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Abstract. This paper focuses on the analysis of rolling bearing vibration signal,
presenting a comprehensive investigation into vibration signal analysis and fault
signal feature extraction methods. The research primarily investigates a Varia-
tional Modal Decomposition (VMD) method, with enhancements made through
the Tucked Swarm Algorithm (TSA) optimization and the use of Maximum Cor-
related Kurtosis Deconvolution (MCKD). It proposes a method for identifying the
optimal parameter configurations for VMD. The proposed method is applied to
analyze the rolling bearing vibration signal, and its efficacy in feature extraction
has been validated through comparative analysis. This study employs a feature
extraction methodology using kurtosis, envelope spectral kurtosis, and other indi-
cators as basic features of vibration signals. It constructs a multi-feature feature
vector dataset and utilizes the Least Squares Support Vector Machine (LSSVM) as
a fault type classifier to validate the effectiveness of the proposed feature extraction
method. The results demonstrate that the fault identification accuracy achieved by
the proposed method consistently exceeds 96%.
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1 INTRODUCTION

Rolling bearings constitute pivotal elements in rotating mechanical equipment.
Throughout their operational lifespan, they frequently encounter issues such as
fatigue peeling [1], fractures [2], wear [3], corrosion [4], and other failures, stem-
ming from prolonged continuous operation and challenging industrial environments.
These failures significantly impede the secure operation of mechanical equipment.
Consequently, monitoring the operational status of bearings and promptly detect-
ing bearing faults that emerge are critical measures to ensure industrial safety in
production. Currently, vibration signals serve as a common tool for diagnosing
bearing faults. However, despite the extensive use of Empirical Mode Decomposi-
tion (EMD) [5, 6] to tackle the significant challenges posed by the nonlinear and
non-stationary characteristics and strong environmental noise in extracting fault
features from vibration signals, this method is susceptible to mode aliasing and end
effects during the signal decomposition process. Other EMD techniques, such as
Ensemble Empirical Mode Decomposition (EEMD) [7, 8], Complementary Ensem-
ble Empirical Mode Decomposition (CEEMD) [9], and Complementary Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) [10], introduce
white noise to the original signal and subsequently average the Intrinsic Mode Func-
tions (IMFs) to alleviate the impact of modal aliasing and end effects. Despite the
improvement in signal processing performance offered by EMD-like methods, they
do not entirely eliminate these inherent drawbacks. To effectively address this is-
sue, Dragomiretskiy et al. [11] introduce VMD, a method that decomposes signals
into a predetermined number of modes, each possessing a limited bandwidth. The
imposition of bandwidth limitations is pivotal for mitigating mode aliasing and end
effects. Consequently, the selection of the decomposition mode number K and the
quadratic penalty factor for VMD becomes crucial.

To determine the optimal number of decomposition modes K and the quadratic
penalty factor value, researchers have utilized various optimization algorithms, such
as genetic algorithms [12, 13], particle swarm optimization [14, 15], and grey wolf
algorithms [16]. Despite these improvements, extracting comprehensive fault infor-
mation from Intrinsic Mode Function (IMF) components alone remains a challenge.
This difficulty is compounded by the inherent limitations of the algorithms, includ-
ing their tendency to get trapped in local optima and the difficulties they face in
achieving convergence.

In light of these challenges, this paper introduces a VMD-based multi-feature
extraction approach for fault analysis. This approach leverages the combined op-
timization of the Tucked Swarm Algorithm (TSA) [17] and Maximum Correlated
Kurtosis Deconvolution (MCKD) [18] to enhance the feature extraction process. The
approach first uses correlation kurtosis as the fitness function for TSA optimization,
followed by the application of MCKD to the IMF components. This process aims
to reduce environmental noise and accentuate periodic fault pulses, ultimately de-
termining the optimal values for the decomposition mode number K and quadratic
penalty factor for VMD. To enhance the accuracy of fault information extraction,
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this paper constructs a multi-feature vector dataset for bearing faults, incorporat-
ing seven indicators such as envelope entropy [19], kurtosis, and related derivative
indicators [20, 21]. Subsequently, utilizing this dataset, the least squares support
vector machine is employed for fault identification. The results demonstrate that
the recognition rate of the feature vectors extracted by this method surpasses 96%,
representing a significant improvement over other VMD optimization approaches.

The contributions of this paper are summarized as follows:

1. A Variational Modal Decomposition (VMD) method based on Tucked Swarm
Algorithm (TSA) and Maximum Correlated Kurtosis Deconvolution (MCKD)
is proposed to obtain the optimal combination of K and α parameters in VMD.

2. Using kurtosis, envelope spectrum kurtosis and other indexes as the feature ex-
traction method for the basic features of vibration signals, a multi-feature-based
feature vector data set is constructed, and the Least Squares Support Vector
Machine (LSSVM) is used as the fault type classifier to verify the effectiveness
of the feature extraction method proposed in this paper.

The remainder of the paper is organized into five sections. In Section 2 we
introduce an improved VMD parameter optimization method. In Section 3 we in-
vestigate fault feature extraction methods for rolling bearings. Section 4 is dedicated
to the experimental design. Section 5 covers the experimental verification. Section 6
concludes the paper.

2 ON IMPROVED VMD PARAMETER OPTIMIZATION METHOD

2.1 VMD Parameter Setting Method

The VMD method involves setting several parameters, namely the decomposition
mode number K, quadratic penalty factor α, noise tolerance τ , and recognition
accuracy ε. Compared with the first two parameters, noise tolerance τ , and recog-
nition accuracy ε have a relatively minor impact on the decomposition performance
of the VMD method. Typically, based on empirical knowledge, these latter parame-
ters are set to default values. The primary focus of this section is to investigate the
numerical configurations of the decomposition mode number K and the quadratic
penalty factor α in the VMD method. Additionally, the section aims to optimize the
VMD through the TSA algorithm to identify the optimal parameter combination of
K and α.

Before the tucked performs jet propulsion, in order to avoid conflicts caused by
repeated individual positions, new individual positions need to be calculated for the
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randomly distributed tucked swarm, and the following equations are met:

N⃗ =
G⃗

M⃗
,

G⃗ = c2 + c3 − F⃗ ,

F⃗ = 2c1,

M⃗ = |Pmin + c1 · Pmax − Pmin| ,

(1)

where G⃗ is the gravity of the individual; F⃗ is the advection force of deep-sea current;
M⃗ is the social force between individuals; c1, c2, and c3 are the three random
values in the value range of [0, 1]. Pmin and Pmax represent the initial speed and
auxiliary speed of communication between individuals respectively, and their values
are generally set between [1, 4].

After avoiding the conflict in the foraging process, the population will move
closer to the optimal neighbor position. The formula for the distance between the
individual and the food in the x iteration is defined as follows:

P⃗D =
∣∣∣F⃗S − rand · P⃗P (x)

∣∣∣ , (2)

where P⃗P (x) represents individual position; F⃗S indicates the location of food; x rep-
resents the number of iterations of the method; rand is the random number between
[0, 1]; P⃗D indicates the distance between the individual’s position and the food’s
position.

The size of the random value rand determines the way in which the tucked
individual approaches the position of the optimal seeking individual, as shown in
Equation (3):

P⃗P (x
′) =

F⃗S + N⃗ · P⃗D, rand ≥ or ≥ 0.5,

F⃗ S − N⃗ · P⃗D, rand < 0.5,
(3)

where P⃗P (x
′) indicates the position of individual update.

In order to better simulate the group behavior of the tucked swarm, the first
two optimal solutions obtained in the iterative optimization process are retained to
obtain the position of the tucked individual, and according to this, the position of
other encapsulated individuals is updated. Its behavior is described as Equation (4):

P⃗P (x+ 1) =
P⃗P (x) + P⃗P (x+ 1)

2 + c1
. (4)

Tucked Swarm Algorithm flow:

1. The tucked swarm P⃗P is initialized, the initial location of the tucked swarm
P⃗P (xi) is randomly generated, and the boundary parameters of the population
are defined;



886 X. Cheng, C. Xu, H. Sun, J. Li

2. The fitness value of each tucked individual was calculated according to the lo-
cation of the tucked individual, and the optimal value of the current fitness and
the corresponding individual location were recorded;

3. Update the position of each individual in the population according to the group
behavior of the population, and adjust the position of the individual beyond the
given search range boundary;

4. Calculate the fitness value of the tucked individual after updating the location.
If the current fitness is better than the previous fitness, the current fitness will
be updated to the optimal value, and the corresponding optimal position will
also be updated;

5. Determine whether iteration can be stopped. If yes, the iteration stops and the
optimal value of the current fitness is output. If not, repeat steps 3 to 5.

The flow of the tucked swarm algorithm is shown in Figure 1.
The data used in this paper are from the rolling bearing public data set of

Case Western Reserve University. It is mainly composed of power tester, encoder
and three-phase motor. The bearing under test supports the rotating shaft of the
motor, and the sampling frequency of the driving end bearing is 12KHz and 48KHz,
and the sampling frequency of the fan end bearing is 12KHz. The vibration sensor
is used to collect the original data at the motor drive end (DE) and fan end (FE),
and the obtained data files are stored in the .mat file format of MATLAB software.
In actual working conditions, the vibration signals of rolling bearings with the same
type of fault are very close to each other under different damage sizes, so only one
vibration signal can be selected for analysis and re-search. The vibration signal
selected in this paper is the fault signal of the outer ring, inner ring and rolling
element of the rolling bearing with speed of 1772 rpm, damage size of 0.1778 mm
and load of 1 HP. The details are shown in Table 1.

Types of rolling bearing faults Speed [rpm] Fault diameter [mm] Load [HP]

Inner ring failure 1 772 0.1778 1
Outer ring malfunction 1 772 0.1778 1
Rolling element failure 1 772 0.1778 1

Table 1. Fault size information for rolling bearings

Utilizing the outer ring fault signals from the publicly available rolling bearings
dataset at Case Western Reserve University as a case study, this study explores
the numerical selection of decomposition mode numbers. Drawing from empirical
knowledge, the secondary penalty factor was set to 2 000, and the decomposition
mode numbers are individually configured as 3, 4, 5, and 6. Subsequently, VMD
decomposition is executed on the outer ring fault signal, and the outcomes are
visually represented in Figure 2. The central frequencies of each IMF component
for the outer ring fault signal under the four aforementioned parameter combinations
are presented in Table 2.
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Figure 1. Flow chart of tucked swarm algorithm
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Figure 2. Spectral graph of VMD decomposition

Decomposition Mode
Number K

C12 C23 C34 C45 C56

3 0.0092 0.0412 – – –
4 0.0032 0.0040 0.0030 – –
5 0.0027 0.0031 0.0022 0.0972 –
6 0.0012 0.0009 0.0013 0.0070 0.0139

Table 2. Adjacent IMF correlation coefficients corresponding to different K values

Based on the observations in Figure 2 and Table 2, it is evident that setting
the quadratic penalty factor α to 2000 progressively reduces the bandwidth of each
IMF component as the number of decomposed modes K increases. According to
the central frequency observation method, the appropriate value for K can be de-
termined.

As indicated in Table 2, when K = 3, the signal cannot be fully decomposed, re-
sulting in under-decomposition. When K = 5, a substantial overlap occurs between
the center frequencies of IMF3 (1286.6Hz) and IMF4 (1304.5Hz), potentially caus-
ing mode aliasing and leading to over-decomposition. Conversely, when K = 4, the
center frequencies of each IMF component exist independently, demonstrating no
noticeable mode mixing phenomenon. Currently, the central frequency observation
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method lacks a clear theoretical basis for assessing mode mixing, over-decomposition,
and under-decomposition in IMF components.

Additionally, there is a degree of subjectivity in determining whether the cen-
tral frequency values of the IMF components are sufficiently close to each other.
To further elucidate the selection of the decomposition mode number K, this pa-
per analyzes the correlation coefficients of adjacent IMF components under differ-
ent decomposition mode numbers. Table 3 reveals that when the decomposition
mode number K is less than 5, the correlation coefficient values of adjacent IMF
components are all below 0.01, indicating normal signal decomposition. However,
when K equals 5, the correlation coefficients between IMF4 and IMF5 experience
a sudden change, signifying the occurrence of mode aliasing and resulting in signal
over-decomposition. Consequently, in studying the impact of different α values on
signal decomposition, it is advisable to set K to 4.

Decomposition Mode
Number K

Center Frequency [Hz]

3 195.4 1 203.6 1 882.6 – – – –
4 186.7 445.1 1 299.3 1 882.6 – – –
5 186.4 444.9 1 286.6 1 304.5 1 886.6 – –
6 186.3 444.8 1 190 1 297.9 1 394 1 888 –

Table 3. IMF center frequencies corresponding to different K values

Subsequently, we will discuss the influence of the quadratic penalty factor α on
the signal decomposition effect. To illustrate this impact, we take the fault signal
from the outer ring of a rolling bearing as an example, focusing on the numerical
determination of the quadratic penalty factor α. With a fixed decomposition mode
number K of 4, various values of α is employed to scrutinize their effects on signal
decomposition. Specifically, α is set to 1 000, 2 000, 4 000, 6 000, 8 000, and 10 000,
and each of these parameter combinations will be utilized for VMD decomposition
of the outer ring fault signal. The results are displayed in Figure 5. From Figure 4,
it is apparent that when α < 2 000, some IMF components may contain frequency
components from other sources. On the other hand, when α > 4 000, information is
lost due to the gradual reduction of the bandwidth.

Drawing insights from Figure 3, it can be inferred that the optimal value for α
lies between 2 000 and 4 000, and the specific value selection entails a certain degree
of subjectivity. Besides, employing a fixed method to determine the parameter
combination of the decomposition mode number K and the quadratic penalty factor
α has inherent limitations, as it neglects the mutual influence between K and α.
Consequently, to achieve the optimum decomposition result for Variational Mode
Decomposition (VMD), it becomes imperative to refine and optimize the selection
method for both the decomposition mode number K and the quadratic penalty
factor α.
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Figure 3. Frequency spectrum charts for different α decompositions with K = 4

2.2 VMD Parameter Optimization Method

The selection of a fitness function is a prerequisite for utilizing various intelligent
optimization algorithms. Correlation kurtosis, which is based on the concept of
kurtosis, incorporates the characteristics of both kurtosis and the correlation co-
efficient. This enables it to reflect the intensity of specific periodic pulses within
a signal. A higher correlation kurtosis value indicates the inclusion of more features
related to fault impact information, making the fault features more pronounced.
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Conversely, a lower value suggests less evident fault characteristics. Therefore, this
paper adopts correlation kurtosis as the fitness function for various intelligent opti-
mization algorithms. Its expression is:

CKM(T ) =

∑N
n=1

(∏M
m=0 yn −mT

)
(
∑N

n=1 y
2
n)

M+1
, (5)

where yn represents the vibration signal; T denotes the deconvolution period, signi-
fying the number of data points between two adjacent impulse pulses in the signal;
M is the shift number, impacting the quantity of extracted impulse pulses following
signal deconvolution.

The fundamental principle of the Variational Mode Decomposition (VMD) me-
thod based on Tucked Swarm Algorithm (TSA) and Maximum Correlation Kurtosis
Deconvolution (MCKD) optimization (TSA-MCKD-VMD) involves using the corre-
lation kurtosis of each Intrinsic Mode Function (IMF) component obtained through
VMD decomposition as the fitness function. The method iteratively searches for
the optimal parameter combination for the decomposition mode number K and the
quadratic penalty factor α. The specific process of this method is as follows:

1. Initialize the population size N, set the boundary of the positional parameter
Positions [1], Positions [2] and the maximum number of iterations Max iteration.

2. Calculate the fitness value fitness for each individual with the fitness function.

3. Record the optimal fitness value of the current individual along with its corre-
sponding position, and assess whether the position is optimal.

4. If the current fitness value is optimal, output the current K and α as the optimal
parameter combination. In the case where the current fitness value is subopti-
mal, proceed to update Positions[1], Positions[2] and adjust the search space
accordingly.

5. If the method reaches the maximum number of iterations, stop the iteration;
Otherwise, proceed to step 2 and continue with the iteration.

The calculation process of individual fitness value fitness in step 2 is as follows:

(a) Set the VMD secondary penalty factor α = Position[1], decomposition mode
number K = Positions [2], noise tolerance τ = 0, DC component DC = 0,
and initialize center frequency int = 1, with a convergence tolerance tol =
1e−7.

(b) Perform VMD decomposition to obtain K IMF components.

(c) Perform MCKD method on K IMF components and set the filter length to
400.

(d) Obtain the correlation kurtosis CKM(T ) of K IMF components.

(e) Calculate individual fitness values with formula
fitness = −

∑
{[max(ckiter)]

2}.
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Figure 4. TSA-MCKD-VMD method flowchart

The TSA-MCKD-VMD method flow is shown in Figure 4. The pseudo-code for
the algorithm is shown in Algorithm 1.

To prove the superiority of MCKD in accentuating periodic pulse signals as-
sociated with faults, this paper takes the simulated signal presented in Figure 5
as an example and makes a comparison between the experimental outcomes of the
IMF components obtained through decomposition without MCKD and those ob-
tained with MCKD. The results of these experiments are depicted in Figures 6, 7
and 8.

Through a comparative analysis of experimental results in two distinct scenarios,
it becomes evident that MCKD substantially diminishes the noise component within
the fault signal. This reduction effectively emphasizes the periodic pulse impact
component in the fault signal, thereby enhancing the accuracy of feature extraction
for rolling bearing vibration signals.



Fault Feature Extraction in Rolling Bearings Using Time-Frequency 893

Algorithm 1 TSA-MCKD-VMD Optimization Algorithm
1: Input: Vibration signal x(t), population size N , boundaries of parameters T and α, maximum itera-

tions Tmax

2: Output: Optimal parameter combination (Topt, αopt)
3: Step 1: Initialization
4: Initialize population size N , boundaries of parameters T , α, and set Tmax

5: Randomly initialize positions of individuals within the boundaries
6: Step 2: Fitness Calculation
7: for each individual do
8: Perform the following steps to calculate the fitness value:
9: 1. Set VMD parameters:

• Secondary penalty factor α
• Decomposition mode number K
• Noise tolerance, DC component, and initialize center frequency
• Convergence tolerance

10: 2. Perform VMD decomposition to obtain K IMF components:

x(t) =

K∑
k=1

uk(t)

where uk(t) is the kth Intrinsic Mode Function (IMF).
11: 3. Apply MCKD to each IMF component uk(t) with a filter length of 400.
12: 4. Calculate the correlation kurtosis γk for each IMF component:

γk =
E
[
(uk(t)− µk)

4
]

(E [(uk(t)− µk)2])
2

where µk is the mean of uk(t).
13: 5. Compute the fitness value for the individual:

f(x) = max
k

γk

14: end for
15: Step 3: Optimal Evaluation
16: for each individual do
17: Record the current fitness value f(x) and corresponding position (T, α)
18: if current f(x) is optimal then
19: Update the best position (Topt, αopt)
20: else
21: Update position and adjust the search space
22: end if
23: end for
24: Step 4: Iterative Search
25: for t = 1 to Tmax do
26: if convergence is reached then
27: Break the iteration
28: else
29: Recalculate fitness values and update positions
30: end if
31: end for
32: Step 5: Output Results
33: Return (Topt, αopt) as the optimal parameter combination

3 RESEARCH ON FAULT FEATURE EXTRACTION METHODS
FOR ROLLING BEARINGS

Feature extraction is a pivotal component of fault diagnosis technology. Kurtosis
stands out as one of the most frequently employed feature vectors for discerning
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Figure 5. Simulation signal time-domain waveform and frequency-domain diagram

the pulsatility of vibration signals in the time domain. Meanwhile, the envelope
spectrum and squared envelope spectrum are extensively utilized to describe the cy-
clostationarity of vibration signals in the frequency domain. Considering the merits
inherent in both kurtosis and envelope-based approaches, hybrid feature vectors,
such as envelope spectral kurtosis and set kurtosis, are proposed. To precisely cap-
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ture the fault features of complex signals amidst a milieu of intricate noise signals,
two novel feature vectors are presented.

Kurtosis is a measure of the non Gaussian nature of random signals, with its
formulation expressed as:

Kur =
1
N

∑N
i=1 (xi − x)4(

1
N

∑N
i=1 (xi − x)2

)2 , (6)

where xi is a discrete signal; x is the mean of the discrete signal; N is the sampling
length.

The kurtosis of the envelope spectrum serves as an effective metric for quan-
tifying and assessing the cyclic stability of the system and has found widespread
application in fault identification. The expression for the kurtosis of the signal
envelope is:

KE =
E [Ex − µE]

4

σ4
E

, (7)

where Ex is the signal obtained by demodulating the original signal through Hilbert;
µE is the average value of Ex; σE is the standard deviation of Ex; E[·] is the math-
ematical expectation.

The expression of envelope spectrum kurtosis is:

KES =
E [ESx − µES]

4

σ4
ES

, (8)

where ES x = DFT [Ex] and DFT are discrete Fourier transforms; µES is the aver-
age value of ES x; σES is the standard deviation of ES x; E[·] is the mathematical
expectation.

Set kurtosis is a new parameter constructed by kurtosis and envelope spectral
kurtosis, with its formulation expressed as:

EK = KES ·Kur . (9)

When extracting features from rolling bearings, a single indicator can be easily
influenced by complex noise signals, consequently impacting the diagnostic effec-
tiveness. To address this issue, a composite parameter known as weighted kurtosis
is proposed, and its expression is:

WK = Kur · |CC| , (10)

where Kur represents kurtosis; |CC| is the absolute value of the correlation coeffi-
cient.

For the real signal f(n), its analytical signal fA(n) and envelope signal fE(n)
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can be obtained:

fA(n) = f(n) + j·Hilbertf(n),

fE(n) =
√
f 2
A,re(n) + f 2

A,im(n),
(11)

where j is the imaginary unit; the subscript re and im are the real and imaginary
parts, respectively.

The envelope power spectrum of the signal sequence f(n) is calculated:

ŜE(k) =
1

N
|DFT [fE(n)]|2, (12)

where k = 0, 1, . . . , N − 1; DFT is the discrete Fourier transformation of sample N :

DFT [fE(n)] =
N−1∑
n=0

fE(n)e
−j2πkn/N . (13)

The kurtosis of Envelope Power Spectrum (KEPS) is calculated as the ratio
of the square of the fourth center moment m4 to the square of the second center
moment m2:

KEPS =
m4{ŜE(k)}

(m2{ŜE(k)})2
. (14)

Due to the increased sparsity of pulse fault features in the envelope power spec-
trum compared to the traditional envelope spectrum, the parameter KEPS exhibits
a heightened capability in detecting fault pulses compared to its counterpart in the
traditional envelope spectrum. Furthermore, the correlation coefficient (CC) facili-
tates the measurement of similarity between the original signal and its decomposi-
tion, defined as follows:

CC =
E[(uk − uk)(f − f)]

E[(uk − uk)2]E[(f − f)2]
, (15)

where CC is the correlation coefficient between f and uk; f and uk are the original
signal and decomposed signal, respectively; E[·] represents mathematical expecta-
tion; the ¯ symbol represents the mean.

The expression for SII can be written as:

SII = KEPS · |CC| . (16)

By leveraging the benefits of envelope power spectrum kurtosis and the correla-
tion coefficient, this method can effectively detect pulse fault information and filter
out interfering noise.

For the real signal f(n), the result after Hilbert transformation is as follows:

fH(n) = Hilbert{f(n)}. (17)
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Perform discrete fH(n) transformation on signal Fourier to obtain the power
spectrum SH(K) of the signal:

DFT |fH(n)| =
N−1∑
n=0

fH(n)e
−j2πkn/N ,

SH(K) =
1

N
|DFT |fH(n)||2 k = 0, 1, . . . , N − 1.

(18)

Calculate the kurtosis values of the power spectrum and the original signal
separately:

KPS =
m4{SH(k)}

(m2{SH(k)})2
,

Kur =
m4{f(n)}

(m2{f(n)})2
.

(19)

Construct CC by combining the correlation coefficient CIC , and select the com-
ponents with higher correlation with the original signal. The expression for CIC is
as follows:

CIC = |CC | ·Kur ·KPS . (20)

Compared with several common fault feature vectors, CIC streamlines the pro-
cess of constructing analysis functions and calculating envelope spectra, thereby ac-
celerating the calculation speed. Simultaneously, kurtosis calculations are performed
on the collected signal and the signal after multiple transformations to prevent the
loss of useful information during transformation. The multiplication of two kurto-
sis values enhances the characteristics of fault pulses, facilitating the detection of
fault information in the collected signals. Considering the advantages of CC, fil-
tering the signal by discarding components with lower correlation to the original
signal proves beneficial in reducing background noise interference and emphasizing
the characteristics of fault impacts.

Envelope entropy is the entropy value corresponding to the data sequence ej
obtained after envelope demodulation of the signal, which can effectively reflect the
sparsity characteristics of the signal. Express the envelope entropy of signal x(j)
(j = 1, 2, . . . , N) as EE : EE = −

∑N
j=1 ej lg ej,

ej =
a(j)∑N
j=1 a(j)

,
(21)

where ej is the normalized form of a(j); a(j) is the envelope signal of signal x(j),
which is decomposed by VMD and transformed by Hilbert from K IMF components;
N is the number of sampling points.
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To verify the effectiveness of the proposed feature extraction, the fifth section
employs a Least Squares Support Vector Machine (LSSVM) for validation of the
proposed method.

LSSVM represents an advancement over traditional SVM, featuring enhanced
convergence speed and heightened recognition accuracy. Consequently, it finds
widespread application in various domains, including fault recognition. The spe-
cific workflow is delineated as follows.

Assuming the training sample set D = {(xi, yi), i = 1, 2, . . . n}, the objective
function of LSSVM is:

min
(ω,b,ξ)

J(ω, ξ) =
1

2
||ω||2 + c

2

n∑
i=1

ξ2i . (22)

Its constraint conditions are:

yi[ω
Tϕ(xi) + b] = 1− ξi. (23)

In the formula, ω is the weight vector; b is the bias amount; c is the penalty
factor; ξi is the error variable.

The expression of the Lagrangian function is:

L(ω, b, ξi, αi) = J(ω, αi)−
n∑

i=1

αi{yi[ωTϕ(xi) + b]− 1 + ξi}, (24)

where L(ω, b, ξi, αi) is the objective function for solving the optimization problem;
αi is the Lagrange multiplier.

By taking the partial derivative of parameters such as ω, b, ξi, αi and setting
them to 0, utilizing the radial basis kernel function, we can derive:

∂L
∂ω

= 0 → ω =
∑n

i=1 αiφ(xi),

∂L
∂b

= 0 →
∑n

i=1 αi = 0,

∂L
∂ξi

= 0 → αi = γξi,

∂L
∂αi

= 0 → ωTφ(xi) + b+ ξi − yi = 0.

(25)

By eliminating parameters ω and ξi, linear simultaneous equations can be ob-
tained as follows: (

0 yT

y ZZT + c−1I

)(
b

a

)
=

(
0

y

)
(26)

where y = [y1, y2, . . . yn]
T ; Z = [ϕ(x1), ϕ(x2), . . . ϕ(xn)]

T ; c is the identity matrix
of order n × 1; the matrix I with elements equal to 1 is an n × n matrix; α =
[α1, α2, . . . αn]

T .
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The optimal classification function for the LSSVM method is:

f(x) = sgn

[
n∑

i=1

αiyiK(x, xi) + b

]
. (27)

4 EXPERIMENTAL VERIFICATION AND DISCUSSION

4.1 Effective Validation of VDM Parameter Optimization Method

To illustrate the efficacy of the VDM parameter optimization method proposed,
this section employs the simulated signal depicted in Figure 6 as a case study.
It compares the IMF component obtained through signal decomposition using the
proposed method with the original signal component. The experimental results are
presented in Figures 9, 10 and 11.
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Figure 9. Simulation signal fitness curve

It is shown in Figure 9 that this method can converge on the simulated signal
and reaches the optimal fitness value −1.461 × 10−26 in the 26th iteration, when
K = 11, α = 5456 can be obtained.

From Figures 10 and 11, it is evident that the original component x1 of the
simulation signal corresponds to IMF1 and IMF2, the original component x2 corre-
sponds to IMF3, and the original component x4 corresponds to IMF5. Each IMF
component obtained through signal decomposition using this method can corre-
spond to the original component of the simulated signal. This observation serves as
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Figure 10. Time and frequency domain diagrams of simulated signals and components

empirical evidence supporting the effectiveness of employing this method for signal
decomposition.

4.2 Validation of Feature Vector Validity

To validate the effectiveness of the feature vectors proposed in this study, we lever-
age four vibration signals sourced from the public dataset of rolling bearings at Case
Western Reserve University. These signals are subjected to decomposition using the
optimal parameter combination derived from the TSA-MCKD-VMD method. Sub-
sequently, an analysis is conducted on the performance of the seven feature vectors
with respect to the faults present in the corresponding MF components. To facili-
tate a comprehensive comparison of each feature vector’s performance, the concept
of normalized amplitude is introduced. This entails dividing the amplitude of each
feature vector by the sum of all amplitudes. This normalization process confines the
amplitude values within the range of [0, 1], thereby enhancing the contrast.

Firstly, the signal of the outer ring fault is decomposed using the optimal pa-
rameter combination K = 10, α = 5004, resulting in the generation of ten Intrinsic
Mode Function (IMF) components. As illustrated in Figure 12, IMF2 and IMF3
exhibit a notable alignment with the theoretical fault frequency of 107.37Hz and
its second and third harmonics associated with the outer ring fault. Consequently,
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Figure 11. Time domain and frequency domain diagrams of IMF components

these IMF components can be identified as signal components harboring fault char-
acteristic information. Figure 14 further emphasizes that IMF2 and IMF3 emerge
as the most responsive components to the fault impact. Specifically, EK demon-
strates heightened sensitivity to the fault impact within IMF2, while CIC exhibits
the utmost sensitivity to the fault impact within IMF3.

Secondly, the signal corresponding to the inner circle fault is subjected to de-
composition using the optimal parameter combination K = 6, α = 2893, resulting
in the generation of six IMF components. As depicted in Figure 13, IMF1 and IMF5
exhibit a close correspondence with the theoretical fault frequency of the inner ring
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Figure 12. Decomposition results of the outer ring fault signal

fault at 162.17Hz, along with its second and third harmonics. Consequently, these
IMF components can be identified as signal components encapsulating fault charac-
teristic information. Figure 14 further underscores that IMF1 and IMF5 emerge as
the feature vectors most responsive to the impact of faults. Notably, Kur displays
heightened sensitivity to the fault impact within IMF1, while WK demonstrates the
utmost sensitivity to the fault impact within IMF5.

Thirdly, the signal associated with the rolling element fault undergoes decom-
position using the optimal parameter combination K = 10, α = 4200, resulting in
the generation of ten Intrinsic Mode Function (IMF) components. As illustrated in
Figure 15, IMF6 and IMF7 approximately capture the theoretical fault frequencies
of rolling element faults at 70.59Hz and its harmonics. Consequently, these IMF
components can be identified as signal components containing fault characteristic
information. In Figure 16, it becomes evident that IMF6 and IMF7 emerge as the
feature vectors most responsive to the impact of faults. Notably, WK demonstrates
heightened sensitivity to the fault impact within IMF6, while KES exhibits the
utmost sensitivity to the fault impact within IMF7.
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Figure 13. Decomposition results of the inner ring fault signal
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Figure 14. Comparison of characteristic parameter performance of the inner ring fault
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Figure 15. Decomposition results of the inner ring fault signal
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Figure 16. Comparison of characteristic parameter performance for the rolling element
faults
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Finally, the optimal parameter combination K = 10, α = 3900 for the normal
state signal is applied to conduct signal decomposition, resulting in the generation
of ten IMF components. Analysis of Figure 17 reveals that IMF4 significantly aligns
with the theoretical characteristic frequency of the normal state signal at 30Hz,
designating it as a signal component harboring fault characteristic information. Ad-
ditionally, Figure 18 highlights that IMF4 stands out as the feature vector SII
exhibiting the highest sensitivity to the impact of faults within the signal.
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Figure 17. Decomposition results of the normal state signal
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Figure 18. Comparison of characteristic parameter performance in normal state

In summary, the seven feature vectors chosen in this study exhibit distinct re-
sponsiveness to various components within different signals. Consequently, these
selected feature vectors demonstrate effectiveness across all four vibration signals
associated with rolling bearings.
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4.3 Verification and Comparison of Feature Extraction Methods

In order to substantiate the efficacy and superiority of the proposed method for ex-
tracting fault features in rolling bearings, the LSSVM is selected as the classifier for
fault types. Subsequently, a fault recognition model utilizing LSSVM is developed.
Initially, a feature vector dataset was constructed, with the data length of each
signal group standardized to 1024. The vibration signals from the four rolling bear-
ings were comprehensively decomposed using the optimal parameter combination
derived from the TSA-MCKD-VMD method. The feature vector dataset, encom-
passing multiple features, is formally represented as Equation (28):

M1

...

Mp

 =


A1 B1 C1 D1 E1 F1 G1

...
...

...
...

...
...

...

Ap Bp Cp Dp Ep Fp Gp


p×7

, (28)

where p represents the total number of samples.
It is evident that the feature vector dataset is of order (p × 7). The feature

vector numbers are shown in Table 4.

Serial Number Feature Vector

A1 Kur
B1 KES
C1 EK
D1 WK
E1 SII
F1 CIC
G1 EE

Table 4. The feature vector numbers

Input the constructed feature vector dataset into the LSSVM for fault recogni-
tion and determine its accuracy. Through comparative experiments involving the
CS-VMD, MCKD-TSA, and CS-MCKD-VMD methods, we illustrate the effective-
ness and superiority of our proposed approach.

This section conducts experiments using the extracted feature vector dataset,
employing LSSVM as a classifier for fault recognition. The category labels 1, 2, 3,
and 4 are assigned to denote outer ring fault, inner ring fault, rolling element fault,
and normal state, respectively. Various enhancement methods, including Cuckoo
Search (CS) for VMD improvement, MCKD for VMD enhancement, and the Cuckoo
algorithm for VMD improvement with MCKD, are selected for comparative analysis.
One hundred sets of data were randomly chosen from each of the four types of feature
vector datasets, totaling 400 sets of data, with 80% allocated for the training set
and 20% for the testing set. Ten random experiments are conducted for each of
the four methods, and the average fault recognition accuracy was computed. The
experimental results are presented below.
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According to Table 5 and Figure 19, the test set in this experiment comprises
a total of 80 samples. Among these, the CS-VMDmethod accurately identifies vibra-
tion signals of different categories in 76 samples, with 4 recognition errors, resulting
in a fault recognition accuracy of 95% and an average fault recognition accuracy of
93.75%. The MCKD-VMD method demonstrates accurate identification in 77 sam-
ples, with 3 recognition errors, achieving a fault recognition accuracy of 96.25% and
an average fault recognition accuracy of 93.75%. The CS-MCKD-VMD method ac-
curately identifies vibration signals in 77 samples, with 3 recognition errors, leading
to a fault recognition accuracy of 96.25% and an average fault recognition accuracy
of 93.875%. In the case of the TSA-MCKD-VMD method, accurate identification
is observed in 78 samples, with only 2 instances of outer ring fault samples being
mistakenly identified as inner ring faults, resulting in a fault recognition accuracy
of 97.5% and an average fault recognition accuracy of 97.14%. The superior values
of average fault recognition accuracy and fault recognition accuracy in comparison
to the other three methods indicate commendable fault recognition stability.

In order to further verify the effectiveness of the proposed method, an experi-
mental platform was set up. The experimental platform is shown in Figure 20. The
experimental results are shown in Table 6.

Number TSA-MCKD-VMD CS-VMD MCKD-VMD CS-MCKD-VMD

1 97.5% 93.75% 92.5% 93.75%
2 97.5% 92.5% 95% 92.5%
3 96.3% 93.75% 93.75% 93.75%
4 97.5% 93.75% 92.5% 92.5%
5 97.5% 95% 91.25% 95%
6 97.5% 93.75% 92.5% 93.75%
7 96.3% 92.5% 96.25% 96.25%
8 97.5% 93.75% 93.75% 92.5%
9 97.5% 93.75% 95% 95%

10 96.3% 95% 95% 93.75%

Average fault
identification

accuracy
97.14% 93.75% 93.75% 93.875%

Table 5. Results of random experiments

In summary, through the fusion of diverse feature vectors, experimental vali-
dation has demonstrated that the fault feature extraction method proposed in this
paper attains the highest accuracy in fault recognition. This method exhibits robust
fault recognition stability and holds notable implications for the practical implemen-
tation of rolling bearing fault feature extraction.
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Number TSA-MCKD-VMD CS-VMD MCKD-VMD CS-MCKD-VMD

1 97% 93.5% 93% 93.5%
2 96.5% 92.5% 93.5% 92.5%
3 96.5% 93.7% 93.75% 93.75%
4 97.5% 93% 93.5% 93.5%
5 96.5% 95% 91.5% 95.5%
6 97.5% 93.75% 92.5% 93.75%
7 96.5% 92.5% 96% 97.25%
8 97% 93% 93.5% 91.5%
9 97.5% 93.5% 95.5% 94.5%

10 96.5% 95% 95% 93.75%
Average fault
identification

accuracy
97% 93.55% 94% 93.95%

Table 6. Results of bearing fault diagnosis simulation test platform
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Figure 19. The optimal fault recognition performance of four test sets using different
method
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Bearing model UPH205

NI USB-6003 acquisition card

IEPE constant current source

Upper computer

Dytran3023 Micro Three Axis Accelerometer

PT100 bearing fault diagnosis simulation test bench

Figure 20. Bearing fault diagnosis simulation test platform

5 SUMMARY

This paper focuses on various types of vibration signals of rolling bearings, aiming
to enhance the accuracy of fault recognition in this specific machinery component,
and introduces a novel TSA-MCKD-VMD fault feature extraction method. Through
experimentation with a standardized dataset of rolling bearings, the study shows the
effectiveness of the method in extracting fault features, providing valuable insights
and practical implications for the application of fault feature extraction in rolling
bearings.

6 FUTURE WORK

The feature extraction method proposed in this paper can improve the accuracy
of fault recognition for rolling bearings, but there are still areas that need further
improvement. The fault state studied in this paper only includes one type. Consid-
ering that rolling bearings are prone to multiple types of faults in complex working
conditions, further research can consider studying more types of bearing faults and
extracting features of complex faults in multiple working conditions.
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