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Abstract. The recognition of human behaviors in videos is a critical domain within
human activity analysis. However, the current architectures and mechanisms of
human behavior recognition methods dominated by CNN, GCNs, and LSTM are
unduly complex resulting in high computational complexity of the models. Further-
more, these methods often exhibit poor robustness when it comes to recognizing
behaviors across different environmental conditions and video angles. To address
these challenges, this paper introduces a lightweight human skeleton interaction
behavior inference network based on a multi-layer perceptron. This network lever-
ages human skeleton information and utilizes minimal prior knowledge to infer limb
behavior encoding. To reduce computational complexity, videos are divided into
smaller segments, serving as the minimum computation units. This approach inte-
grates three essential types of information: independent global information about
individual postures, local interaction information regarding different limb parts,
and temporal distance information. These three types of information are coupled
through LSTM, incorporating temporal changes into network for recognition and
classification. In comparison to previous similar methods, our proposed method
is more lightweight, exhibits stronger robustness against interference and enables
behavior recognition across different environments and perspectives.
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1 INTRODUCTION

Recognizing human interaction behaviors in videos is a highly significant field of
video comprehension with diverse applications. For example, in security surveil-
lance, human behavior recognition technology can identify and track suspicious ac-
tivities like intruders, thieves, or violent criminals. In healthcare, it can monitor
and assess patients’ movements, postures, physical conditions, and rehabilitation
progress. In sports, it aids in analyzing athletes’ movements and skills for perfor-
mance enhancement.

Existing human behavior recognition technologies include models based on RGB
videos and models based on skeleton sequences. Compared to RGB video-based
methods, skeleton sequence-based models reduce errors related to individual ap-
pearance differences while lowering computational complexity, making them more
attractive to researchers. These models can be categorized as traditional manual
methods and neural network methods. Traditional manual methods offer inter-
pretability but require intricate preprocessing. In contrast, neural network methods
do not depend on prior knowledge but may not fully capture the semantic informa-
tion of interactions between body parts. Considering the advantages and disadvan-
tages of traditional manual methods and neural network methods, this paper adopts
the traditional method’s prior knowledge to guide the learning of neural networks,
thereby achieving human behavior recognition.

Due to the simplicity of single skeletal information, many researchers have con-
ducted multimodal experimental attempts [1, 2, 3, 4, 5, 6, 7], and have achieved
certain results. Although more multimodal data can improve the accuracy of human
behavior recognition, such methods require more parameters and training resources.
Therefore, this study builds on multimodal concepts by transforming single modality
into multiple branched modalities, simplifying data processing and enabling analysis
from various perspectives.

Compared to single-person behavior recognition, dual-person behavior recogni-
tion not only considers the characterization of individual behavior postures but also
models the complex interaction relationships of interaction positions in dual-person
interactions. Unlike whole-body networks, the part-based neural networks require
more sub-models to model each part. Cheng et al. [3] treats each keypoint as a part
and uses the Relational Network [8] for relational inference to achieve recognition
of human interactive behaviors. Ji et al. [9] divides the human body into five parts
and generates eight limb interaction pairs to create an interaction dictionary for
behavior recognition. The part-based neural network methods extract spatial and
temporal features separately when extracting features from body parts and finally
combine the two dimensions of features. Such methods fail to extract the spatio-
temporal information implicit in motion information. To address these issues, this
study considers the spatio-temporal relationship between the spatial and temporal
dimensions when extracting motion information from each part. Semantic fusion is
performed in the initial stage of feature extraction in both dimensions, resulting in
more representative motion features for accurate human behavior recognition.
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Given the shortcomings of the previous work, this paper proposes a novel, simple,
and efficient skeleton-based lightweight dual-person interaction behavior recognition
network. The main contributions are as follows:

1. This paper proposes a simple and lightweight dual-stream network to address
the issue of high computational complexity in previous methods.

2. This paper proposes a semantic module based on interactive positions, which can
extract features from different interactive positions separately, thus obtaining
semantic descriptions of different interactive positions.

3. This paper proposes a single-person pose spatial feature representation method
based on polar coordinates, which has better resistance to interference and ro-
bustness compared to previous methods.

The proposed network architecture has been experimentally validated on two
datasets, demonstrating the effectiveness of the proposed approach.

The organization of the rest of the paper is as follows: In Section 2, we introduce
the related research to this work. In Section 3, we discuss the overall model. The
experimental results are detailed in Section 4. Finally, we present the conclusions
of this work in Section 5.

2 RELATED WORK

2.1 Skeleton-Based Recognition Network

Existing techniques for human activity recognition primarily include recognition
models based on RGB video and recognition models based on skeleton sequences.
Compared to recognition methods based on RGB video, the skeleton-based recog-
nition models are capable of reducing errors caused by individual differences in
appearance, while also lowering computational complexity. As a result, this ap-
proach has garnered greater attention from researchers [10, 11, 12, 13, 14]. Network
models based on skeleton sequences primarily fall into two categories: traditional
manual approaches and neural network approaches. Traditional manual approaches
involve extracting features from skeleton information based on prior knowledge.
These methods can subjectively describe the characteristics of human behavior,
thus achieving better results in behavior recognition. Based on the principle that
“better view leads to better recognition”, a skeleton-based HDS-SP descriptor is
proposed for human activity recognition [15]. Although such a method offers ex-
cellent interpretability, it requires complex manual inference and design. On the
other hand, neural network methods focus on data-driven learning of skeleton in-
formation, allowing for modeling of human activity patterns and achieving accurate
human activity recognition. Yan et al. [16] proposes an extension of graph neu-
ral networks to spatiotemporal graph models (ST-GCN) to integrate information
in both temporal and spatial dimensions, thereby achieving human behavior recog-
nition. Building upon the foundation of ST-GCN, the traditional convolutional
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operators are replaced by Shift convolutional operators [17] in order to enable the
network model to achieve better performance with fewer parameters and compu-
tational resources [3]. Additionally, a novel decoupled spatiotemporal attention
network (DSTA-Net) [18] is introduced, emphasizing the distinctive features of dif-
ferent motion scales to achieve accurate human behavior recognition. Although the
neural network methods mentioned above have achieved satisfactory results, they
tend to overlook local motion-type features, thereby resulting in incomplete learning
of input skeletal sequences. To reconcile the advantages and disadvantages of both
traditional manual and neural network methods, this paper integrates prior knowl-
edge from the traditional approach into the neural network learning process. This
approach enhances the ability of neural networks to accurately capture the implicit
mappings in human behavior interactions, ultimately improving human behavior
recognition.

2.2 Multimodal Behavior Recognition Network

Early multimodal human behavior recognition networks predominantly centered on
modeling and predicting the physical attributes of skeletons [3, 4]. Recent studies
have concentrated on elastic modeling of the topological structure at the channel
level to achieve improved results [6, 7]. Some researchers have combined the physical
attributes of skeletons and the RGB features of local image patches to focus on mod-
eling crucial interactive regions. By concatenating these features with whole-body
characteristics, they have successfully implemented human behavior recognition [2].
An approach has been proposed to unify the processing of various modalities [5].
This approach’s network architecture can dynamically adapt based on different data
modalities or node quantities, facilitating interaction fusion among modalities. Duan
et al. [1] introduced a novel modality known as 3D heatmaps, generating heatmaps
for each frame by employing Gaussian kernels on skeletal point coordinates. These
heatmaps are then layered for the entire sequence, enabling the recognition of hu-
man interactive behaviors. While multimodal data can enhance network recognition
performance, it introduces complexity to the network structure and increases the
number of parameters. Consequently, this study adopts a single modality processed
as multiple branch modalities, ensuring simplicity in data processing while enabling
analysis and semantic representation of the same modality from different perspec-
tives.

2.3 Part-Based Recognition Network

Part-based networks prioritize the interactive parts involved in human interactive
behaviors. These methods model each individual part to acquire semantic infor-
mation about the interactions between these parts in human interactive behaviors.
Perez et al. [11] treat each joint as a body part and individually model the rela-
tionships between these parts. They use the Relational Network [8] for inferring
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interactive relationships, resulting in the recognition of human interactive behav-
iors. Ji et al. [9] divided the human body into five parts and generated eight limb
interaction pairs. They employed a contrast mining algorithm to identify significant
interaction pairs within each interaction category, creating an interaction dictionary
for behavior recognition. Lee and Lee [2] introduced an attention mechanism among
interacting body parts, focusing selectively on local movements between body joints.
Additionally, body behavior recognition is achieved through the modeling of the en-
tire body and the co-occurrence matrix of sub-volumes. While these methods have
enhanced the accuracy of human behavior recognition, they tend to overlook the
spatial and temporal connections in the extraction of bodily features, as well as the
implicit spatiotemporal information in motion behavior, hindering human behav-
ior recognition. To address this, our study takes into account the spatiotemporal
features inherent in both spatial and temporal dimensions. Semantic fusion is con-
ducted at the initial stage of feature extraction, aiming to obtain more representative
motion features for the precise recognition of human behavior.

3 METHOD

Figure 1. Overview of the proposed framework. The network architecture includes two
data flows, spatial and motion flow. The dashed box contains the PSM processing unit
which executes motion flow processing.

In this paper, we provide a detailed explanation of the network architecture pro-
posed for human behavior recognition. The proposed network structure offers a more
straightforward principle and a clearer framework than previous architectures. Its
effectiveness has been validated using popular human behavior recognition datasets.
The overall structure of the framework is illustrated in Figure 1, which consists
two sub-networks: the primary motion information flow and the primary spatial
information flow.

Given two interacted skeletal sequences Bl, Br ∈ RT×J×2, where T and J rep-
resent the number of frames and the number of nodes, respectively, and 2 rep-
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resents the x and y dimensions of each node coordinate. In the primary mo-
tion information flow, we initially feed the skeletal sequences into the Initial Se-
manticization Module (ISM) to process the original skeletal sequences and obtain
higher-dimensional primary semantic features. We then model the individual body
parts through the Part Semanticization Module (PSM) and perform inference us-
ing the Limb Part Interaction Reasoning Module to obtain the final classification
features of this flow network. In the main spatial information flow, the skele-
tal sequence is the first input to the Pose Encoding Module (PEM) for encod-
ing spatial information. Subsequently, the pose features of the interacting par-
ties are fused to obtain classification features. The classification features from the
two information flows are then obtained by using LSTM for temporal classifica-
tion. The two classification results are averaged to generate the final recognition
results.

3.1 Main Motion Information Flow (MMIF)

In this section, we provide an overview of the primary motion information flow
based on skeleton joints. Firstly, we introduce the initial semantic module, followed
by an exploration of the processing methods employed in the motion information
flow of the part semantic module (PSM). We then delve into the module for inter-
inference between body parts.

3.1.1 Initial Semantic Module (ISM)

Figure 2. The skeletal sequence is partitioned into five interacting body parts (torso, left
arm, right arm, left leg, and right leg), with each part corresponding to specific index
positions of the skeleton joints
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Directly using the original skeletal sequences Bl, Br for network learning and
modeling is computationally demanding and often yields unsatisfactory outcomes.
Empirical findings suggest that incorporating manual processing can enhance net-
work learning, akin to the ResNet structure [4], where manual mappings compensate
for inadequate network learning. In this module, the residual connection is estab-
lished by linking the original skeletal sequences Bl, Br with the processed initial
semantic features Il, Ir through the following equation:

I ′l = FC (ISM (Bl)) +Bl, I ′r = FC (ISM (Br)) +Br,

where FC represents the fully connected layer, which performs dimensionality aug-
mentation on the Il and Ir generated by ISM, and combines them with Bl and Br

through summation.
Experimental results reveal that the residual connection provides limited ac-

curacy improvement while increasing network complexity and parameters. Thus,
this study solely employs the manually guided ISM output as the input for the
subsequent stage.

For a given pair of interacting skeletal sequences Bl, Br, all joints are initially
partitioned into five primary parts (right arm P1, left arm P2, right leg P3, left leg
P4, torso P5). Each subset contains an equal number of joints, and the entire video is
divided into N segments to reduce computational complexity. The primary semantic
analysis of each video segment follows these steps:

Velocity v: Calculate the velocities of the endpoint and connection point for each
subpart Pi of every interactive individual. Speed is determined by analyzing
the displacement change between frames, and the average velocity of each video
frame is used as the speed value for that segment.

vij =

√(
xT+t
j − xT

j

)2
+
(
yT+t
j − yTj

)2
t

,

where i, j represent the encoding of body parts and the index of joint nodes,
respectively, while x, y represent the coordinates of the two dimensions. T ,
t represent the starting time of each video segment and the duration of each
segmented sub-video, respectively.

Acceleration a: Given small time dimensions in segmented sub-video segments,
the motion is considered uniform acceleration. Acceleration a is calculated by
analyzing the displacement difference within equal time intervals. The changes
in velocity and acceleration between different segments clearly indicate the level
of involvement of each body part in the interactive process.

aij =
∆s

t2
,

where i, j represent the encoding of body parts and the index of joint nodes,
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respectively. ∆s represents the displacement difference in equal time frames,
and t represents the duration of each segmented sub-video.

Distance dist: Dynamic characteristics of proximity and separation between in-
teracting body parts can be modeled through distances between these parts. In
the course of interaction, the interacting body parts are typically the extremi-
ties of the limbs, such as the hands and feet. Therefore, for participant Bl, the
distance characteristics of their interaction are represented by calculating the
shortest distance between the endpoints of each body part and all the nodes of
the corresponding body parts of the other participant Br.

distirk = min
(
Dist

(
JointP

l
i , Joint

P r
k

1

)
, . . . ,Dist

(
JointP

l
i , Joint

P r
k

n

))
,

where i, k represent the encoding of the body parts. l, r represent the indexes
of the interacting participants. n represents the index of joint node j. Dist() is
the function used to calculate the Euclidean distance between two joints.

Joint angle θ: Joint angles effectively represent spatial information in behavior
recognition and play a supplementary role in the motion information flow.

θ = arccos

(
l1 · l2

∥l1∥ · ∥l1∥

)
,

where l1, l2 respectively represent the two lines on either side of the angle being
calculated.

The behavioral information of each body part of the interacting individuals
includes joint velocity, joint angle, and joint acceleration. These features possess
translational invariance properties similar to convolutional networks, effectively
reducing data volume while maintaining integrity.

3.1.2 Part Semantic Module (PSM)

The Part Semantics Module (PSM) aims to provide a semantic description of the
motion behavior for each interacting body part in interaction activities. A simple
Multi-Layer Perceptron (MLP) model is employed to capture the behavior of the
body parts. While fully connected networks require more parameters and computa-
tions, they make efficient use of computer resources, leverage temporal and spatial
locality, and accelerate network computation. Additionally, well-designed fully con-
nected networks, as shown by RNs [8], exhibit strong reasoning capabilities. In this
paper, an MLP is used to semantically analyze the motion information of interacting
body parts.

As shown in Figure 3, the PSM model for modeling individual body parts com-
prises only four very narrow fully connected layers. The first two layers map limb
motion information to a high-dimensional feature space, while the last two layers
infer the mapped features and introduce residual structures [19] to enhance the
model’s training speed.
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Figure 3. The overall presentation of the Part Semantic Module is as follows: the input is
the semanticized results of the ISM, which undergo dimensionality expansion and reasoning
processes to obtain the final interactive semantic features

3.1.3 Limb Interacting Inference Module (LIIM)

In interpersonal interactions, the mutual movements of body parts of both indi-
viduals play a vital role in behavior recognition. Recognizing dual-person behavior
involves considering not only individual posture representation but also modeling
complex interaction relationships between the two individuals. For instance, in the
act of patting someone, it is challenging to determine whether one person’s hand
extension targets the waist, hand, head, shoulder, or other parts of the other person,
as it involves multiple interaction analogies. Given the aforementioned observations,
it is natural to consider that in dual person behavior recognition, there exists an
inherent correspondence between the interacting body parts of the two individu-
als, and their movements exhibit potential complementarity and imply semantic
relevance.

For example, in a handshake action, the right hands of both individuals extend
sequentially to make contact and then separate. Exploring the semantic correla-
tion between the interacting body parts can effectively contribute to understanding
dual person behavior interactions in videos. Additionally, for certain interaction be-
haviors, the variations in distance between the interacting body parts also present
distinct and discernible features. For instance, in hugging activities, the trunk parts
of both individuals gradually move closer over time until they make contact, sus-
taining that contact for a period before separating again.

To capture these aspects, we divide the human body into parts, such as the
torso, left arm, right arm, left leg, and right leg. Each part of an individual can
interact with the corresponding part of another person or with other parts of the
other person. Interactions between the same parts are the most common and have
higher weight, while interactions between different parts are less frequent but still
significant. Self-adjustment of weights is applied to the intensity of part interac-
tions.
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Figure 4. The overall architecture of the Limb Interacting Inference Module (LIIM). The
individual parts of the interacting parties are fused at the elemental dimension and infor-
mation coupling is achieved through a Multilayer Perceptron (MLP).

The sequential relationship between interacting parties is crucial in interactive
behaviors, and different interaction orders affect the model’s internal parameters.
To address this, we use Relational Networks [8] as the underlying network, employ-
ing the method of adding feature vectors. While this increases the solution space
of feature vectors and reduces reliability somewhat, it eliminates the need to con-
sider interaction order and simplifies determining the initiator and recipient of the
interaction.

After the semantic representation of the movement features of each body part
through PSM, interactive pairs are formed, and the features of interacting parts
within each pair are added together to obtain the feature vector specific to each
interaction pair. The twenty-five pairs of interactive relationships generated by the
five body parts are concatenated to obtain the interaction relation feature vector.
Further relationship inference is conducted through the MLP layer to obtain the
dual-person interactive motion feature vector of the main movement information
flow. The above content can be formalized as follows:

Featureout = fϕgconcat(P
l
1 + P r

1 ), (P
l
1 + P r

2 ), . . . , (P
l
5 + P r

4 ), (P
l
5 + P r

5 ),

where Featureout represents the output features of the inference module. l and r
represent the indices of the interacting parties. P l

i represents the feature vector
of the ith body part of the party at index l. fϕ denotes the inference function of
the body module, and gconcat denotes the feature concatenation module for interac-
tion.

The approach presented in this paper, when coupled with sufficient data and
appropriate parameter settings, achieves human activity recognition performance
comparable to the Bag-of-Words (BoW) model, all without requiring manual clus-
tering or similar preprocessing.
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3.2 Main Spatial Information Flow (MSIF)

In this section, we introduce the main spatial information flow based on skeleton
joints. The first subsection of this chapter explores the spatial characteristics of
an individual in interaction behavior and employs polar coordinates for pose ab-
straction. Subsequently, we extend the previously mentioned PSM module to model
the inference of individual poses.

3.2.1 Posture Encoding Module (PEM)

The posture encoding module aims to encode the spatial appearance and pose of
individual actors involved in interaction behavior. It is known from subjective expe-
rience that clearer judgments about the interaction category can be made when the
independent actions of both parties in the interaction are discernible. For instance,
in a handshake, both parties extend their right hand forward, and in a kicking ac-
tion, one party extends their right leg forward and upward, while the other party
may step back, among other possibilities. In dual-person interactions, the personal
pose information of the interacting parties complements the interaction information
between body parts, enhancing recognition accuracy. This paper utilizes a polar
coordinate representation to describe the spatial appearance and pose of individuals
and employs an expanded PSM module to encode and process the overall pose of
an individual.

Figure 5. PEM module: single-person spatial posture feature. The features are visually
displayed using the coordinates of the hands.

As depicted in Figure 5, the Pose Encoding Module (PEM) initiates a polar
coordinate transformation on the individual’s original skeletal information, with the
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hip joint node as the coordinate origin, ensuring better feature stability in the ex-
tracted data. The processed data is subsequently fed into the expanded Pose-Specific
Module (PSM) for encoding processing to obtain the final feature representation.

Additionally, the proposed module employs the feature addition method [8] to
address sequencing issues between the interacting parties. This approach avoids re-
dundant input data and approximates the effectiveness of a co-occurrence matrix [2],
thus sidestepping coefficient-related problems. By adopting this approach, the ob-
jective becomes clearer, data duplication is reduced, and the network can reconstruct
individual pose information. The formalization of this content is as follows:

Feature = FC (PEM(Bl) + PEM(Br)) ,

where Feature represents the high-level feature that has been semantically inter-
preted by PEM, FC denotes the fully connected layer, and Bl, Br represent the raw
skeleton data of the interacting parties.

4 EXPERIMENTS

4.1 Datasets

NTURGB+D 60 datasets [14]: This dataset is a large-scale action recognition
dataset that contains skeleton sequences. It comprises 40 different performers
and includes 60 activity categories, with a total of 56 578 samples. The dataset
was captured using three Microsoft Kinect v.2 cameras simultaneously. Each
human skeleton in the dataset consists of 25 skeletal joints represented by 3D
coordinates. The authors of the dataset propose two evaluation protocols:

1. Cross-Subject protocol, which divides the data based on subject ID, with
samples from 20 subjects for training and the remaining subjects for testing;
and

2. Cross-View protocol, which divides the data based on camera views, with
samples from two camera views for training and the rest for testing.

The dataset includes a total of 11 human interaction categories, such as back
slap, hand over, walking toward, kicking, pointing, touching the pocket, walk-
ing, pushing, punching, hugging, and shaking hands. The maximum number of
frames in each sample is 256.

NTURGB+D 120 datasets [13]: This dataset is an expanded version of the
NTU-RGB+D dataset, comprising an additional 60 action categories and 57 367
samples. It includes 113 945 skeleton sequences from 120 action categories and
offers two standard evaluation protocols. The first protocol contains a subject
division (Cross-Subject), where 53 subjects’ actions are used for training, and
the remaining subjects’ actions are used for testing. The second protocol is called
setup division (Cross-Setup), in which half of the participants are employed for
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training and the other half for testing. Along with the 11 interaction categories
in the NTU-RGB + D dataset, this dataset includes an additional 15 human
interaction categories, bringing the total to 26 categories.

4.2 Implementation and Optimization Details

The method proposed in this paper is illustrated in Figure 1. The main motion
information flow and the main spatial information flow are computed in parallel,
and data inference is performed using a Multi-Layer Perceptron (MLP). The en-
tire network is trained with random initialization using the PyTorch deep learning
framework. The DINet architecture is implemented, with the ADAM optimizer and
a base learning rate of 0.001. The weight decay rate is set to 0.001, and the num-
ber of epochs is set to be 3 000. The batch size is set to the default value of 512,
and the cross-entropy loss function is used as the default loss function for the net-
work. All models are trained on a server system equipped with a 12GB Tesla K80
GPU.

During the data preprocessing stage, we address the missing keypoint informa-
tion in frames by applying linear interpolation when only a small portion of the
keypoints is missing. Frames with more than 50% missing keypoints are discarded.
To reduce computational load, we divide the videos into 10 segments, using them as
metadata. As our proposed method requires segment-wise computation of physical
attributes of keypoints, we replicate frames for samples with fewer than 40 frames,
ensuring the minimum computational requirement. The specific implementation
details of the proposed network architecture are shown in the following table. For
convenience, activation functions and normalization functions are omitted in the
table.

MMIF MSIF

ISM
PEM

PSM

MLP(25 ∗ 128, 2 048)
MLP(25 ∗ 128, 2 048)

MLP(25 ∗ 128, 2 048)
MLP(25 ∗ 128, 2 048) MLP(25 ∗ 128, 2 048)

Flatten

FC(1 280, 256)

Drop(0.1) Drop(0.2)

FC(256, num class)

Table 1. The specific details of the network architecture are illustrated in the diagram,
which includes the three proposed modules, namely ISM, PSM, and PEM. The flatten
layer is used for dimension expansion, and num class denotes the number of categories in
the dataset.
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4.3 Ablations

The Impact of PEM: The PEM module is utilized to encode spatial information
of individual behaviors. We conducted ablation experiments on this module
using both single spatial information flow and spatiotemporal dual information
flow. For each of the two validation information flows, we performed three
comparative experiments:

1. Only Projection: the original data was directly projected onto the input
dimension of the subsequent network for interaction behavior classification;

2. PEM + Res: the PEM approach was applied, and the output of PEM was
connected with the original data through a residual connection;

3. PEM: the output of PEM was used as input for subsequent network to rec-
ognize interaction behaviors. Experimental results are presented in the table
below.

In both MSIF and MSIF+MMIF, the network performance using only projection
is the lowest among the two datasets. However, the network architecture of
PEM+Res significantly improves the accuracy of human behavior recognition for
both datasets. In the single MSIF experiments, compared to PEM+Res, using
only PEM improves the accuracy by 5.8 percentage points on the NTURGB
60 dataset, while it decreases by 0.6 percentage points on the NTURGB 120
dataset. In the MSIF +MMIF experiments, the single PEM network structure
outperforms the PEM+Res network by 1.4 percentage points on the NTURGB-
D 60 dataset and 3 percentage points on the NTURGB-D 120 dataset.

MSIF MSIF +MMIF

Data Set NTU-D 60 NTU-D 120 NTU-D 60 NTU-D 120

Experiment Acc Acc

only Projection 65.9 65.7 84.6 71
PEM+Res 68.5 70.1 87.3 73.7
PEM (ours) 74.3 69.5 88.7 76.7

Table 2. Comparison of PEM experiments: Acc represents the recognition accuracy of
various methods on the dataset

The Impact of ISM: ISM is utilized to convert coordinate information of a spe-
cific body part into higher-dimensional patterns of motion and spatial informa-
tion. To verify the effectiveness of ISM, we employed three different network
structures, namely only Projection, ISM + Res, and DINet, on two datasets.

1. Only Projection directly projects the original data onto the input dimensions
of the subsequent network.

2. ISM + Res applies ISM to transform the original coordinate information
and connects the output of ISM with the original data through a residual
connection.
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3. DINet solely utilizes the output of ISM as input for the subsequent network.
Experimental results are presented in the table below.

On the two datasets, the network using only Projection achieves accuracy rates of
82.7% and 67.8%, respectively. Compared to the single projection approach, the
ISM+Res network significantly improves the accuracy of behavior recognition on
both datasets. In comparison to the ISM+Res network proposed in this paper,
DINet achieves an improvement of 3.1 percentage points on the NTURGB 60
dataset and an increase of 5.4 percentage points on the NTURGB 120 dataset.

NTU-D 60 NTU-D 120

Experiment Acc Acc

ISM Projection 82.7 67.8
ISM + Res 85.6 71.3
without PSM 76.5 62.3
DINet 88.7 76.7

Table 3. Comparison of ISM and PSM experiments: Acc represents the recognition accu-
racy of various methods on the dataset

The Impact of PSM: PSM plays the role of semanticizing the motion information
of body parts and acts as a higher-dimensional information processor. To evalu-
ate the influence of PSM, we experimented with two different network structures,
namely without PSM and DINet, on two datasets.

1. Without PSM: the PSMmodule is removed from the network, and the output
features of ISM are directly fed into the subsequent network.

2. DINet: the standard network structure proposed in this paper, which in-
cludes PSM.

As shown in Table 3, on the NTURGB 60 dataset, the network model with PSM
exhibits an improvement of 12.2 percentage points compared to the network
structure without PSM. On the NTURGB 120 dataset, there is an improve-
ment of 14.4 percentage points. These experimental results indicate that the
proposed PSM achieves better performance on larger datasets, suggesting that
the inclusion of PSM in the network effectively enhances the dimensionality and
semantic interpretation of the input information, thus enhancing the recognition
capability of the model.

The Impact of Branch Flows: To investigate the impact of two branch data
flows on the experimental results, we conducted three different control experi-
ments: MMIF, MSIF, and MMIF +MSIF on two datasets. Specifically, MMIF
refers to the isolated main motion information flow, MSIF represents the iso-
lated main spatial information flow, and MMIF+MSIF denotes the integration
of both information flows. As shown in Table 4, the results indicate that in
both datasets, the main motion information flow within a single branch out-
performs the main spatial information flow. This aligns with the notion that
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motion information plays a more crucial role compared to spatial information
in dyadic interactive behaviors [20]. On the other hand, the fusion of motion
and spatial information flows yields a better recognition of human interactive
behaviors, demonstrating superior performance compared to all other ablation
experiments and a notable enhancement over the single branch flow.

In summary, an overall analysis of the above ablation experiments reveals that
the addition of PSM significantly improves the accuracy of recognition within the
main motion information flow. This finding suggests that PSM plays a highly pos-
itive role in modeling the interactions between body parts, effectively implicitly
mapping the patterns between these parts. In contrast, the impact of PEM within
the main spatial information flow is not as pronounced as PSM. One possible reason
for this difference is that although the polar coordinates used by PEM differ from
Cartesian coordinates, they are merely alternative representations of the same data.
The improvement in performance may result from manually converting Cartesian
coordinates into polar coordinates, which substitutes some of the network’s learning
process and explicitly maps the patterns of human interaction.

NTU-D 60 NTU-D 120

Experiment Acc Acc

MMIF 86.1 71.5
MSIF 74.3 65.3
MMIF +MSIF 88.7 76.7

Table 4. The impact of branch flows on model recognition performance

4.4 Result

In this study, we compare the performance of DINet, the method proposed in this
paper, with other methods on the NTU RGB-D 60 and NTU RGB-D 120 datasets,
as shown in Table 5. The NTU RGB-D 60 dataset employs the XSub and XView
validation methods, while the NTU RGB-D 120 dataset uses the XSub and XSet
validation methods. We categorize existing methods for human behavior recognition
into three different framework modes based on different design approaches, including
methods based on CNNs, methods based on RNNs, and methods based on GCNs,
among others. Given that GCN-based methods have garnered more attention and
achieved better results in the current research landscape, they have overshadowed
further exploration of other types of methods in the field of human behavior recog-
nition. Therefore, this paper explores the application of multilayer perceptrons in
this domain through experimental investigation.

Based on the data in Table 5, it is evident that DINet outperforms the other
listed methods in terms of recognition performance on NTU-60 (XSet, XView).
Specifically, in the XSet validation of the NTU-60 dataset, DINet achieves an ac-
curacy of 88.7%, surpassing the highest performance of other methods at 88.6%.
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Model
NTU-60 NTU-60 NTU-120 NTU-120

XSub XView XSub XSet

Synthesized CNN [21] 80.0 87.2 – –
3scale ResNet [22] 85.07 92.3 – –

STA-LSTM [23] 73.4 81.2 – –
VA-LSTM [24] 79.2 87.7 – –

ST-GCN [25] 81.5 88.3 70.7 73.2
3s RA-GCN [26] 87.3 93.6 81.1 82.7
2s-AGCN [27] 88.5 95.1 82.5 84.2
GR-GCN [28] 87.5 94.3 – –
PGCN-TCA [29] 88.0 93.6 – –
CoAGCN* [30] 84.1 92.6 80.4 82.0
3SCNN [31] 88.6 93.7 – –

ours 88.7 95.2 76.7 80.3

Table 5. Comparison of DINet with existing excellent methods on two datasets using two
validation approaches

In the XView validation of the NTU-60 dataset, DINet achieves a performance of
95.2%, also surpassing other methods. Despite the performance drop of DINet on
the more challenging NTU-120 dataset, with differences of 5.7 percentage points
and 3.9 percentage points compared to 2s-AGCN [27] in the XSub and XSet val-
idations, respectively, the performance remains competitive. Additionally, DINet,
proposed in this paper, demonstrates simpler network structure and implementation
compared to other networks for human interaction behavior recognition. Benefit-
ing from the proposed interaction-part reasoning module, the network also achieves
competitive results in terms of accuracy.

5 CONCLUSION AND FUTURE WORK

This study proposes DINet, a simple and lightweight Multilayer Perceptron (MLP)
based network for human interaction behavior recognition. DINet aims to address
the issues of complex network structures and suboptimal recognition performance
under different viewing angles encountered by existing approaches. DINet adopts
a popular dual-stream network architecture, consisting of the main motion infor-
mation stream and the main spatial information stream. Specifically, the main mo-
tion information stream applies semantic processing to the interacting body parts,
whereas the main spatial information stream describes the overall appearance of the
interaction between two individuals. The fusion of these two data streams using
the late fusion technique enables the effective modeling of dyadic interaction behav-
ior. The proposed method is evaluated on the NtuRGB-D 60 [14] and NtuRGB-D
120 [13] datasets, and experimental results demonstrate that DINet, the proposed
model, achieves recognition performance comparable to existing approaches while
exhibiting simplicity in network structure and low computational requirements.
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In future research, our focus will shift towards the study of multi-person interac-
tion behavior recognition. This area represents a natural progression of our current
research direction, as understanding multi-person interactions can provide deeper
insights into human social behavior. By analyzing various cues such as postures,
movements, and facial expressions, we aim to uncover patterns, motivations, and
influencing factors of human social interactions. This research will not only con-
tribute to the field of human behavior recognition but also provide valuable insights
for social science and psychology.

To achieve this goal, we plan to broaden the validation of our models by testing
them on diverse datasets. This will help us assess the generalizability and robust-
ness of our models across different scenarios and populations. Additionally, we aim
to enhance the real-time analysis capabilities of our models, as this is crucial for
practical applications such as surveillance and interactive systems. By improving
the efficiency and speed of our models, we can ensure their effectiveness in real-world
scenarios.
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