
Computing and Informatics, Vol. 44, 2025, 245–271, doi: 10.31577/cai 2025 2 245

TASK OFFLOADING DECISION AND RESOURCE
ALLOCATION STRATEGY BASED ON IMPROVED
DDPG IN MOBILE EDGE COMPUTING

An Li, Yeqiang Zheng∗

Center for Applied Mathematics of Guangxi, Yulin Normal University
Yulin 537000, China
e-mail: yqzheng@ylu.edu.cn

Wang Nong, Manyi Wei, Gaocai Wang

School of Computer and Electronic Information, Guangxi University
Nanning, 530004, China

Shuqiang Huang

College of Cyber Security, Jinan University
Guangzhou, 510632, China

Abstract. In mobile edge computing (MEC), the mobile device can offload tasks
to the server at the edge of the mobile network for execution, thereby reducing the
delay of task execution and the energy consumption of the mobile device. However,
the limited resources of the edge server prevent the mobile device from offloading
all tasks to the edge servers. To solve the problems, this paper constructs a multi-
users and single edge server model for mobile edge computing. In order to minimize
the weighted total cost combined energy consumption of mobile devices and task
execution delay under the constraints of computing resources and storage resource
of the edge server, we propose a task offloading decision and resource allocation
algorithm based on improved deep deterministic policy gradient (DDPG) – PERD-
DPG. In our algorithm, a special reward function is designed to get the reward

∗ Corresponding author

https://doi.org/10.31577/cai_2025_2_245

246 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

value for correlating negatively with the total cost. We can obtain the lowest to-
tal cost when the algorithm reaches the maximum reward value. Furthermore, we
apply prioritized experience replay (PER) to improve DDPG. So, the PERDDPG
has a more dynamic MEC scenario for making offloading decisions and computing
resource allocation. Simulation results show that the proposed algorithm can get
a better convergence speed and improve the cumulative reward compared to the
existing algorithms, effectively reducing the weighted total cost of mobile devices
and improving the success rate of task execution.

Keywords: Mobile edge computing, task offloading, resource allocation, improved
DDPG, resource constraint

1 INTRODUCTION

With the development of mobile communication technology and the popularization
of intelligent terminals, the mobile Internet has become an indispensable part of
our lives. However, two technical problems derived from the mobile devices them-
selves seriously restrict the development of the mobile Internet. Firstly, mobile
devices need to fully consider their size, weight and portability [1]. When the mo-
bile device runs computationally intensive applications, it will cause a long delay
and decrease the users’ experience [2]. Secondly, battery technology, which has not
made a breakthrough for a long time, also has a great impact on the users’ expe-
rience. Mobile devices cannot operate efficiently due to the limitation of battery
energy, and it further limits the computational performance of mobile devices. In
addition, computing-intensive applications are often energy-intensive. When a user
takes a longer time to run a computing-intensive task (such as online games, playing
online videos, etc.), it will consume more energy from mobile devices, and decrease
battery life [3].

For these disadvantages of mobile devices, the concept of Mobile Edge Comput-
ing (MEC) combined with the advantages of Mobile Cloud Computing (MCC) [4]
and edge computing [5] has been proposed. As one of the cores of fifth-generation
(5G) mobile communication technology, MEC sinks some services and functions lo-
cated in cloud centers to the edges of the mobile network for handling computing
intensive and delay-sensitive tasks by deploying computing, storage and communi-
cation resource on mobile network edge servers [6].

In MEC platform, task offloading and resource allocation are one of the key
technologies of MEC. They aim to optimize the computing and allocate processes
of computing-intensive or delay-sensitive tasks to reduce delay or save energy con-
sumption of user equipment. In this paper, we propose a task offloading decision
and resource allocation algorithm called PERDDPG, which efficiently addresses the
challenges of task offloading and resource allocation in Multi-Access Edge Comput-
ing (MEC). Our main contributions are as follows.

Task Offloading Decision and Resource Allocation Strategy 247

1. We construct a task offloading model for a multi-users and single edge server with
constraints on task execution delay, computing resource and storage resource of
the edge server.

2. We apply prioritized experience replay (PER) to improve DDPG. So, the pro-
posed algorithm PERDDPG has a more dynamic MEC scenario for making
offloading decisions and computing resource allocation.

3. We combine MEC actual scenarios to optimize the task offloading decision and
the edge server resource allocation scheme by using the PERDDPG algorithm
proposed by this paper.

4. We verify the performance of the proposed algorithm PERDDPG in simulations.
The algorithm can get a better convergence speed and improve the cumulative
reward compared to the existing algorithms, effectively reduce the weighted total
cost of mobile devices and improve the success rate of task execution.

2 RELATED WORK

In recent years, academic research on task offloading in MEC has primarily focused
on two aspects: offloading decision and resource allocation. The first aspect, offload-
ing decisions, involves the mobile device determining whether to offload tasks to the
edge server based on the task attributes and associated costs. The second aspect,
resource allocation, pertains to the edge server distributing its limited resources to
enhance the efficiency of task transmission and processing after a task has been
confirmed for offloading [7].

With the goal of reducing task execution delay and improving success rate, the
authors propose a dynamic task offloading decision algorithm based on Lyapunov
optimization theory, and the algorithm minimizes task execution delay and improves
the success rate of task offloading in [8]. In [9], the authors propose a task offloading
strategy for optimizing energy consumption with guaranteed delay in a specific Small
Cell Networks (SCNS) MEC scenario. This strategy considers the impact of the
link status of the upload network and the download network on the delay and
energy consumption. In addition, the strategy uses the artificial fish group algorithm
for global optimization and effectively reduces the energy consumption of mobile
devices.

In [10], the authors construct a multi-user multi-task computation offloading
framework using Energy Harvesting (EH) technology for Mobile Edge Cloud Com-
puting (MECC). The framework determines the energy harvesting policy and the
task offloading schedule based on Lyapunov optimization approach. In order to
solve the scheduling problem which is NP-hard, centralized and distributed greedy
maximal scheduling algorithm is proposed. In [11], considering trade-off energy
consumption and execution time delay, the authors propose a dynamic scheduling
mechanism that allows users to formulate offloading decisions based on the compu-
tational queue and wireless channel states of the task, and solve the optimization
problem through convex optimization methods. In [12], the authors use queuing

248 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

theory to model the MEC task offloading system, then find the optimal offloading
scheme and the optimal transmission power to calculate the execution time delay
and energy consumption for each mobile device. To minimize the system energy effi-
ciency with considering the completion time and energy, [13] proposes a distributed
algorithm consisting of clock frequency configuration, transmission power allocation,
and channel rate scheduling and offloading strategy selection.

In general, the above literature solves offloading decision based on some tra-
ditional methods, with poor adaptability for complex MEC environments. Driven
by the development of machine learning, Deep Reinforcement Learning (DRL) has
been widely applied in various fields. Therefore, using DRL to solve optimization
problems in MEC is very promising. Among them, DRL has also obtained more ap-
plications in the study of MEC task offloading. In [14], the authors propose a delay-
sensitive task offloading algorithm based on DRL. The algorithm combines timeout
and deceleration signals to design new reward functions, and the algorithm can
learn offloading decision from the environment. In order to maximize the long term
performance of computing offloading policy, [15] proposes a model-free DRL-based
online computing offloading algorithm for blockchain-empowered MEC. An adaptive
genetic algorithm is introduced into the exploration of DRL to speed up the con-
vergence and maintain the performance. For investigating the joint optimization of
computing offloading and resource allocation in a dynamic multi-users MEC system,
[16] proposes two computing offloading and resource allocation algorithms based on
Q-learning and Double Deep Q Network (DDQN) methods to minimize the energy
consumption for the whole MEC system. [17] constructs an offloading model with
multi-service nodes and multi-dependence within mobile tasks in large-scale het-
erogeneous MEC. The authors propose an improved algorithm by combining Long
Short-Term Memory (LSTM) network and candidate network technology. The au-
thors focus on Software Defined Network (SDN) scenarios and propose a resource
allocation algorithm to minimize the average service time based on Deep Q Net-
work (DQN) in [18]. This algorithm can allocate computing and network resources
adaptively and maintain performance in the changeable MEC environment. In [19],
the authors propose a DQN based joint task offloading decision and communica-
tion bandwidth allocation algorithm. The algorithm weighs the total cost of task
offloading in device energy consumption, edge server computational cost, and task
execution delay.

Furthermore, an algorithm based on distributed DRL is proposed to effectively
adjust computing offloading strategies in the constantly changing MEC environment
of multiple unmanned aerial vehicles (UAVs) in [20]. In [21], an online offloading
framework based on DRL is proposed to optimize task offloading decisions and
wireless resource allocation in wireless power supply MEC networks. In [22], a joint
determination of partial computing offloading destinations and computing resource
allocation scheme is proposed between vehicles in a highly dynamic vehicle environ-
ment. In order to provide high quality, low latency, and low bit rate difference live
streaming services for vehicles, the authors use the Soft Actor Critic (SAC) DRL
algorithm for joint optimization of vehicle scheduling, bit rate selection, computing,

Task Offloading Decision and Resource Allocation Strategy 249

and spectrum resource allocation in [23]. In addition, the authors propose an opti-
mized integrated scheme based on DRL, transformer, and model to solve end-to-end
transmission problems in [24]. The authors investigate the problem of task offload-
ing and resource allocation strategies in MEC system with heterogeneous tasks and
propose a DRL-based solution in [25].

In conclusion, these methods all can effectively improve the performance of task
offloading for MEC system, but do not consider the joint optimization offloading de-
cision and the allocation of edge server computing resources. Following our current
work in [26], in this paper, we construct a MEC scenario with multiple-user devices
and a single-edge server to minimize the weighted total cost composed of mobile
device energy consumption and task execution delay. We propose a task offload-
ing decision and resource allocation algorithm to solve efficiently the task offloading
problem in MEC system based on improved DDPG with prioritized experience re-
play.

3 SYSTEM MODEL

We consider a MEC scenario consisting of multiple users and a single-edge server.
User Equipment (UE) generates a single task in each slot time and determines the
execution site according to a certain offloading scheme. If the scheme determines
that the task can be effectively executed locally, the task will be executed on the UE
processing unit. If the scheme determines that the task needs to offload the edge
server, the device will transfer the task to the edge server, and then the task will be
executed on the edge server. The network model is shown in Figure 1.

Figure 1. The network model

250 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

3.1 Scenario Description

In the above MEC model, we assume that the number of UE is N = {1, 2, . . . ,m}.
Each UE has a computationally intensive task denoted by Tkn within a same slot
time, n ∈ N . The UE is connected to the Access Point (AP) through wireless
channel and the MEC server is connected to the AP through the optical fiber, so
the task transmission delay between the AP and the MEC server can be ignored.
Each task submitted by UE can be indicated as Tkn = {Dn, Cn, τn}. Here, Dn is
the size of the task, Cn is the CPU cycles required to compute per bit data, and τn
is the maximum execution delay that task can tolerate.

In this paper, the task submitted by the UE with integrity processing request
means that it cannot be split into several parts to be executed. So, each UE can
only choose to execute the task locally or on the MEC server completely. We used
the 0-1 variable (with αn ∈ {0, 1}) to represent the offloading decision of the UE.
Here, if αn = 0, the UE chooses to perform execution locally, and if αn = 1, the UE
chooses to offload the whole task to the MEC server for execution.

3.2 Communication Model

In our model, UE and AP are connected through wireless channel. Let gn denote
the channel gain between a UE and the AP. We assume that gn is determined by the
distance between UE and AP. Let d denote the communication distance between
UE and AP. The channel gain can be calculated as follows.

gn = (d)−σ, (1)

where σ is the path loss coefficient. Let ptn denote the transmit power of the task
offloading from a UE to AP. The transmission rate Rt of the channel is defined as
follows.

Rt = W log2

(
1 +

ptngn
N0W

)
, (2)

where W is the channel bandwidth between the UE and the AP and N0 is the
channel noise power spectral density.

3.3 Computational Model

1) Local Execution Model: UE has a certain computing capability at the local
end which can handle the appropriate amount of task request. The submitted
task is assigned to be executed on UE locally. Let f l

n represent the local comput-
ing power of the UE. Thus, we can get the duration time T l

n of local execution
of Tkn as follows.

T l
n =

CnDn

f l
n

. (3)

Task Offloading Decision and Resource Allocation Strategy 251

So, the energy consumption El
n of local execution can be calculated as follows.

El
n = k(f l

n)
2CnDn, (4)

where k is the energy factor which depends on chip technology of the UE. The
weighted total cost C l

n of local execution can be calculated as follows.

C l
n = ITn T

l
n + IEn E

l
n. (5)

In Equation (5), we define the weight parameters of the execution delay and
the energy consumption of UE as ITn + IEn = 1 with ITn , I

E
n ∈ [0, 1]. For tasks

with different requirement types, these weight parameters can be modified to
highlight the optimization goal.

2) Edge Execution Model: To meet the quality of service requirements of the
users, UE needs to offload some delay-sensitive tasks to the MEC server to
execute them. The offloading time can be calculated as follows.

T o
n,t =

Dn

Rt

. (6)

The corresponding transmission energy consumption can be calculated as fol-
lows.

Eo
n,t = ptnT

o
n,t =

ptnDn

Rt

. (7)

Then, we can get the duration time T o
n,p of offloading execution of the task Tkn.

T o
n,p =

CnDn

fn
, (8)

where fn is the computing resource assigned by the MEC server to execute the
Tkn. We define F as the amount of computing resource and M as the amount
of storage resource of the MEC server. Then, we can know that the MEC
server cannot allocate resource to execute tasks beyond its own limit. That is,∑M

n=1 αnfn ≤ F and
∑M

n=1 αnDn ≤M . After the task is processed by the MEC
server, the final data size is much smaller than the data size before executing.
In addition, the download rate of the UE is much higher than the upload rate.
Therefore, this model does not consider the delay that the UE downloads the
executive results of the task. When the task is processed on the MEC server, the
UE is waiting for acceptance. The waiting energy consumption can be calculated
as follows.

Eo
n,w = pwnT

o
n,p =

pwnCnDn

fn
. (9)

So, the total time delay and total energy consumption of task offloading can be

252 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

calculated as follows respectively.

T o
n = T o

n,t + T o
n,p =

Dn

Rt

+
CnDn

fn
, (10)

Eo
n = Eo

n,t + Eo
n,w =

ptnDn

Rt

+
pwnCnDn

fn
. (11)

The weighted total cost of local execution can be calculated as follows.

Co
n = ITn T

o
n + IEn E

o
n, (12)

where ITn and IEn are the same parameters as the local computed model.

3.4 Problem Description

The optimization goal of this paper is to minimize the local cost which is weighted
by time delay and energy consumption, while meeting the user’s requirement for
task delay. For a task to be successfully executed on MEC server, there are three
requirements. Firstly, ensuring that the task requested storage and computing re-
sources are less than the total resources provided by the MEC server. Secondly, the
limited energy of UE needs to be satisfied. Finally, the execution time of the task
on MEC server does not exceed the maximum of response delay.

The total cost of all UE is defined as follows.

Ctotal =
m∑

n=1

(1− αn)C
l
n + αnC

0
n. (13)

Assuming that the total task is x, the number of tasks successfully offloaded is y,
and those successfully performed on the local end is z, then the rate of success for
task execution is defined as:

ROS =
y + z

x
. (14)

We must make offloading decision and resource allocation while satisfying the max-
imal delay and constraint of server resource. So, the optimization goal is to min-
imize the total cost of all UE. In summary, the problem can be constructed as

Task Offloading Decision and Resource Allocation Strategy 253

follows:

maxROS and minCtotal

s.t. αn ∈ {0, 1}

0 ≤ T l
n, T o

n ≤ τn

0 ≤ fn ≤ F (15)

M∑
n=1

αnfn ≤ F

M∑
n=1

αnDn ≤ M.

In addition, tasks are executed by extracting from a task queue, and a single
task is executed in a slot time on the MEC server. The default allocation of resource
is always no bigger than the resource of the MEC server.

4 DESIGN OF OFFLOADING STRATEGY AND RESOURCE
ALLOCATION ALGORITHM BASED ON IMPROVED DDPG

This paper presents a joint modeling of task offloading decision-making and server
resource allocation solving problems in a multi-user and single-edge server MEC
system. The goal is to maximize task execution success rate while minimizing the
weighted total cost of users. This is a mixed integer nonlinear programming problem.
To solve this problem, this section proposes an improved DDPG based offloading
decision and resource allocation algorithm PERDDPG, which aims to minimize
the weighted total cost composed of task execution delay and user’s device energy
consumption, as well as maximize the task execution success rate.

4.1 MDP Model

In general, using the DRL algorithm to solve problems requires constructing several
key elements, namely state space, action space, and reward function, which are
defined as follows.

1) State space S The MEC model considered in this paper uses the attribute
information of arriving tasks and the remaining resource of edge server to sim-
ulate the state of the entire MEC system. The state space of the MEC envi-
ronment can be represented as: St = (Tkt1, . . . , Tk

t
n, RCt, RMt), where Tk

t
n =

{Dt
n, C

t
n, τ

t
n} indicates the task attribute in the current state, including the

data size of the task Dt
n, the CPU cycles required to compute per bit data

Ct
n, and the delay constraints of the task τ tn. RCt = RCt−1 −

∑n
i=0 α

t−1
i f t−1

i

254 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

represents the remaining computing resource of the MEC server, and RMt =
RMt−1 −

∑n
i=0 α

t−1
i Dt−1

i represents the storage resource of the MEC server.

2) Action space α: Action space is the set of all action decisions that agent can
make in the state. In the MEC system of this paper, the action space is composed
of two parts: task offloading decision and computational resource allocation
vector, and it can be represented as αt = (αt

1, . . . , α
t
n, f

t
1, . . . , f

t
n).

3) Reward function R: Rewards are used to evaluate the effectiveness of the ac-
tion αt selected by the algorithm in the current state St on the system, and
the rationality of the reward function design greatly affects the performance of
the algorithm. In general, the reward function needs to be designed based on
optimization objectives. The goal of this paper is to maximize the success rate
of task execution while minimizing the weighted total cost of UE. The goal of
the PERDDPG algorithm is to achieve the maximum cumulative reward, so the
reward function is negatively correlated with the weighted total cost, which can
be set as:

rt(St, αt) =

{
1, violate constraints,

1− αn
C0

n

Cmax
− (1− αn)

Cl
n

Cmax
, otherwise,

(16)

where Cmax is the maximal weighted total cost of the MEC system. From
the above formula (16), when the task execution fails, that is, the delay of TKn

exceeds the delay, the amount of task data to be offloaded exceeds the remaining
storage space of the edge computing node, or the computing resources allocated
to the task exceed the remaining computing resources of the edge computing
node, the minimal reward value is −1. When the task can be executed smoothly,
the current reward value is calculated based on the weighted cost of the task.
The smaller the weighted cost of the task, the greater the reward value.

4.2 DDPG Algorithm

DDPG algorithm consists of Actor network and Critic network [27]. This paper
uses two fully connected neural networks with three-layer to fit. Using µ(s|θµ)
parameterized represents Actor network, and Q(s, α|θQ) parameterized represents
Critic network. Here, θµ and θQ are network parameters. In order to increase
the stability of network updates, DDPG continues the empirical reuse in the DQN
algorithm to perform non-policy training on the network, and then minimize the
correlation between samples. In order to provide consistent targets during time
difference backup, DDPG also uses target network technology to train the network.
The target Actor network and target Critic network can be parameterized as follows:
µ′(s|θµ′

) and Q′(s, α|θQ′
). Here, θµ

′
and θQ

′
are network parameters. The initial

parameters of the target network are the same as those of the online network. Online
Actor network uses deep neural networks for deterministic behavior strategies µ
simulate. To balance exploration during the network update process, the DDPG

Task Offloading Decision and Resource Allocation Strategy 255

algorithm introduces random noise to increase the randomness of action generation.
The action selection formula is:

αt = µ(St|θµ) + η. (17)

Here, η is the exploration noise.
In the DDPG algorithm, the Critic network also uses deep neural networks to

simulate the Q function. The Q function is known as the state-action value function,
and it is defined as expected cumulative reward for the agent to continuously execute
policy µ at in state St after taking action αt. The expected cumulative reward is
defined by the Bellman equation as

Qµ(St, αt) = E[r(St, αt) + γQµ(St+1, µ(St+1))]. (18)

Here, r(St, αt) represents the immediate reward value returned by the agent after
executing action αt in state St. Using functions J(µ) to evaluate the current strategy
µ. The evaluation function J(µ) is given as follows.

J(µ) =

∫
S

ρµ(S)Qµ(S, µθ(S)) ds = ES∼ρµ [Q
µ(S, µθ(S))]. (19)

Where, J(µ) is the expectation of function Qµ(S, µ(S)), when the state S obeys
the distribution ρπ and the strategy of action formulation is µ. In short, the Ac-
tor network is responsible for generating actions, and the Critic network for value
evaluation.

To improve the generalization performance of the DDPG algorithm, this algo-
rithm stores learning experiences through experiment replay technology, and then
updates the parameters of deep neural networks through random sampling. The
specific approach is to store the state transfer sequences et = (St, αt, rt, St+1) ob-
tained from agent interaction with the environment into the experience replay buffer
D = e1, e2, . . . , et at each slot time t. During each training process, small batches of
samples were randomly drawn from the experience replay buffer D, and the network
parameters were updated using Adaptive Moment Estimation (Adam) algorithm.
This approach disrupts the correlations between learning experience and reduces
the variance generated during the updating of the network parameters while im-
proving data utilization.

The algorithm training objective is to maximize function J(µ) and minimize the
loss of the Critic network at the same time. In the update phase, the algorithm
randomly selects Z groups of experience from the experience reuse pool D to cal-
culate the target reward value yi. The calculation steps of yi are given as follows:
Firstly, the next state vector Si+1 is input into the target Actor network, agent get
the action αi+1. Secondly, αi+1 is connected to Si+1 as the input of the target Critic
network to obtain the target value Q′. The target reward value yi can be represented
as:

yi = ri + γQ′(Si+1, αi+1|θQ
′
). (20)

256 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

Thirdly, αi is connected to Si as the input of the online Critic network to get the
actual target value Q. Finally, the error of the online Critic network is obtained
according to the mean square error equation defined as Equation (21), and the
network is updated by minimizing the modification error.

L(θQ) =
1

Z

∑
i

(yi −Q(Si, αi|θQ))2. (21)

For update of the online Actor network, the policy gradient was used to determine
the update direction. The gradient formula is given as follows:

∇θµJ =
1

Z

∑
i

∇aQ(Si, αi|θQ)∇θµµ(Si|θµ). (22)

Furthermore, in order to increase the stability of the learning process, the parameters
θµ

′
and θQ

′
of the target Actor network and the target Critic network are updated

through iteration, and the update formula is given as follows:

θµ
′
= λθµ + (1− λ)θµ

′
, (23)

θQ
′
= λθQ + (1− λ)θQ

′
, (24)

where λ is the soft update coefficient.

4.3 Improved Algorithm – PERDDPG

The uniform random sampling method used in the DDPG algorithm disrupts the
correlation between learning experiences, improves data utilization, and reduces the
variance generated when updating network parameters. However, the contribution
of different empirical data to gradient learning varies. Ignoring the importance of
empirical data can lead to low learning efficiency and even overfitting of neural
networks. In actual MEC scenarios, there may be situations where rewards are
sparse, making it difficult for algorithms to learn better strategies and thus unable to
converge. The priority experience replay framework [28] can assign higher sampling
weights to experience data with high learning efficiency, increasing its probability
of being sampled. This paper uses the improved DDPG algorithm with priority
experience replay to solve the problem of sparse rewards in MEC.

The core idea of priority experience replay is to sample experience data with
extreme value more frequently. The standard for measuring the value of empirical
data is a core issue. In most RL algorithms, TD error is often used to update
the estimation of the Q function. And the larger the absolute TD error, the more
positive the correction of the expected action evaluation value will be. Empirical
data with high TD error contains higher value. Therefore, we choose the absolute
TD error |δ| of experience as an indicator to evaluate the value of experience, and

Task Offloading Decision and Resource Allocation Strategy 257

the error δj of experience j can be expressed as:

δj = γ(St, αt) + γQ′(St+1, αt+1)−Q(St, αt), (25)

where Q′(St+1, αt+1) is the target Q value. The larger the error δj of experience, the
greater its contribution to gradient learning, and it should be selected first during
sampling. Therefore, we define the priority indicator pj of experience j as:

pj = |δj|+ ψ, (26)

where ψ is a very small normal number, and used to prevent a probability of 0.

The probability of experience j being sampled is:

Probj =
pεj∑
K p

ε
K

, (27)

where ε is the priority weight. When ε = 0, the sampling method is changed to
random sampling. K is the total number of experiences.

To avoid the need to sort all empirical data based on the priority metric pj
for each sampling, we use the Sum-Tree data structure to store the empirical data,
where the experience reuse pool D is a Sum-Tree. Sum-Tree is an efficient binary
tree storage structure, where each leaf node stores a priority metric for a sample,
namely the sampling probability Prob, and training data is sampled from the node.
The intermediate node stores the sum of priority indicators for the child nodes,
while the root node is the sum of priority indicators for all experience samples.
During experience sampling, the Sum-Tree root node, i.e. the sum, is divided into
Z segments according to the algorithm’s set mini-batch Z size. A random number
is selected for each segment, and then the root node of the Sum-Tree is traversed
downwards according to a certain rule for each number. Finally, the priority index
pj searched is matched with the experience data to achieve more efficient experience
replay. The Sum-Tree structure is shown in Figure 2.

Figure 2. Sum-Tree structure

258 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

In the process of network updates, frequent replay of experiences with higher
priority indicators changes the estimation of Q values in an uncontrolled manner,
increasing the difficulty of training DNN and causing bias in the action generation
strategy that obtains the highest cumulative return (even if the state distribution is
fixed). We correct this bias by adding importance sampling weights during network
updates:

wi =

(
1

K · Probj

)β

. (28)

Among them, β is the weight indicator, and the improved Critic network error
function of the algorithm is updated by the following formula:

L
(
θQ

)
=

1

Z

∑
i

wi

(
yi −Q

(
Si, αi|θQ

))2
. (29)

The PERDDPG algorithm structure is shown in Figure 3.

Figure 3. PERDDPG network structure

The PERDDPG algorithm steps are shown in the following.

5 SIMULATION RESULTS AND ANALYSIS

5.1 Experimental Environment and Parameters Setting

The simulation in this paper were performed on a PC with 16 GB memory, Intel
Core i5 CPU (frequency is 2.3GHz) and the Windows 10 home Chinese version
OS. The Integrated Development Environment (IDE) of the simulation is Python
3.7. We call the Facebook’s PyTorch library as the deep learning framework for

Task Offloading Decision and Resource Allocation Strategy 259

Algorithm 1 Task Offloading and Resource Allocation Algorithm Based on Im-
proved DDPG (PERDDPG)

Input: The set of tasks generated by UE, the information transmission rate between
UE and AP, and the remaining resources of edge servers.

Output: Decision on task offloading and allocation of computing resources.

Step 1: Initialize the MEC system environment;

Step 2: Initialize PERDDPG algorithm model;

Step 3: Initialize neural network parameters;

Step 4: Initialize Sum-Tree;

Step 5: For every episode;

Step 6: Initialize action exploration noise η, discount factor γ, soft update coeffi-
cient λ, target network update interval UF ;

Step 7: Get the initial state S1;

Step 8: For t = 1 to T ;

1. Input the current state St and exploration noise into the online Actor net-
work, and output the action αt;

2. Execute action αt, get reward rt and the next state αt+1 from the environ-
ment;

3. Obtain Q reality value through online Critic network, and obtain Q target
value through target Critic network;

4. According to Equation (18), calculate the priority indicators pj correspond-
ing to empirical data (St, αt, rt, St+1), and store them in Sum-Tree;

5. According to rules, sample Z sampling priority indicators from Sum-Tree,
and obtain corresponding empirical data;

6. Calculate the target return value using empirical data according to Equa-
tion (20);

7. Update online Critic network parameters by minimizing Equation (29);

8. Calculate the policy gradient according to Equation (22) and update the
online policy network

9. If t%%UF = 0;
Update the target network by using Equations (23) and (24);
If t+ 1 = T ;
End for
Else
Let St = St+1, and go to 6.

260 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

the PERDDPG algorithm. In addition, we use two DNNs with three-layer to fit
the Actor network and the Critic network, and simulate a scenario of a multi-user
device with a single edge server, where each UE can only send an offloading request
for one task at a slot time. The experimental parameters referred to [29, 30] are
shown in Table 1.

Parameters Parameter Value

Data size of task Dn/MB Uniform [3, 5]
CPU cycles required to process 1-bit data Cn/(Hz/bit) 500
Delay tolerance of task τn/s 13
Computing capability of UE f l

n/GHz [1, 1.2, 1.4, 1.6, 1.8, 2]
Transmission power of UE ptn/W 1
Waiting power of UE pwn /W 0.1
Coordinate range of UE dxn, d

y
n 0.1

Height for AP h/m 10
Channel Bandwidth W/MHz 2.0
Spectral density for noise power N0/(dBm/Hz) −174
Allocation range of computing resource fo

n/GHz [10, 20]
Path loss factor σ 4
Weight for energy consumption IEn 0.5
Discount factor γ 0.9
Soft update coefficient λ 0.001
Priority weight ε 0.6
Channel gain gn 5× 10−5

Weight for importance level 0.4
Noise Gaussian noise
Optimizer Adam

Table 1. Experimental Parameters

5.2 Comparison Algorithms

To evaluate and validate the performance of the proposed PERDDPG algorithm in
this paper, the following three algorithms are introduced for comparison.

1) All Local Execution (All-local): All tasks are selected to execute locally.

2) Random Offloading Execution (Random): Tasks are randomly offloaded
to execute on local UE or MEC server. If the tasks are offloaded to the MEC
server, and MEC server will randomly assign computing resource to execute
them.

3) Offloading decision and resource allocation algorithm based on DDPG:
A task offloading decision and resources allocation algorithm designed using
DRL.

Task Offloading Decision and Resource Allocation Strategy 261

5.3 Experimental Results Analysis

1) Algorithm Convergence. Figure 4 compares the training performance of
DDPG algorithm and PERDDPG algorithm under the same network param-
eters. As shown in Figure 4, under the same network parameters, both the
DDPG algorithm and the PERDDPG algorithm can ultimately achieve rela-
tively stable convergence. The DDPG algorithm converged at 900 episodes,
with a cumulative reward value of 48. The PERDDPG algorithm converged at
400 episodes, with a cumulative reward value of 71. From the above data, it
can be found that compared with the DDPG algorithm, the PERDDPG algo-
rithm adopts PER technology, which enables the network to converge faster and
achieve higher cumulative rewards in complex interactive environments.

Figure 4. Comparison of the algorithm convergence performance

2) Effect of Various Factors on the Total Cost. In simulations, we compare
and analyze the influence of the weighted total cost of mobile devices with
different number of UE, different storage resource and computing resource of
MEC server.

Figure 5 shows the experimental results of comparing algorithms with varying
numbers of UE. As the number of UE increases, the total cost of the four al-
gorithms also naturally increases. The PERDDPG algorithm proposed in this
paper has always achieved the lowest total cost, saving 4.4% to 15% of the
total cost compared to the DDPG algorithm. The performance of both deep
reinforcement learning algorithms is better than that of the Random algorithm
and All-local algorithm. When the number of mobile devices is 5, 10, and 15,
the total cost saved by the DDPG and PERDDPG algorithms compared to the
other two algorithms increases with the increase of the number of UEs. However,

262 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

Figure 5. Effect of the UE quantity on the total cost

when the number of UEs is greater than 20, the total cost of these two algorithms
is close to that of the Random algorithm. The reason is that server computing
and storage resources are limited, and the best effect can only be achieved with
less than 15 UEs. Having too many devices can lead to incomplete task offload-
ing, and only tasks with high computational load can be offloaded for execution,
while the remaining choices are executed locally.

Figure 6. Effect of the MEC server storage resource on the total cost

Figure 6 shows the experimental results of comparing algorithms in an environ-
ment setting where edge servers store resources from small to large. Because

Task Offloading Decision and Resource Allocation Strategy 263

all tasks of the All-local algorithm are executed locally, the storage resources
of the edge server have no impact on the total cost of the All-local algorithm.
When the storage on the edge server is less than 60MB, as the server storage
resources increase, the Random, DDPG, and PERDDPG algorithms can offload
more tasks to the edge server for execution, resulting in a decrease in total over-
head. When the storage resources of the edge server exceed 60MB, increasing
the storage resources of the edge server can no longer significantly reduce the to-
tal cost of mobile devices. The reason is that the 60MB storage space is already
sufficient to meet the algorithm’s optimal task offloading decision requirements
in the current environment. The storage space of the edge server is no longer the
main factor limiting the task offloading to the edge server for execution. The
PERDDPG algorithm proposed in this article can reduce the total overhead by
2.8% to 15.3% compared to the DDPG algorithm.

Figure 7. Effect of the MEC server computing resource on the total cost

Figure 7 shows the experimental results of comparing algorithms in an envi-
ronment setting where computing resources on edge servers are increased from
small to large. Because all tasks of the All-local algorithm are executed locally,
the computing resources of the edge server have no impact on the total cost of
the All-local algorithm. The Random algorithm offloads nearly 50% of tasks
to edge servers for execution. When the computing resources of edge servers
are 180GHz, the maximum resource requirements for these tasks can be met.
Therefore, when the computing resources of edge servers increase to 180GHz,
the total cost of the Random algorithm no longer decreases. As the computing
resources of edge servers increase, DDPG algorithm and PERDDPG algorithm
will offload more tasks to edge servers for execution and allocate more comput-
ing resources to these tasks under limited storage resources, achieving the effect
of reducing total overhead. The PERDDPG algorithm performs better than the

264 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

DDPG algorithm throughout the entire process, and it can save up to 15.3% of
the total cost compared to the DDPG algorithm.

3) Effect of Various Factors on the Success Rate of Task Execution. In
these experiments, we compare and analyze the influence of the weighted to-
tal cost of mobile devices with different number of UE, storage resource and
computing resource of MEC server.

Figure 8. Effect of the UE quantity on the success rate of task execution

Figure 8 shows the experimental results of the comparison algorithm in envi-
ronments with varying numbers of UE. As the number of UE increases, the
task execution success rate of the PERDDPG algorithm proposed in this article
has always been higher than the other three comparative algorithms. When
the number of UE is less than 15, the DDPG algorithm can achieve a success
rate similar to the PERDDPG algorithm, indicating that the effectiveness of
these two algorithms is similar when the edge server resources are abundant.
When the number of UEs is greater than 15, the task execution success rates
of PERDDPG algorithm, DDPG algorithm, and Random algorithm will have
a certain decrease with the increase of the number of UEs, with a significant
difference. This is due to the limited resources of edge servers, which cannot
meet the offloading needs of too many tasks, resulting in tasks only being able
to be executed locally.

Figure 9 shows the experimental results of comparing algorithms in an environ-
ment setting where edge servers store resources from small to large. Because all
tasks of the All-local algorithm are executed locally, the storage resources of the
edge server have no impact on the success rate of the All-local algorithm’s task
execution. With the increase of edge server storage resources, the task execu-
tion success rate of the PERDDPG algorithm proposed in this article has always

Task Offloading Decision and Resource Allocation Strategy 265

Figure 9. Effect of MEC server storage resource on the success rate of task execution

been higher than the other three comparative algorithms. When the storage re-
sources is 20MB, the Random algorithm will make more decisions that violate
constraints, so the success rate of task execution is even lower than the All-local
algorithm. When the storage on the edge server is less than 60MB, as the server
storage resources increase, the Random, DDPG, and PERDDPG algorithms can
offload more tasks to the edge server for execution, resulting in an increasing
success rate. When the storage resources of the edge server exceed 60MB, the
task execution success rate of the Random algorithm is no longer affected by
the storage resources of the edge server, while the task execution success rate of
the PERDDPG algorithm and DDPG algorithm will slightly increase.

Figure 10 shows the experimental results of comparing algorithms in an envi-
ronment setting where computing resources on edge servers are increased from
small to large. Because all tasks of the All-local algorithm are executed locally,
the computing resources of the edge server have no impact on the success rate of
the All-local algorithm’s task execution. The Random algorithm offloads nearly
50% of tasks to the edge server for execution. Insufficient computing resources
on the edge server can result in the inability to meet the resource requirements
of these tasks, causing some tasks to fail and resulting in a lower success rate
than the All-local algorithm; When the computing resources of the edge server
are greater than 180GHz, the maximum resource requirement for this half of the
task can be met. Therefore, when the computing resources of the edge server
increase to 180GHz, the success rate of the Random algorithm’s task execution
no longer increases. When the computing resources of the server are less than
300GHz, as the computing resources of the edge server increase, the DDPG
algorithm and PERDDPG algorithm will offload more tasks to the edge server

266 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

Figure 10. Effect of MEC server computing resource on the success rate of task execution

for execution under limited storage resources and allocate more computing re-
sources to these tasks, achieving the effect of increasing the success rate of task
execution. When the computing resources of the edge server reach 300GHz, it
can already allocate the maximum computing resources for all offloading tasks,
and the computing resources of the edge server are no longer the main factor
limiting the success rate of task execution.

6 CONCLUSIONS

In mobile edge computing, to reduce the delay of task execution and the energy
consumption of mobile devices, a multi-users and single-edge server model is con-
structed in this paper. In order to minimize the weighted total cost combined energy
consumption of mobile device and task execution delay under the constraints with
computing resources and storage resources of the edge server, we propose a task
offloading decision and resource allocation algorithm based on improved DDPG.
A special reward function is designed to get the reward value for correlating nega-
tively with the total cost. We can obtain the lowest total cost when the algorithm
reaches the maximum reward value. Furthermore, we apply PER to improve DDPG.
So, this improved algorithm has a more dynamic MEC scenario for making offload-
ing decisions and computing resources allocation. Simulation results show that the
proposed algorithm can get a better convergence speed and improve the cumulative
reward compared to the existing algorithms, effectively reduce the weighted total
cost of mobile devices and improve the success rate of task execution.

In future work, we can consider complicating the MEC model, such as the mo-
bility of mobile devices and multi-edge servers offloading. We can also assume that

Task Offloading Decision and Resource Allocation Strategy 267

the edge servers have the ability to cache tasks to make more comprehensive task
offloading decision. Combined with the cloud computing technology, the task of-
floading decision under side cloud cooperation can be considered.

Acknowledgments

This work was supported in part by the Natural Science Foundation of Guangxi
(grant No. 2025GXNSFAA069236), National Natural Science Foundation of China
(grant No. 62272198), Natural Science Foundation of Guangdong Province (grant
No. 2024A1515010121).

Competing Interests

All authors disclosed no relevant relationships.

REFERENCES

[1] Flinn, J.: Cyber Foraging: Bridging Mobile and Cloud Computing. Springer, 2012,
doi: 10.1007/978-3-031-02481-8.

[2] Dinh, H.T.—Lee, C.—Niyato, D.—Wang, P.: A Survey of Mobile Cloud Com-
puting: Architecture, Applications, and Approaches. Wireless Communications and
Mobile Computing, Vol. 13, 2013, No. 18, pp. 1587–1611, doi: 10.1002/wcm.1203.

[3] Satyanarayanan, M.: Mobile Computing: The Next Decade. ACM SIGMOBILE
Mobile Computing and Communications Review, Vol. 15, 2011, No. 2, pp. 2–10, doi:
10.1145/2016598.2016600.

[4] Khan, A.U.R.—Othman, M.—Madani, S. A.—Khan, S.U.: A Sur-
vey of Mobile Cloud Computing Application Models. IEEE Commu-
nications Surveys&Tutorials, Vol. 16, 2014, No. 1, pp. 393–413, doi:
10.1109/SURV.2013.062613.00160.

[5] Shi, W.—Cao, J.—Zhang, Q.—Li, Y.—Xu, L.: Edge Computing: Vision and
Challenges. IEEE Internet of Things Journal, Vol. 3, 2016, No. 5, pp. 637–646, doi:
10.1109/JIOT.2016.2579198.

[6] Premsankar, G.—Di Francesco, M.—Taleb, T.: Edge Computing for the In-
ternet of Things: A Case Study. IEEE Internet of Things Journal, Vol. 5, 2018, No. 2,
pp. 1275–1284, doi: 10.1109/JIOT.2018.2805263.

[7] Mach, P.—Becvar, Z.: Mobile Edge Computing: A Survey on Architecture and
Computation Offloading. IEEE Communications Surveys&Tutorials, Vol. 19, 2017,
No. 3, pp. 1628–1656, doi: 10.1109/COMST.2017.2682318.

[8] Mao, Y.—Zhang, J.—Letaief, K.B.: Dynamic Computation Offloading for
Mobile-Edge Computing with Energy Harvesting Devices. IEEE Journal on Se-
lected Areas in Communications, Vol. 34, 2016, No. 12, pp. 3590–3605, doi:
10.1109/JSAC.2016.2611964.

https://doi.org/10.1007/978-3-031-02481-8
https://doi.org/10.1002/wcm.1203
https://doi.org/10.1145/2016598.2016600
https://doi.org/10.1109/SURV.2013.062613.00160
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2018.2805263
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/JSAC.2016.2611964

268 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

[9] Zhang, H.—Guo, J.—Yang, L.—Li, X.—Ji, H.: Computation Offloading Con-
sidering Fronthaul and Backhaul in Small-Cell Networks Integrated with MEC. 2017
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
2017, pp. 115–120, doi: 10.1109/INFCOMW.2017.8116362.

[10] Chen, W.—Wang, D.—Li, K.: Multi-User Multi-Task Computation Offloading in
Green Mobile Edge Cloud Computing. IEEE Transactions on Services Computing,
Vol. 12, 2019, No. 5, pp. 726–738, doi: 10.1109/TSC.2018.2826544.

[11] Muñoz, O.—Pascual-Iserte, A.—Vidal, J.: Optimization of Radio and Compu-
tational Resources for Energy Efficiency in Latency-Constrained Application Offload-
ing. IEEE Transactions on Vehicular Technology, Vol. 64, 2015, No. 10, pp. 4738–4755,
doi: 10.1109/TVT.2014.2372852.

[12] Liu, L.—Chang, Z.—Guo, X.—Ristaniemi, T.: Multi-Objective Optimiza-
tion for Computation Offloading in Mobile-Edge Computing. 2017 IEEE Sym-
posium on Computers and Communications (ISCC), 2017, pp. 832–837, doi:
10.1109/ISCC.2017.8024630.

[13] Wang, Q.—Guo, S.—Liu, J.—Yang, Y.: Energy-Efficient Computation Of-
floading and Resource Allocation for Delay-Sensitive Mobile Edge Computing. Sus-
tainable Computing: Informatics and Systems, Vol. 21, 2019, pp. 154–164, doi:
10.1016/j.suscom.2019.01.007.

[14] Meng, H.—Chao, D.—Guo, Q.—Li, X.: Delay-Sensitive Task Scheduling
with Deep Reinforcement Learning in Mobile-Edge Computing Systems. Journal
of Physics: Conference Series, Vol. 1229, 2019, No. 1, Art. No. 012059, doi:
10.1088/1742-6596/1229/1/012059.

[15] Qiu, X.—Liu, L.—Chen, W.—Hong, Z.—Zheng, Z.: Online Deep Reinforce-
ment Learning for Computation Offloading in Blockchain-Empowered Mobile Edge
Computing. IEEE Transactions on Vehicular Technology, Vol. 68, 2019, No. 8,
pp. 8050–8062, doi: 10.1109/TVT.2019.2924015.

[16] Zhou, H.—Jiang, K.—Liu, X.—Li, X.—Leung, V.C.: Deep Reinforcement
Learning for Energy-Efficient Computation Offloading in Mobile-Edge Comput-
ing. IEEE Internet of Things Journal, Vol. 9, 2022, No. 2, pp. 1517–1530, doi:
10.1109/JIOT.2021.3091142.

[17] Lu, H.—Gu, C.—Luo, F.—Ding, W.—Liu, X.: Optimization of Lightweight
Task Offloading Strategy for Mobile Edge Computing Based on Deep Reinforcement
Learning. Future Generation Computer Systems, Vol. 102, 2020, pp. 847–861, doi:
10.1016/j.future.2019.07.019.

[18] Wang, J.—Zhao, L.—Liu, J.—Kato, N.: Smart Resource Allocation for Mo-
bile Edge Computing: A Deep Reinforcement Learning Approach. IEEE Transac-
tions on Emerging Topics in Computing, Vol. 9, 2021, No. 3, pp. 1529–1541, doi:
10.1109/TETC.2019.2902661.

[19] Huang, L.—Feng, X.—Zhang, C.—Qian, L.—Wu, Y.: Deep Reinforcement
Learning-Based Joint Task Offloading and Bandwidth Allocation for Multi-User Mo-
bile Edge Computing. Digital Communications and Networks, Vol. 5, 2019, No. 1,
pp. 10–17, doi: 10.1016/j.dcan.2018.10.003.

[20] Wang, Z.—Lv, T.—Chang, Z.: Computation Offloading and Resource Al-

https://doi.org/10.1109/INFCOMW.2017.8116362
https://doi.org/10.1109/TSC.2018.2826544
https://doi.org/10.1109/TVT.2014.2372852
https://doi.org/10.1109/ISCC.2017.8024630
https://doi.org/10.1016/j.suscom.2019.01.007
https://doi.org/10.1088/1742-6596/1229/1/012059
https://doi.org/10.1109/TVT.2019.2924015
https://doi.org/10.1109/JIOT.2021.3091142
https://doi.org/10.1016/j.future.2019.07.019
https://doi.org/10.1109/TETC.2019.2902661
https://doi.org/10.1016/j.dcan.2018.10.003

Task Offloading Decision and Resource Allocation Strategy 269

location Based on Distributed Deep Learning and Software Defined Mobile
Edge Computing. Computer Networks, Vol. 205, 2022, Art. No. 108732, doi:
10.1016/j.comnet.2021.108732.

[21] Huang, L.—Bi, S.—Zhang, Y. J.A.: Deep Reinforcement Learning for Online
Computation Offloading in Wireless Powered Mobile-Edge Computing Networks.
IEEE Transactions on Mobile Computing, Vol. 19, 2020, No. 11, pp. 2581–2593,
doi: 10.1109/TMC.2019.2928811.

[22] Shi, J.—Du, J.—Wang, J.—Yuan, J.: Deep Reinforcement Learning-Based V2V
Partial Computation Offloading in Vehicular Fog Computing. 2021 IEEE Wire-
less Communications and Networking Conference (WCNC), 2021, pp. 1–6, doi:
10.1109/WCNC49053.2021.9417450.

[23] Fu, F.—Kang, Y.—Zhang, Z.—Yu, F.R.—Wu, T.: Soft Actor-Critic DRL
for Live Transcoding and Streaming in Vehicular Fog-Computing-Enabled IoV.
IEEE Internet of Things Journal, Vol. 8, 2021, No. 3, pp. 1308–1321, doi:
10.1109/JIOT.2020.3003398.

[24] Wang, S.—Bi, S.—Zhang, Y. J.A.: Deep Reinforcement Learning with Commu-
nication Transformer for Adaptive Live Streaming in Wireless Edge Networks. IEEE
Journal on Selected Areas in Communications, Vol. 40, 2022, No. 1, pp. 308–322, doi:
10.1109/JSAC.2021.3126062.

[25] Jiang, T.—Chen, Z.—Zhao, Z.—Feng, M.—Zhou, J.: Deep-Reinforcement-
Learning-Based Task Offloading and Resource Allocation in Mobile Edge Computing
Network with Heterogeneous Tasks. IEEE Internet of Things Journal, Vol. 12, 2025,
No. 8, pp. 10899–10906, doi: 10.1109/JIOT.2024.3514108.

[26] Peng, Z.—Wang, G.—Nong, W.—Qiu, Y.—Huang, S.: Task Offloading
in Multiple-Services Mobile Edge Computing: A Deep Reinforcement Learn-
ing Algorithm. Computer Communications, Vol. 202, 2023, pp. 1–12, doi:
10.1016/j.comcom.2023.02.001.

[27] Lillicrap, T. P.—Hunt, J. J.—Pritzel, A.—Heess, N.—Erez, T.—
Tassa, Y.—Silver, D.—Wierstra, D.: Continuous Control with Deep Reinforce-
ment Learning. CoRR, 2019, doi: 10.48550/arXiv.1509.02971.

[28] Schaul, T.—Quan, J.—Antonoglou, I.—Silver, D.: Prioritized Experience
Replay. CoRR, 2015, doi: 10.48550/arXiv.1511.05952.

[29] Li, J.—Gao, H.—Lv, T.—Lu, Y.: Deep Reinforcement Learning Based
Computation Offloading and Resource Allocation for MEC. 2018 IEEE Wire-
less Communications and Networking Conference (WCNC), 2018, pp. 1–6, doi:
10.1109/WCNC.2018.8377343.

[30] Tong, Z.—Deng, X.—Ye, F.—Basodi, S.—Xiao, X.—Pan, Y.: Adaptive
Computation Offloading and Resource Allocation Strategy in a Mobile Edge Com-
puting Environment. Information Sciences, Vol. 537, 2020, pp. 116–131, doi:
10.1016/j.ins.2020.05.057.

https://doi.org/10.1016/j.comnet.2021.108732
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1109/WCNC49053.2021.9417450
https://doi.org/10.1109/JIOT.2020.3003398
https://doi.org/10.1109/JSAC.2021.3126062
https://doi.org/10.1109/JIOT.2024.3514108
https://doi.org/10.1016/j.comcom.2023.02.001
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.1109/WCNC.2018.8377343
https://doi.org/10.1016/j.ins.2020.05.057

270 A. Li, Y. Zheng, W. Nong, M. Wei, G. Wang, S. Huang

An Li received his Master’s degree from the Guangxi University.
Now, he is a Lecturer in the Center for Applied Mathematics of
Guangxi at the Yulin Normal University. He mainly focuses on
network energy consumption optimization and network space
security.

Yeqiang Zheng received his Master’s degree from the Guangxi
University. Now, he is a Senior Engineer in the Center for Ap-
plied Mathematics of Guangxi at the Yulin Normal University.
He mainly focuses on mobile edge computing and network opti-
mization.

Wang Nong is currently pursuing the Master’s degree in the
School of Computer and Electronics Information at the Guangxi
University, Nanning, China. His research interests include mo-
bile edge computing and wireless network.

Manyi Wei is currently pursuing her Master’s degree in the
School of Computer and Electronics Information at the Guangxi
University, Nanning, China. Her research interests include mo-
bile edge computing and UAVs technology.

Task Offloading Decision and Resource Allocation Strategy 271

GaocaiWang is Professor at the School of Computer, Electron-
ics and Information, Guangxi University. He received his Ph.D.
in computer application technology from the Central South Uni-
versity, China, in 2004. Currently, he is the supervisor of Mas-
ter’s degree candidates in computer science and technology and
doctoral supervisor of electrical engineering in the Guangxi Uni-
versity. His research interests include computer network tech-
nology, wireless network technology, algorithm optimization.

Shuqiang Huang received his Ph.D. degree from the South
China University of Technology, Guangzhou, China, in 2010.
Currently, he is Professor at the Jinan University. He has pub-
lished more than 60 academic papers. His main research in-
terests include communication technology and modeling, optical
networks, wireless networks, artificial intelligence, and machine
learning.

