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Abstract. Given the widespread occurrence of global telecom fraud, the develop-
ment of proactive measures for crime prevention and control has become increas-
ingly crucial. This study introduces a data-driven Bayesian Network (BN) model,
which incorporates D-S evidence theory to integrate prior knowledge for fraud risk
analysis. Through the examination of real-world case data, the study identifies
key risk-influencing factors (RIFs) and uncovers causal relationships by compara-
tively evaluating three structure learning algorithms: Peter-Clark (PC), Bayesian
Search (BS), and Greedy Thick Thinning (GTT). A robust Directed Acyclic Graph
(DAG) is then constructed, and the Expectation-Maximization (EM) algorithm is
employed to estimate conditional probability distributions. The proposed model ef-
fectively captures the causal relationships and nonlinear complexities among RIFs.
To validate the model’s applicability, scenario reasoning and sensitivity analysis are
conducted, confirming its effectiveness in prioritizing RIFs and supporting informed
decision-making. This research presents a novel and practical framework for public
security agencies to develop proactive strategies for telecom fraud prevention and
control.
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1 INTRODUCTION

With the rapid development of the digital economy and network technologies, tele-
com fraud has diversified into various forms [I], inflicting not only economic losses
on victims but also posing severe threats to societal trust and the financial security
system [2]. While some traditional methods for detecting telecom fraud have been
relatively successful in identifying and preventing fraudulent activities, the expo-
nential increase in fraud case data and the relentless evolution of fraudulent tactics
present considerable challenges [3, [, [5]. For example, fraudsters can even leverage
artificial intelligence technologies, such as deepfakes, to create highly targeted fraud
schemes tailored to the specific characteristics of victims, making it exceedingly
difficult to prevent and control fraud.

Traditional risk assessment methods, such as rule-based systems and statistical
models, have been employed to detect fraudulent activities. However, these methods
often face challenges in keeping up with the fast-paced evolution of fraud tactics
and the rapid increase in fraud-related data. Rule-based systems rely heavily on
predefined patterns, making them ineffective in detecting novel or complex fraud
schemes. Moreover, these methods are limited in capturing nonlinear dependencies
and interactions among various risk-influencing factors (RIFs), which are crucial for
understanding the fundamental causes of fraud [3].

In response to these challenges, machine learning (ML) and artificial intelli-
gence (Al) technologies have become powerful tools for fraud detection [6]. No-
tably, deep learning models have demonstrated remarkable potential in process-
ing large datasets and recognizing complex fraud patterns. Hu et al. [7] pro-
posed a sparse graph fraud detection framework called BTG, which relies on re-
constructing user behavior graphs. The process involves reconstructing the graph
based on user behavior similarities, followed by employing graph ML techniques
to identify fraudulent users, thus linking sparse graph data with graph ML. Wang
et al. [§] developed a graph neural network that is aware of feature differences,
effectively combating the challenges posed by imbalanced fraud datasets. Simi-
larly, Raghavan and Gayar [9] explored the use of deep learning methods to de-
tect fraud in high-dimensional datasets, highlighting their scalability and adapt-
ability. However, despite the high prediction accuracy of ML models, they often
function as “black-box” systems, providing limited interpretability. This opacity
limits their application in domains like telecom fraud prevention, where under-
standing causal relationships is crucial for designing effective intervention strate-
gies.

To overcome these limitations, Bayesian networks (BNs) have gained recognition
thanks to their ability to model probabilistic dependencies and causal relationships
among variables. As a graphical model, BNs provide a transparent framework for
fraud risk analysis, making them ideal for understanding the complexity of fraud
mechanisms. Byun and Song [I0] demonstrated the utility of BNs in system reli-
ability analysis, highlighting their ability to model interdependencies in structured
data.
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Hybrid models that integrate auxiliary techniques, such as Dempster-Shafer
(D-S) evidence theory, have also demonstrated the potential in improving fraud de-
tection. Liu and Li [I] explored the integration of D-S evidence theory into a credit
card fraud detection model to address uncertainty in fraud data and achieve robust
risk prediction. Yan et al. [I2] introduced a cost-sensitive graph neural network
model, aimed at improving detection performance and scalability while tackling
data imbalance challenges. These hybrid approaches underscore the potential of
combining different techniques to bridge the gap between interpretability and pre-
dictive performance.

Despite these advancements, the application of BNs and hybrid approaches in
telecom fraud detection remains relatively underexplored. Many existing studies
either focus on ML models with high predictive accuracy or rule-based methods with
limited adaptability. This research aims to fill the gap by proposing a data-driven
BN model for analyzing telecom fraud risk. This model combines various RIFs of
fraud, assesses different structure learning algorithms, and establishes correlations
among risk-influencing factors (RIFs) to identify and predict fraud risks precisely.

Key contributions of this paper include:

1. Introducing a novel data-driven BN framework for fraud risk analysis, which, for
the first time, comprehensively considers the interactive effects of various RIF's
on telecom fraud;

2. Skillfully incorporating background knowledge derived from D-S evidence theory
into the hybrid model, thereby providing more accurate risk prevention and
control measures;

3. Identifying key RIFs specific to different types of victimization through model-
ing and quantitative analysis, and proposing fraud prevention and intervention
policies based on the results of the BN model analysis.

This paper is structured as follows: In Section [2] we examine the current land-
scape and difficulties in research related to telecom fraud and data-driven methods.
Section [ outlines the steps taken to construct a data-driven BN. In Section [4]
we validate the model and interpret the results using fraud cases from City S. Sec-
tion 5 highlights the model’s benefits and puts forth suggestions for fraud prevention
strategies. Lastly, Section [f] wraps up the paper.

2 RELATED WORKS
2.1 Studies of Telecom Fraud

The emergence of telecom fraud is a multifaceted phenomenon shaped by both
internal and external factors, stemming from the interplay between the fraudulent
scenarios devised by fraudsters and the intrinsic traits of the victims. A review of ex-
isting research indicates that various factors can influence individuals’ susceptibility
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to fraud, such as the victims’ personality traits [I3], the technological tactics em-
ployed by fraudsters [14], and the psychological conditions prevalent in society [15].
For instance, numerous studies from a demographic perspective consider aspects like
gender, age, and other personal characteristics of victims as RIFs [I6, [I7]. Chen
and Ma [I8] processed a telecom fraud dataset using the Bert model and analyzed
the potential connection between personality traits (Myers-Briggs Type Indicators)
and a group of telecom fraud victims from over 20000 data points. Ni and Yu [19]
used a BN to model and predict fraud risk based on victim characteristics. However,
a limitation of this approach is the narrow range of RIFs considered, and the causal
relationships established in the BN primarily rely on expert judgement rather than
explicitly outlining the specific methods and reasoning utilized by the experts.

In summary, existing literature on susceptibility to telecom fraud is primar-
ily constrained by an absence of systematic mathematical analysis and statistical
modeling. A significant portion of the research involves descriptive and theoretical
analysis based on case study. Additionally, the focus frequently lies on individual
types of fraud, specific victim characteristics, or single instances, with insufficient
integration of qualitative and quantitative approaches. There is a notable scarcity
of multifactorial and multi-indicator coupled analysis based on objective data, along
with empirical studies.

2.2 Research on Data-Driven BN

A BN serves as a graphical reasoning model that adeptly captures uncertain knowl-
edge and uncovers causal relationships among variables [20]. It uses conditional
probability tables to assess these causal relationships, thus facilitating the analysis of
complex interactions among various factors in telecom fraud. Typically, data-absent
BN modeling relies on the intuition or expertise of specialists to construct the model,
which includes the creation of conditional probability tables and the determination
of parameters, potentially introducing uncertainty and bias [2I]. In contrast, data-
driven approaches enable the identification and extraction of a more objective and
robust BN structure from available datasets. Table[I]presents a summary of relevant
studies focused on deriving BN network structures through data-driven methods,
including classic constraint-based Peter-Clark (PC) algorithms, score-based Greedy
Thick Thinning (GTT) search, and Bayesian Search (BS) algorithms, as well as their
corresponding data sizes and parameter learning methods.

In brief, when expert experience is unmanageable or when there is a lack of suffi-
cient systemic knowledge for modeling, data-driven methods provide an alternative.
These approaches can identify potential relationships among RIFs. To obtain a more
sensible BN structure, we incorporated expert experience derived from D-S evidence
theory before employing data-driven techniques, ensuring that certain background
knowledge was included as mandatory relationships. Furthermore, we compared the
causal models generated by three different structure learning algorithms to evaluate
their performance.



804 B. Si, H. Sun, M. Shao

No. | Data Source Number | Number | Structure | Parameter Model Resotirces
: ur of Data | of Nodes | Learning Learning Validation esources
Experiment Search and | Maximum
Ll g tp ’ 8000 5 | scorebased | Likelihood \ 22]
ata method Estimate
China Maritime Bayesian k-fold cross | g
2 Safety Authority 590 10 | BS Estimation validation 23]
Report BS, GTT Expectation- | k-fold cross |
3 and database 235 23 and PC Maximization | validation 24
Public dataset Bayesian
4 f . 414 20 | BS . - TAN [25]
rom organizations Estimation
INFORM public k-fold cross | g
5 dataset 191 21| GTT \ validation [26]
Flight data .
o Expectation- | k-fold cross |
6 | monitoring \ 12} BS, GTT Maximization | validation [27]
program

Table 1. Research on data-driven BN algorithm

3 METHODOLOGY

By exploring the potential interrelationships among telecom fraud RIFs, one can
gain a dynamic understanding of how risks develop, thus preventing the occurrence
of risk-related incidents [2I]. In the realm of risk assessment, BNs are commonly
seen as an effective method, offering statistically-based, interpretable predictions of
risk [28]. A BN illustrates a collection of random variables along with their con-
ditional dependencies using a directed acyclic graph, based on the premise that
a set of variables can have their joint probability distribution represented as fol-
lows:

P{xl,xg,...,xn):HP(xi|Ui). (1)

In this context, P {x1, xa, ...z, } represents the joint probability distribution as-
sociated with the variable set X = {1, za,...2,}, while U; C {z1, 23, ... x,} denotes
the collection of parent nodes for the variable X;. Additionally, P (z; | U;) indicates
the conditional probability of the variable X;, given its parent nodes. Within a BN,
each node represents a specific variable or a RIF that contributes to the system
under study. Nodes are capable of assuming different states or values, and the di-
rected edges between them illustrate causal relationships. Collectively, these nodes
establish a framework that facilitates the examination of intricate interdependencies
and their effects on the system.

The construction of data-driven BN structures is often constrained by imbal-
anced data (where positive and negative samples are not evenly distributed) [19].
Therefore, this paper proposed a BN model that integrates data-driven methods
with prior background knowledge to automatically learn the correlations among
telecom fraud RIFs. The model construction process is shown in Figure [T}

1. Step one involved collecting and processing data, which included gathering in-
formation on telecom fraud cases and performing data cleaning and integration
to form the Telecom Fraud Case Dataset.
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Figure 1. Data-driven BN analysis framework

2. Step two was about selecting model RIFs. By examining the telecom fraud
process and combining the collected multisource data, we identified the model
RIFs. Also, suitable definitions for node states were established based on the
data distribution and the historical frequency of the RIFs.

3. Step three involved constructing the model. We started by using expert expe-
rience along with background knowledge from D-S evidence theory to outline
mandatory relationships among the RIFs and define some conditional proba-
bilities. Next, we employed three structure learning algorithms-BS, GT'T, and
PC-to establish a BN model for assessing telecom fraud risk susceptibility. Fol-
lowing this, we performed parameter learning with the EM algorithm to derive
a BN model that included node conditional probability distributions. To im-
prove accuracy, we integrated domain knowledge to refine the parameters.
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4. Step four was model validation and analysis. The effectiveness of the telecom
fraud BN model was evaluated using k-fold cross-validation, scenario reasoning,
correctness testing, and sensitivity analysis. Relevant metrics were computed,
and the sensitivity RIFs for various fraud types were examined.

5. Finally, the discussion focused on the data-driven BN risk assessment model,
examining its benefits and suggesting relevant policies and intervention strategies
for preventing telecom fraud.

3.1 Model Construction

Building the BN model involved two main steps: structure learning and parame-
ter learning. Structure learning aims to identify an effective directed acyclic graph
(DAG) structure, extracting optimal correlations among RIFs from sample data [29].
These correlations include dependencies and independencies among variables. Pre-
vious structure learning for some BNs often utilized the Delphi method through
surveys to obtain network structures based on expert experience. However, for
complex networks with vast historical data and numerous RIFSs, relying solely on
expert experience is insufficient. Data-driven modeling focuses on starting from the
data, combining data with prior knowledge to uncover potential causal relationships
among RIFs [30].

3.1.1 Background Knowledge

In the context of structure learning, when the amount of data is limited or the
relationships are complex, incorporating prior knowledge can effectively steer the
structure learning algorithms, thereby enhancing both the efficiency of the learn-
ing process and the accuracy of the outcomes. The prior relationships that are
introduced can consist of mandatory arcs, prohibited arcs, and variables assigned to
temporal layers (in dynamic BNs), with the objective of preliminarily evaluating the
causal relationships between variables as informed by existing literature and domain
expertise, ultimately striving for the optimal DAG. In this study, the D-S theory
of evidence, also referred to as belief function theory, was employed to effectively
tackle the uncertainty and incomplete information present in the assessment of tele-
com fraud risks. The D-S theory is especially adept at synthesizing information from
multiple sources and serves as a crucial instrument in the domains of risk assessment
and decision-making support [31]. The paper involved input from two academic ex-
perts specializing in anti-fraud and two police officers with hands-on experience in
fraud prevention. The scholars each possess over five years of expertise in telecom
fraud and risk assessment, while the police officers bring more than five years of
frontline experience in combating telecom fraud. A questionnaire was utilized to
explore the interconnections between nodes, and the data collected were thoroughly
analyzed using the D-S theory of evidence.

In our model, we established a mass function framework © that includes all
potential RIFs related to susceptibility to telecom fraud. For each RIF A, the mass
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function must satisfy the following conditions:

m(@) =0, )
S aom(d) = L &

In this context, m(A) represents the mass function for event A, reflecting the
degree of belief or trust in event A. We utilized the combination rule from the D-S
theory of evidence to combine basic belief assignments obtained from various data
sources into a unified belief assignment. This combination was achieved using the
following formula:

0, A= g,

% ZAmAzm--nA":A my (A1) -mg (Az)...my (An),

(3)
where m; and my represent mass functions from different sources, while K serves as
a normalization constant that adjusts evidence which cannot be directly combined
due to complete conflict. The calculation of K is represented by the following
formula:

(m1@m2€9"'@mn)(f4)—{

K= > my (Ay) -mg (Ag) ...m, (Ay)
A1NAxN-NA,#D

(4)
=1- > ma (Ay) - ma (A3) ... (Ay) .

A1NA2N--NA=02

Combining expert knowledge with the D-S theory of evidence helped enhance the
understanding of intricate relationships among telecom fraud RIFs in the final BN
model. This approach also boosted the reliability and thoroughness of the decision-
making process, resulting in enhanced computational efficiency and accuracy in
structure learning algorithms.

3.1.2 Structure Learning Algorithms

BN structure learning methods can be generally divided into two categories: con-
straint-based and score-based methods [32]. Constraint-based methods primarily
rely on performing repeated conditional independence tests on the dataset to de-
termine whether variables are independent. This approach uses a skeleton graph
to derive the network structure. Specifically, we utilized the chi-square statistic
and mutual information for testing conditional independence. The chi-square test
determined independence between nodes by comparing the observed frequency O;
with the expected frequency FE;, while the mutual information test assessed the de-
pendency between variables by calculating the conditional entropy of two variables
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based on a conditioning variable and the differences between them [33].

z? = Z 7(@ ;ZEZ) , (5)

=1

<

I(X;Y | Z2)=H(X|Z)-H(X|Z)Y). (6)

Equations and @ describe the methods for calculating these statistics.
Equation uses the chi-square value to test conditional independence, while Equa-
tion (@ calculates the conditional mutual information value to assess the dependency
between variables. Here, H(X | Z) and H(X | Z,Y) represent the conditional en-
tropies given the conditioning variable.

Conversely, score-based methods explored the best network structure by opti-
mizing a specific scoring function. This method assessed the network based on its
posterior probability, which was derived from the prior probability and the likeli-
hood of the given data. Our aim was to find a network structure maximizing the
posterior probability given the data [31].

P(G | D)aP(D | G)P(G), (7)

where G represents the network structure, D signifies the data, P(D | G) indicates
the likelihood of the data given the structure P(G), and P(G) represents the prior
probability of the structure.

In our study, we employed the constraint-based algorithm PC [34] along with
two heuristic-based approaches: GTT [35] and BS [36] for learning the structure of
BNs. These methods not only increased the model’s precision but also improved its
practicality and effectiveness in evaluating the risks of telecom fraud.

3.1.3 Parameter Learning

Parameter learning for the BN involved quantifying dependencies between node
variables and determining their probability distributions. We employed the Ex-
pectation Maximization (EM) algorithm [37] to determine these distributions and
conditional probabilities among the nodes. The EM algorithm serves as a convenient
approximation to maximum likelihood estimation, offering robustness for generat-
ing conditional probabilities within the BN structure for telecom fraud. The EM
algorithm is shown below:

o+ = arg max/log P(z,z2]0)- P (2] 2,07) dz. (8)

In this context, x represents the given data, z denotes the latent variable, §*)
refers to the parameter at time ¢, P (z | z, G(t)) indicates the posterior probability,
and log P(z, z | 6) signifies the log joint probability of the complete data.
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3.2 Model Validation

K-fold cross-validation is a widely-used for evaluating ML models, including BN
models. In this method, data was randomly divided into K similar, mutually exclu-
sive subsets called folds. The model underwent training K times, each time using
data from K—1 folds for training and the remaining fold for testing performance [38].
To compare the performance of three structure learning algorithms for telecom fraud
risk analysis in BN models, model classification accuracy and the area under the re-
ceiver operating characteristic (ROC) curve were utilized as metrics. The ROC
curve, derived from the confusion matrix shown in Table [2| graphically combined
the True Positive Rate (TPR) and False Positive Rate (FPR). A higher area under
the curve (AUC) indicated better model classification performance.

Actual Positive Actual Negative
Predicted Positive | True Positive (TP) False Positive (FP)
Predicted Negative | False Negative (FN) | True Negative (TN)

Table 2. Research on data-driven BN algorithm

Additionally, we validated the effectiveness of the final BN model by utilizing the
forward reasoning capabilities of the BN and conducting partial theorem verification.

4 CASE STUDY
4.1 Data Collection and Processing

The primary dataset utilized in this paper was derived from a real-world telecom
fraud case dataset [38]. This dataset included 60000 original samples of fraud data
collected over three years from the anti-fraud center in S city, a coastal city in
southern China. Additionally, it incorporated open data sourced from platforms
such as the Internet and government channels. Each fraud case provided detailed
descriptions of the victim’s experience, outlining the fraud process, fraud results,
and basic victim information. Due to confidentiality and privacy concerns, we
are unable to include the data files as appendices. However, we can email the
processed data to interested readers upon request. Spanning from 2019 to 2021,
these data offered comprehensive insights into various types of fraud events, vic-
tims, and other relevant information, establishing a basis for the analysis of telecom
fraud.

S City, located in the southern coastal region of G Province, is a prefecture-level
city with a diverse and large population. As of 2022, it had a permanent population
of 17.662 million, covering an area of 1997.47 square kilometers and encompassing
nine urban districts and one administrative region. As an international metropolis,
its vibrant economy, high population density, and extensive use of digital communi-
cation make it a prime target for telecom fraud.
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Data preprocessing mainly included two steps: identifying RIFs and cleaning
and merging data. We identified and described RIFs from fraud cases (Table |3)),
with the identification of RIFs relying mainly on

1. theoretical analysis of the entire fraud process and

2. the frequency of factor occurrence.

Factors with a lower frequency of occurrence, such as the victim’s recent anxiety
and other psychological conditions, which only appeared twice in the statistics, were
excluded. In the data cleaning phase, we removed incomplete or irrelevant records
from the initial database, addressing missing values, inconsistencies, and duplicate
entries. A similar number of cases were selected for each type of fraud to ensure
balance. All data fields were standardized to maintain format consistency, especially
for important variables like victim demographics, fraud types, and economic losses.
Finally, we conducted an experimental analysis using 1876 preprocessed samples.

Based on a thorough analysis of the telecom fraud process and the theory of
multi-source heterogeneous data fusion, this paper identified key RIFs related to
telecom fraud. These factors were divided into 4 main categories and 14 nodes, as
shown in Table Bl

From a fraud process perspective, network nodes can be categorized into four
types: victim portraits, spatiotemporal distribution, fraud process, and fraud result.
We further identified discrete states for these nodes in a BN, breaking down the
primary fraud types into 8 states. Residential areas were defined based on S City’s
administrative divisions. Additionally, definitions were provided for the methods
used to induce telecom fraud and for the contact method.

4.2 Model Construction

4.2.1 Coercive Relationship

The analysis and prediction of target nodes were influenced by correlations among
RIFs. To enhance the model’s predictive performance, we incorporated expert expe-
rience before structure learning. We collected insights from four anti-fraud experts
via questionnaires about the relationships among the 14 network nodes. The col-
lected data were then analyzed using the D-S theory of evidence (see Section
to mitigate the impact of subjective expert opinions.

To illustrate how expert experience shapes the relationships between nodes, we
examined target nodes A and B. We assumed m;(1,2), ..., my(1,2) represented the
probabilities given by four experts regarding the connection between these nodes.
The value my(1,2) = (0.9,0.1) indicated that the first expert assigned a strong
relationship probability of 0.9 and a weak relationship probability of 0.1 between
nodes A and B, with each expert providing their own assessments.

Next, we computed the Belief and Plausibility functions for the relationship
between the two nodes using Equation . These functions were used to assess the
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No | Node Name Risk States Reference
(1) Age 0-17
(2) Age 18-25
1 Age (3) Age 26-32 13, 39, @0]
(4) Age 33-39
Eo% Age 40
. 1) Low
2 Egsfdtmndl (2) Medium 3]
(3) High
3 Gender (1) Female [T, 17
. . (2) Male
Victim Portrait
4 Stable source | (1) Yes .
of income (2) No 5]
Anti-fraud (1) Yes
5 grlggaganda (2) N g
6 installation 83 E?)S 7
habit
Deceived (1) Yes
7 repeatedly (2) No v
8 Outsides 8% \N(zs 21
9 . Residential * |y 100 110 [0, 2]
Spatiotemporal | area
10 distribution ]t)i::;::ptlon g% Biaght 0, 3]
(1) Advertisement
Contact (2) App
11 method (3) Delivery
(4) Phone
(5) Text Message
- (T) Acquaintance -
Fraud process (2) Claims settlement 5 24
Inducin (3) Help with matters
12 hods (4) Make Friends
me S (5) Make Money
(6) Naked Chat
(7) Others Shopping
(1) Extortion Fraud
(2) Gambling fraud
(3) Identity Fraud
13 Types (4) Investment Fraud B3
of fraud (5) Online Game Trade Fraud
(6) Rebate Fraud
Fraud result (7) Shopping Service Fraud
(8) Other Fraud
(1) Loss 0-5000
Money loss 2) Loss 30 000-60 000
14 level Esg Loss 5000-30 000 3 &5
(4) Loss 60000~

Table 3. BN node design in telecom fraud RIF model

811
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strength of the causal relationship. A causal relationship was deemed to exist if the
strength surpasses the threshold of 0.9. Conversely, if the strength fell below 0.10,
the relationship was considered unlikely. In this case, the absence of a relationship
equated to adding prohibited prior background knowledge between the two nodes,
preventing the structure learning algorithms from associating the two risk node
variables.

This paper established six mandatory relationships and 14 prohibited relation-
ships based on expert judgments on the relationships between variables. The corre-
sponding expert judgment data and node variables are displayed in Table [4

. Relationshi
Influencing Factors my(1,2) ma(1,2) ms(1,2) ma(1,2) Strength p
Age ?ry‘lp‘f (0.671,0.329) | (0.795,0.205) | (0.701,0.299) | (0.595,0.405) | (0.96,0.04)
Culture ?ry?f (0.661,0.339) | (0.617,0.373) | (0.328,0.672) | (0.887,0.113) | (0.92,0.077)
Stable Income %‘Ef (0.776,0.224) | (0.754,0.246) | (0.538,0.462) | (0.686,0.314) | (0.96,0.04)
éfvﬁﬁljmmw Culture | (0.184,0.816) | (0.01,0.90) | (0.40,0.60) | (0.131,0.869) | (0.01,0.99)
Culture Gender | (0.263,0.737) | (0.298,0.702) | (0.105,0.895) | (0.609,0.391) | (0.03,0.97)
Fixed Income | Gender | (0.90,0.1) (0.25,0.75) | (0.184,0.816) | (0.13,0.869 | (0.09,090)

Table 4. Expert judgment on strength of relationship between RIFs

4.2.2 Data-Driven Modeling

Utilizing the mandatory relationships established by the D-S theory of evidence, we
assessed three distinct structure learning algorithms to develop complete BN struc-
tures. We used GeNle 4.0 to establish a complete BN model structure through vari-
ous algorithms. GeNle is an open-source software designed specifically for analyzing
BN data. Our evaluation included three different algorithms, which comprised one
constraint-based algorithm (i.e., PC) and two score-based algorithms (i.e., GTT and
BS). If pseudocode for the algorithms is required, we will provide it in the appendix.
Figure 2] displays the BN structures derived from the three corresponding structure
learning algorithms, along with their simulation results subsequent to parameter
learning.

From the subfigures on the left side of Figure , specifically a), ¢), and e), solid
lines represent mandatory relationships between variables based on expert judg-
ment, while dashed lines are derived from data-driven structure learning algorithms.
The three structure learning algorithms identified various dependency relationships
among RIFs, uncovering numerous potential connections between variables beyond
expert experience. Notably, the score-based GTT and BS algorithms, both heuristic,
showed similar learning capabilities and produced comparable structural relation-
ships. For example, the BS algorithm indicated that the “age” factor not only
influenced the “types of fraud” but also had a relationship with the “money loss
level”. Additionally, the “types of fraud” also affected the “money loss level”. In



Data-Driven Bayesian Network for Risk Analysis of Telecom Fraud 813

the GTT algorithm, a connection between the “age” factor and “fixed income” was
also discovered. These factor relationships were captured through sample data, and
the conditional probability tables for the nodes were obtained using the EM algo-
rithm.

The right side of Figure 2] shows the simulation results of the BN models under
the three algorithms, including complete forward and backward probability propa-
gation. These results demonstrated how each algorithm processed information and
the BNs’ effectiveness in modeling and simulating complex dataset interactions.

4.3 Model Validation

4.3.1 Comparison of Results

Even when starting with identical background knowledge, different structure learn-
ing algorithms can produce different DAGs from the same dataset. In our com-
parison of three structure learning algorithms, both the BS and GTT algorithms
identified 11 dependency relationships among variables, while the PC algorithm
found 14. By integrating the viewpoints of four experts using the D-S theory of
evidence, the additional potential relationships discovered by these algorithms were
verified as reliable, thus negating the need for manual removal.

To further validate the robustness of the algorithms on datasets of varying sizes,
we assessed the k value in k fold cross-validation and tracked the trends in accuracy
and AUC for each algorithm. The results are shown in Figures 3] and [

As the k value rose, the training set’s size gradually expanded, while the test set’s
proportion progressively diminished. Notably, the accuracy values of each algorithm
showed a trend of steady improvement and tended to stabilize around k = 10.
This indicated that increasing the amount of training data effectively improved the
model’s performance, but after k > 10, further increases in the k value had a limited
impact on performance enhancement. Specifically, the GTT algorithm consistently
outperformed others across all k values, with its accuracy enhancing from an initial
approximate value of 0.78 to a stable value of about 0.875, showing strong robustness
and stability; the BS algorithm ranked second, with performance close to GTT,
achieving a final accuracy of around 0.833; the PC algorithm performed relatively
poorly, with its accuracy rising from an initial approximate value of 0.70 to a final
value of 0.790. Although the increase was modest, it also stabilized after k = 10.

In the AUC experimental results, the overall performance of the algorithm
showed a gradual improvement as the amount of training data increased. While
the calculation speed was faster with a lower k value (such as k = 2), the average
AUC value for each algorithm was low, and the standard deviation was significantly
higher, indicating instability in the model’s performance at this stage. When the k
value rose to around 10, the performance of each algorithm stabilized, and the AUC
value fluctuations decreased notably. Specifically, the ROC values for both the GTT
algorithm and the BS algorithm stabilized around 0.80, with the GTT algorithm
achieving the best performance, nearly reaching 0.83. In contrast, the AUC value
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Figure 2. BN network and its parameter learning results using structure learning algo-
rithm: a) BN structure derived from BS algorithm, b) BS-EM algorithm simulation results,
¢) BN structure derived from GTT algorithm, d) GTT-EM algorithm simulation results,
e) BN structure derived from PC algorithm, f) PC-EM algorithm simulation results. The
red dashed lines are derived from the data-driven algorithm, while the black solid lines
are based on prior background knowledge in figures a), c), and e).
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of the PC algorithm remained low, leading to overall poor performance. Further
increasing the k value (such as k = 20) might slightly improve performance, but
this enhancement was often accompanied by a significant increase in computational
time cost. Overall, the experimental results verified that the three structure learning
algorithms maintained good robustness across different dataset sizes.
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Figure 4. AUC values of three algorithms under different k values
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To summarize, the GTT algorithm, as a structure learning tool, can be utilized
for developing BN models aimed at analyzing RIF features in telecom fraud. The
following discussions on scenario reasoning and sensitivity analysis presented in this
paper are based on the BN structure derived from the GTT algorithm.

4.3.2 Sensitivity Analysis

Sensitivity analysis plays a vital role in the computational evaluation of BN mod-
els. Sensitivity analysis reveals how changes in local parameters can affect the target
nodes, thereby identifying key nodal factors that influence variables such as “Type of
fraud” and “Money loss level”. This form of analysis also facilitates the implementa-
tion of effective measures to mitigate risks associated with these RIFs. Additionally,
sensitivity analysis can, through simulation, uncover causal chains of accidents in
certain accident analysis models.

We measured the mutual information and various metrics, such as the Percentage
Reduction in Entropy (PRE), between the target node “type of fraud” and the RIFs.
A higher mutual information value and PRE indicated a more substantial impact
of the corresponding RIF on the “type of accident”. Table [§] presents the sensitivity
analysis results for the “type of fraud” node, including mutual information values,
percentage reduction in entropy, and belief variance. The results revealed that
age, gender, and fixed income were the three most influential RIFs affecting the
type of fraud, with changes in these nodes significantly impacting the type of fraud
experienced. Besides, factors such as residential area, educational level, and whether
the individual is a migrant had a lesser influence on the type of fraud. Similarly, when
targeting “money loss level” | the most sensitive nodes were identified as age, whether
the individual has been defrauded repeatedly, and whether they are a migrant.

Node Mutual | Entropy Reduction Variance

Information Percent of Beliefs
Age 0.3246 24.84% | 7.755*1073
Gender 0.1633 10.22% | 3.763*1073
Fixed Income 0.15882 8.84% | 2.811*107°
Contact method 0.14317 7.52% | 2.691*1073
Inducing method 0.12375 7.99% | 2.691*107°
Administrative division 0.11074 5.57% | 2.022*10~°
APP installation habit 0.09095 4.93% | 2.071*1073
Culture 0.08870 2.89% 1.78*1073
Outsides 0.07952 2.64% | 1.62*1073

Table 5. Sensitivity analysis of “type of fraud” nodes

Additionally, we needed to identify the most sensitive parent node states for each
specific fraud type. This step was vital for implementing targeted anti-fraud tactics
and strategies for risk reduction. Changes in posterior probabilities of nodes served
as the basis for determining the most sensitive attributes of a particular fraud type.
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From an overall perspective, the results of our model’s analysis corroborated some of
the existing speculative qualitative research [16] [I7, [I8]. For example, Rebate Fraud,
the most prevalent case type, typically preys on people’s greed by offering the lure
of “easy money from home”, attracting victims who often lack a stable income, such
as young individuals and homemakers eager to earn money effortlessly, thus falling
into the fraudsters’ traps. Additionally, it has been observed that Gambling fraud
and Extortion fraud are particularly sensitive to gender factors. Further analysis
revealed that these fraud types mainly exploit male tendencies towards gambling and
lascivious behavior. The sensitivity analysis results for all fraud types are shown in
Table[d] It is essential to adopt distinct preventive strategies based on the sensitivity
analysis results, which we will discuss in Section [5.2]

. Sensitivity
Fraud Type Sensitive Node Status Value
Extortion Fraud Gender 9.89%
Gambling Fraud Gender 13.22%
Identity Fraud Area_8 8.25%
Investment Fraud APP installation habit 6.95 %
Online Game Trade Fraud | Age-0_17 22.60 %
Rebate Fraud Stable Income 6.67%
Shopping Service Fraud Culture-Medium 4.45%
Other Fraud Area_1 7.74%

Table 6. Sensitivity analysis results for all types of fraud

4.3.3 Scenario Analysis

BNs enable forward reasoning to predict potential scenarios based on various risk
characteristics, allowing for the evaluation of victims’ susceptibility to various types
of fraud. Due to limitations in space, we chose a few specific multivariate features
for combined analysis, which were utilized for BN reasoning and application in real-
world situations; the results are shown in Table [7}

Based on the results of forward scenario reasoning in the BN, different risk cou-
pling features led to changes in the probability distribution of the states for the
target node “type of fraud”. In Scenario 1, we selected an intermediate state for
each variable, including an age range of 26 to 32 years, male, medium education
level, stable income, and residing in Area_1. The BN forward reasoning results
indicated that the most probable type of fraud to occur is Extortion fraud, repre-
senting 32 % of all fraud types. Given that age is the most sensitive factor in the
sensitivity analysis, in Scenario 2, we adjusted the age range and compared it with
Scenario 1. We noted a noticeable shift in the posterior probabilities of various
fraud types: the likelihood of Extortion fraud dropped from 32 % to 28 %, while the
probability of Investment fraud rose markedly, indirectly suggesting that older in-
dividuals might be more susceptible to Investment fraud. This finding is consistent
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RIF Scenario 1 Scenario 2 Scenario 3 Scenario 4
Age 26—-32 33-39 33-39 33-39
Gender Male Male Female Female
Culture Medium Medium Medium Medium
Stable Income | Yes Yes Yes Yes
Afh'nl.mstratlve Area_l Area_l Area_l Area_2
Division
App
Installation Bad Bad Bad Bad
Habit
Outsides No No No No
Anti-Fraud No No No No
Propaganda
Loss Level 5000-3000 | 5000-3000 | 5000-3000 | 5000-3000

(46 %) (44 %) (42%) (48 %)
0.4
0.35
0.3
2025
Fraud ;0 o
Type s
5015
- | | ‘
0.05
0 (] I I II II i
Scenario 1 Scenario 2 Scenario 3 Scenario 4
W Extortion_Fraud W Gambling_Fraud
Identity_Fraud Investment_Fraud
W Shopping_Service_Fraud M Rebate_Fraud
Online_game_Trade_Fraud Other_Fraud

Table 7. Scenario reasoning results

with real-world observations, as extortion fraud often targets younger individuals
who may be more impulsive or less adept at handling coercive situations, whereas
investment fraud schemes typically appeal to older individuals who have accumu-
lated more wealth and are seeking investment opportunities [39]. The changes in
probabilities observed after adjusting for age support the hypothesis that fraud-
sters tailor their fraud methods based on factors like the age and economic status
of their targets, underscoring the importance of considering victim profiles in fraud
prevention strategies.

In Scenario 3, when the states of other RIFs remained unchanged except for
altering the gender to female, there was a notable shift in the distribution of po-
tential fraud types. The most likely fraud types were Rebate fraud and Shopping
service fraud, with probabilities of 27% and 31 %, respectively. This is due to
fraudsters using tailored strategies, such as exploiting shopping preferences or of-
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fering false rebates to attract consumer habits, which often target women. In Sce-
nario 4, changing the administrative division also resulted in variations in the types
of fraud experienced. This variability could stem from differences in the intensity
of fraud awareness and intervention efforts across regions, leading to some areas
being more affected by specific types of fraud. For example, regions with more
effective awareness campaigns might see a reduction in certain fraud types, while
others could experience an increase due to enforcement gaps or targeted strategies
by fraudsters.

Furthermore, we employed reverse inference of the model to pinpoint high-risk
variable attributes associated with specific fraud cases, demonstrating its practi-
cality. For example, in the case of financial gambling fraud, Figure [f] shows the
prediction results of the model. The group most susceptible to this type of fraud
is individuals aged 18-25 (29 %) and males over 40 (27 %), typically with moder-
ate educational backgrounds, primarily located in areas 1 and 2. Among them,
57 % are migrant workers who generally have a stable income and are most likely
to incur losses ranging from 5000 to 30000 yuan. The main reason for being de-
frauded is the desire to make money. From the results, the model revealed how these
risk variables interplayed to affect susceptibility to specific types of fraud, provid-
ing a solid foundation for future prevention and control strategies. For example, it
suggested that measures such as strengthening financial security education for the
mobile population and enhancing anti-fraud publicity at the community level should
be taken.
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area_1 28%|
area_2 21%

area_3 12%ll

) v (@) Culture o o area_s 4%
age0_17  4%|] Low  30%] area_s 1%
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Figure 5. BN network and its parameter learning results under structure learning algo-
rithm
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4.3.4 Correctness Verification

To quantitatively validate the consequence model that utilizes the Bayesian Belief
Network, this study also conducted partial validation analysis based on the axioms
put forth by Jones et al. [46]:

1. Sensitivity of Posterior Probabilities: A slight increase or decrease in the prior
probability of a parent node should lead to a corresponding change in the pos-
terior probability of the related child node.

2. Consistent Impact: Changes in the probability distribution of a parent node
should produce a consistent effect on the corresponding child node.

3. Cumulative Impact of Multiple Attributes: The influence of probability resulting
from a combination of m attributes should consistently exceed the influence
derived from a combination of m —n (n € m) attributes.

In the model, when the prior probability of the parent node “Gender” being
“Female” was adjusted from 45% to 50 %, the likelihood of “Identity fraud” de-
clined from 12.9% to 12.7 %, while the probability of the money loss level “5000
to 30000 yuan” also dropped from 43.4 % to 43.3%. Subsequently, when the prior
probability of another parent node “Educational level” in the “High” state was
changed from 29 % to 40 %, the probability of “Identity Fraud” reduced from 12.8 %
to 12.7%, and the chances of losses in the range of “5000-20000 yuan” decreased
from 43.38 % to 43.36 %. The changes observed in each RIF adhere to the triple
axiom definition, thus achieving partial validation of the model. Similar evaluations
can be applied to other RIFs.

5 DISCUSSION
5.1 Advantages of Data-Driven BN

Data-driven networks, as an alternative learning approach, can provide support in
circumstances where prior knowledge or data is insufficient. These networks provide
a more objective and effective solution than relying exclusively on the experience
of experts. Furthermore, the integration of expert insights through the D-S theory
of evidence improves the rationality of the BN structure. Importantly, data-driven
methods reveal the potential relationships between RIFs, highlighting the necessity
to establish connections among various factors for effective risk management [24].
This paper integrates background knowledge derived from expert experience using
D-S evidence theory, followed by the incorporation of potential relationships identi-
fied by structure learning algorithms, which bolsters the rationality and robustness
of the BN model for risk analysis. For example, our data-driven analysis revealed
that “age” influences both “type of fraud” and “loss situation”, and identified rela-
tionships among “method of deception”, “type of fraud”, and “method of contact”,
which have not been clearly defined in previous studies [I9, 38].
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Among the three algorithms for structure learning, the GTT algorithm out-
performed the BS and the constraint-based PC algorithm. As an excellent search
strategy, GTT features reduced time and space complexity and effectively prevents
data overfitting, making it well-suited for telecom fraud datasets that involve small
to medium sample sizes.

5.2 Fraud Prevention and Intervention Policies

In the realm of public security, a “one-size-fits-all” approach for fraud prevention
often falls short, as many individuals, from a psychological perspective, naively
assume they are not susceptible to deception. This results in anti-telecom fraud
messages not being taken seriously [I§]. By applying evidence reasoning and sensi-
tivity analysis of BN, we can identify the most probable types of fraud and potential
losses linked to various risk attribute characteristics, which can improve the fraud
prevention initiatives undertaken by public security agencies.

Our sensitivity analysis identified age, gender, and whether an individual has
a stable income as key factors influencing susceptibility to different types of fraud.
Consequently, it is essential to implement targeted fraud prevention and intervention
strategies tailored to different age groups, genders, and occupations. For example,
as indicated by the results in Section [£-3.3, men aged 26-32 with a medium level of
education should be especially vigilant against Extortion Fraud, while women aged
33-39 need to be more wary of Rebate Fraud and Shopping Service Fraud. Mea-
sures such as strengthening financial safety education for the migrant population,
cautioning victims about false promises of “high returns”, and exposing the tac-
tics of gambling and investment fraud can help reduce the incidence of these fraud
types. According to Section £.3.2, minors aged 0-17 are the primary targets of On-
line Game Trade Fraud, highlighting the importance of increasing fraud awareness
and prevention efforts for both children and their guardians.

By implementing model-based, targeted, and directed publicity strategies tai-
lored to different groups, spatial distributions, and fraud methods, police resources
can be efficiently allocated. For example, analyzing fraud cases by administrative
regions and time frames enables the identification of high-risk fraud types and po-
tential victim profiles in specific areas, creating region-specific anti-fraud operational
models. This approach significantly mitigates the risk and occurrence of fraud, as
observed in Area 8, there is a strong need to improve measures against Identity
Fraud. For fraud types showing high incidence during certain periods, profiling
and predicting susceptible demographics, especially in response to emerging fraud
schemes, can achieve targeted swift effects to prevent individuals from being misled.

Even though the training data for the model comes from a southern Chinese
city, it is still possible to achieve effective prediction results by dynamically adjust-
ing the BN model according to local fraud incidents, demographic characteristics,
regional economic development, and other societal factors. This method allows for
a shift in strategic focus towards public awareness and prevention, transitioning from
a generalized to a more targeted approach in combating fraud.
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6 CONCLUSION

In this paper, we developed a data-driven BN model to evaluate telecom fraud risks,
combining both expert knowledge and empirical data. We utilized three structural
learning algorithms — PC, BS, and GTT — together with the EM algorithm to build
the BN model. We employed K-fold cross-validation to assess the performance of
these algorithms on a telecom fraud dataset, ultimately selecting the most effective
model. By performing evidence reasoning and sensitivity analysis on the established
BN, we gained a more profound understanding of telecom fraud. From the results
and discussions, we come to the following conclusions:

1. The data-driven BN modeling approach is capable of identifying latent rela-
tionships among RIFs, thereby mitigating biases that are typically present in
models that rely solely on expert judgment, and addressing issues related to the
scalability of the model as data volumes increase.

2. Scenario reasoning can uncover quantitative relationships among various RIFs
and the susceptibility to different types of fraud and losses. It quantifies issues
from the victim’s perspective, posing questions such as “What kind of people
are more susceptible to specific types of fraud?” and “How do these fraudsters
approach and deceive their victims?” This helps in formulating educational
campaigns and making well-informed decisions.

14

3. According to the sensitivity analysis, “age”, “gender”, and “having a stable
income” are the top three RIFs influencing susceptibility to various types of
fraud. Additionally, each of the eight distinct types of fraud has its own set of
highly sensitive characteristics.

While this study incorporates a diverse array of pertinent RIFs, the constantly
evolving nature of telecom fraud tactics presents ongoing challenges. Fraud methods
continue to adapt, which may introduce new RIFs that our current model fails to
account for. Moreover, our dataset, extensive as it is, may not fully reflect the
diversity and regional variability present in fraud cases.

To overcome these limitations, future work will focus on the following aspects:

1. Adapting to the quickly changing landscape of telecom fraud by incorporating
real-time data streams.

2. Minimizing potential data biases and further improving risk analysis models
by exploring datasets from various regions and incorporating additional RIF's,
including psychological and behavioral dimensions.

3. Using dynamic Bayesian Networks to represent changes in fraud tactics and
victim vulnerability; a digital twin technology can also be incorporated into the
proposed model to capture real-time risk.
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