zoom-in.

COCO-20i. In Table 2, we compare the segmentation results of our model and
other state-of-the-art models on COCO-20i. As can be seen, FPNet achieves
state-of-the-art results in both 1-shot and 5-shot setting and it outperforms
others with mIoU gains of 0.7% and 0.8%, respectively. These results prove the
capability of our method to handle more challenging cases.

Segmentation Examples. To better understand our proposed method, we show
some prediction results of the test stage and activation maps produced by fre-
quency prototypes. As shown in Figures 7 and 8, MM

q can capture global
and local object information compared with Map 0, and MH

q can suppress
the background noise incurred by MM

q . By combining the MM
q and MH

q , our
model generates high-quality MA to predict complete and accurate results on
PASCAL-5i and COCO-20i datasets. In the first row of Figure 7, MM

q mines
the body and head information of the bird compared to Map 0, and MH

q can
filter the background noise around the bird in MM

q . Moreover, we visualize
some examples of the frequency prototype activation maps in Figure 9, where
we randomly select 5 from all 49 maps. Different class maps are both obtained
from the same 2D DCT bases. As we can see, different frequency prototypes
represent different object features. Those prototypes not only capture the ob-
ject inside information from global and local perspective, but also extract ob-
ject outside information. In the third row of Figure 9, Map 0, Map 1 and
Map 2 can capture the main body, head and tail of the bird respectively and
Map 3, and Map 4 can capture the shape of the bird and the background re-
spectively. These visual results verify the effectiveness of frequency prototype
learning.
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Method Backbone
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FWB [47]
(ICCV ’19)

ResNet-101 19.9 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7

RPMM [33]
(ECCV ’20)

ResNet-50 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5

PFENet [14]
(TPAM ’20)

ResNet-101 36.8 41.8 38.7 36.7 38.5 40.4 46.8 43.2 40.5 42.7

SCL [21]
(CVPR ’21)

ResNet-101 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9

HSNet [52]
(ICCV ’21)

ResNet-101 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5

DCP [55]
(IJCAI ’22)

ResNet-50 40.9 43.8 42.6 38.3 41.4 45.8 49.7 43.7 46.6 46.5

DPCN [22]
(CVPR ’22)

ResNet-50 42.0 47.0 43.2 39.7 43.0 46.0 54.9 50.8 47.4 49.8

BAM [46]
(CVPR ’22)

ResNet-50 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2

FPNet(ours) ResNet-50 40.8 53.9 47.1 45.7 46.9 46.6 59.8 50.9 50.6 52.0

Table 2. The mIoU performance of 1-shot and 5-shot segmentation on COCO-20i. The
best performances are highlighted in bold.
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Figure 8. Visual results of our model on fold-0 of the COCO-20i dataset. Each column
from left to right represents the support image, support mask, query image, query mask,
activation map generated by GAP, prior mid-level query mask, prior high-level query
mask, prior attention mask, and prediction of our proposed FPNet, respectively. Best
viewed in color and zoom-in.
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Support
Image

Query
Image

Map 0 Map 1 Map 2 Map 3 Map 4

Figure 9. Visual results of the frequency prototype activation maps. We randomly select 5
from all 49 query activation maps, and all query activation maps are obtained from the
support frequency prototypes. Map 0 represents the map generated by DCT 0, and Map 1
to Map 4 are generated by DCT t (t ∈ {1, 2, . . . , 48}). We can see that Map 0 highlights
the main part of the object, and Map 1 and Map 2 highlight the local part of the object.
Moreover, Map 3 and Map 4 highlight the object’s edge and the background, respectively.
Best viewed in color and zoom-in.

4.3 Ablation Studies

We conduct a set of ablation experiments with ResNet-50 on PASCAL-5i to verify
the effectiveness of the proposed modules.

Visualization of the Process of FPGM. The process of FPGM is visualized in
Figure 10, showing the way of mining object information and the advantage of
multi-frequency pooling (MFP). Different from the previous GAP and clustering,
our proposed MFP captures both the global and local object information. By
multiplying foreground support features with DCT 0 (the lowest frequency),
the global object information is captured and compressed into the frequency
prototype P0, as shown in the left upper corner of Figure 10 b). So P0 could
activate the main part of the plane, like the fuselage in the left upper corner of
Figure 10 c).

The higher frequency prototypes represent the local object information. As
shown in Figure 10 b), these local information could be regarded as the ho-
rizontal and vertical banding or gridding features. In the first row of Fig-
ure 10 b), vertical banding object features of different sizes are activated by
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a) DCT bases

b) Activation maps generated by multiplying foreground support features with DCT bases

c) Activation maps generated by frequency prototypes

Figure 10. Visualization of the process of FPGM. Please note that the lower and right
images contain higher-frequency domain information. Best viewed in color and zoom-in.

the corresponding DCT bases in Figure 10 a). Then these features are com-
pressed into the corresponding frequency prototypes. Hence, these prototypes
represent some vertical object parts, like the empennage and wheel in the first
row of Figure 10 c). Similarly, horizontal banding object features are com-
pressed into the corresponding frequency prototypes as shown in the first col-
umn of Figure 10 b). These prototypes can focus on the horizontal object
part, like the fuselage in the first column of Figure 10 c). Moreover, the grid-
ding object features of different sizes are mined by multiplying foreground sup-
port features with corresponding DCT bases, resulting in the corresponding
frequency prototypes, as can be seen in the other rows or columns of Fig-
ure 10 b). In the third and seventh columns of Figure 10 c), plane parts of
different sizes are activated by these prototypes, like the empennage, nose, and
wheel.
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Hence, our proposed MFP addresses the limitation of GAP and clustering and
generates comprehensive and informative frequency prototypes.

Number of the Lowest
Background Similarity Prototypes

1-shot
Fold0 Fold1 Fold2 Fold3 Mean

5 67.6 73.1 67.9 58.6 66.8
10 69.4 73.9 68.8 60.0 68.0
15 68.8 73.4 68.0 58.6 67.2

Table 3. Ablation studies for the lowest background similarity prototype numbers

a) Original image b) Map 0

c) Map 1 d) Map 2

Figure 11. Prior mid-level query attention masks generated from different numbers of the
lowest background similarity prototypes. Map 0, Map 1, and Map 2 are the prior mid-
level query attention masks generated from the 5, 10, and 15 lowest background similarity
prototypes, respectively. Best viewed in color and zoom-in.

A Number of the Lowest Background Similarity Prototypes. We conduct
ablation experiments to analyze the effect of the lowest background similarity
prototype numbers. As Table 3 shows, we generate the best performances when
10 lowest background similarity prototypes are used. The result improves when
the number increase from 5 to 10. However, it decreases after that, denoting
that the excessive number of prototypes brings more background noises rather
than more foreground information.

We visualize the results of the lowest background similarity prototype numbers
in Figure 10. It shows that the 10 lowest background similarity prototypes
generate the best prior mask. Specifically, the prior mask, composed of 10 pro-
totypes, pays more attention to the head of the airplane. However, the prior
mask composed of the 15 prototypes barely boosts the attention to the airplane
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and brings more background noises. Therefore, PAMM can yield a more ro-
bust and accurate prior mid-level query attention mask based on the 10 lowest
background similarity prototypes, it whence helps the model focus on the object
with fewer background noises.

In the end, we use the 10 lowest background similarity prototypes in our model.

PAMM FPSM Fold0 Fold1 Fold2 Fold3 Mean

62.7 71.6 63.0 54.9 63.1
✓ 68.8 73.4 67.9 58.7 67.2

✓ 64.4 72.0 64.2 56.0 64.2
✓ ✓ 69.4 73.8 68.8 60.0 68.0

Table 4. Ablation studies on the key modules in our FPNet. PAMM, FPSM denote prior
attention mask module and frequency prototype selection module, respectively.

Effect of PAMM and FPSM. To demonstrate the effectiveness of the proposed
PAMM and FPSM, we conduct ablation experiments in Table 4. The first line
is the baseline result, which uses the single prototype produced by the masked
GAP. We first introduce FPGM to replace the masked GAP and generate mul-
tiple frequency prototypes. Then, we use frequency prototypes in PAMM and
FPSM. Finally, we orderly evaluate PAMM and FPSM to demonstrate their
effectiveness. The goal of PAMM is to enhance the model generalization abil-
ity and identify on query target more precisely by the prior attention mask.
Moveover, it improves the segmentation result from 63.1% to 67.2% in Ta-
ble 4. FPSM aims to extract global and local object information, squeeze them
into the base and complement prototypes. As shown in Table 4, FPSM improves
performance by 1.1%. Combining all modules, we can obtain another 0.8% per-
formance gain and reach 68.0%. This ablation experiment also demonstrates
that FPGM extracts more comprehensive and quality object prototypes from
global and local perspectives.

Fold0 Fold1 Fold2 Fold3 Mean

Baseline 62.7 71.6 63.0 54.9 63.1
Baseline +mh

q 65.9 72.5 66.5 59.5 66.1

Baseline +mm
q 64.0 72.2 63.8 56.9 64.2

Baseline +mh
q +mm

q 67.1 72.9 67.2 59.4 66.7

Baseline +mh
q +mm

q +mb 68.8 73.4 67.9 58.7 67.2

Table 5. Ablation studies on components of PAMM.mh
q denotes the prior high-level query

mask and mm
q denotes the prior mid-level query mask. mb denotes the base learner result

of BAM [46].

Components in PAMM. The output of PAMM (prior attention mask MA) is
mainly composed of the prior high-level query mask MH

q and the prior mid-
level query mask MM

q . So we evaluate the effectiveness of each component
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in Table 5. The baseline model produces the single prototype by the masked
GAP for pixel-wise dense semantic prediction in the decoder. When we only
use MH

q or MM
q in PAMM, it achieves 3.0% and 1.1% mIoU improvement

over the baseline result, respectively. It proves that MH
q and MM

q can capture
more object information and retain high generalization. By introducing the
combination of MH

q and MM
q to the baseline model, the performance improves

by 3.6%. This result shows that these two masks are complementary; MH
q can

suppress the noise in MM
q , and MM

q can boost the foreground object feature in
MH

q . Moreover, when the Mb is integrated into the MA, another promotion of
0.5% is obtained.

Strategy
5-shot

Fold0 Fold1 Fold2 Fold3 Mean

Masks Average Fusion 72.4 75.2 70.8 63.6 70.5
Masks Max Fusion 72.7 76.2 71.5 64.2 71.2

Table 6. Ablation studies on 5-shot fusion schemes

5-Shot Fusion Schemes. As introduced in Section 3.6, we apply two schemes for
producing the prior attention mask in the 5-shot setting: Masks Average Fusion
(MAF) and Masks Max Fusion (MMF). Table 6 shows the ablation study on
5-shot fusion schemes. MMF achieves a better result than MAF and improves
mIoU by 0.7%. Therefore, the MMF scheme can generate more precise prior
attention masks for query mask prediction.
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PFENet 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
PFENet
+ FPSM

63.2 69.7 56.2 55.8 61.2 65.0 70.8 56.5 57.0 62.3

PFENet
+ PAMM

63.3 69.7 56.6 56.8 61.6 64.5 70.0 56.8 59.8 62.8

PFENet
+ PAMM
+ FPSM

64.7 69.5 57.2 55.8 61.8 66.7 73.1 57.2 58.3 63.8

Table 7. Generalization ability of the proposed PAMM and FPSM for 1-shot and 5-shot
segmentation on PASCAL-5i

Generalization of PAMM and FPSM. FPGM can be considered a method to
generate prototypes in the frequency domain compared with GAP and cluster-
ing. Moreover, it is plug-and-play. Because the inputs of PAMM and FPSM
mainly come from FPGM, the PAMM and FPSM also can be plug-and-play
for current prototype-based methods and further improve their performance.
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Setting Backbone
1-shot

Fold0 Fold1 Fold2 Fold3 Mean

PFENet

1-shot

ResNet-101 36.8 41.8 38.7 36.7 38.5
PFENet
+ PAMM
+ FPSM

ResNet-50 38.2 42.0 39.1 38.4 39.4

PFENet

5-shot

ResNet-101 40.4 46.8 43.2 40.5 42.7
PFENet
+ PAMM
+ FPSM

ResNet-50 41.8 47.5 44.6 42.9 44.2

Table 8. Generalization ability of the proposed PAMM and FPSM for 1-shot and 5-shot
segmentation on COCO-20i

To verify this, we apply PAMM and FPSM to PFENet [14]. Note that the
result of the base learner in BAM [46] is not integrated into PAMM, and we
follow the same experiment settings as the PFENet. Table 7 shows that PAMM
and FPSM bring 1.5% and 2.6% improvements in 1-shot and 5-shot settings
on PASCAL-5i, respectively. In 1-shot and 5-shot settings on COCO-20i, the
PAMM and FPSM also achieve 0.9% and 1.5% mIoU improvement, respectively,
as Table 8 shown.

5 CONCLUSION

This paper proposes a novel frequency prototype network (FPNet) for the few-shot
semantic segmentation task. Instead of the global prototype generated by GAP
or local prototypes generated by clustering, we try to extract both global and lo-
cal prototypes in the support image by multi-frequency pooling from various DCT
frequency components. Therefore, frequency prototypes can provide more quality
and comprehensive object guidance information. Based on guidance information,
we produce the prior attention mask to boost object features in the query image,
suppress background noise, and enhance the model’s generalization ability. Exten-
sive experiments verify the superiority of our proposed FPNet. In the future, we
will focus on mining more valuable information from an image in the frequency
domain.
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