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Abstract. Depression has become a common mental illness, and the number of
patients has shown a noticeable rising trend. However, the exploration of the con-
nection between hormone levels and physical state changes in depression patients
is still open. Hormone levels are complex and play a key role in regulating multiple
body systems and functions, directly or indirectly influencing overall health and
physical state. This work utilizes Petri nets to establish a corresponding model for
the transition of hormone levels and states in depression, focusing on the associ-
ation between different hormone levels and states in depressive patients. At the
same time, machine learning methods offer a new approach to predicting the reach-
ability of depression patients’ states. This work enables healthcare professionals to
quickly assess patients’ emotional changes and their impact on outcomes, improving
resource allocation.
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1 INTRODUCTION

Depression can have adverse effects on both the psychological and physical health
of patients, significantly disrupting their daily life, professional development, and
social interactions. Its onset is influenced by various factors, encompassing genetic,
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physiological, social, and psychological elements [1]. In recent years, changes in
lifestyle have led to a dramatic increase in the prevalence of depression [2]. The
World Health Organization (WHO) reports that depression is the most widespread
mental illness globally, about 1 billion people worldwide suffer from mental disor-
ders, and more than 95 million people in China will suffer from depression1. The
magnitude of this problem has prompted many researchers to refocus their efforts
on this field [3]. Considering the gravity of the situation, it is crucial to develop
a model that accounts for the effects of multiple biological hormone levels on the
physical condition of patients. Although some scholars [4] previously established
relevant models to examine the pathophysiological impacts and underlying mecha-
nisms of depression-related hormones, the descriptions of the associated biochemical
reactions and pathways in the models are not comprehensive enough. Given that
depression is a recurring process. Individuals who have been treated for depression
are prone to experiencing it again. Therefore, to enhance our understanding of pa-
tients’ conditions and the recurrence of depression, we require a more comprehensive
model that can better analyze these aspects.

As a graphical language, Petri nets can be used for modeling and also allow re-
searchers to effectively analyze the dynamic behavior and structural characteristics
of systems [5]. They enable genuine concurrency rather than relying solely on inter-
leaved semantics. Petri nets can describe the structure and the dynamic behavior
of the system [6]. There are currently some studies applying Petri nets technology
in the field of medicine. For example, colored Petri nets are combined with machine
learning methods to model and analyze the multi-factor disease evolution process,
and apply Petri nets to study the effects of related factors on essential hypertension,
and hierarchical Petri nets can be utilized to study the modeling of patient flow
and the optimization of staffing level in ED [7, 8, 9]. Some scholars [10] have pro-
posed a depression recognition method that combines EEG feature transformation
and machine learning techniques. Using EEG data from 28 participants, they ex-
tracted power spectral density and activity features and employed ensemble learning
(Deep Forest + SVM) and deep learning (CNN) methods for depression classifica-
tion. Experimental results showed that the ensemble learning method achieved the
best classification accuracy of 89.02% on the total frequency band, while the deep
learning method performed well on the Alpha frequency band with an accuracy of
84.75%. Some scholars [11] have utilized weather data and physiological sensor data
to study methods for predicting depression and emotional states. By performing
correlation analysis to identify significant predictive attributes, they employed ma-
chine learning algorithms such as Random Forest, Support Vector Machine (SVM),
and LogitBoost to classify the severity of bipolar disorder and depression, while
optimizing model performance through feature selection. So far, most depression
studies have primarily focused on the identification and severity prediction of depres-
sion. While a few studies [4, 7] have utilized Petri nets to examine the mechanisms
of monoamine hormones in depression, and modeling relevant model, while there

1 http://yn.people.com.cn/health/n2/2023/0710/c228588-40487592.html
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is currently no research on combining Petri nets and machine learning methods to
predict the reachability of patients’ mental and physical states.

Figure 1. The overall process framework for studying depression

Based on previous research, although Petri nets technology has been applied
in the realm of medical information and has contributed to biopathology, the work
regarding its use in modeling and analyzing depression is still open. Our primary
focus is to use Petri nets modeling technology to develop a model that examines
how different hormone levels and emotional regulation mechanisms affect patients’
physical states. Additionally, we aim to predict the reachability of patients’ states
using machine learning method [12]. This approach allows us to reliably forecast
the condition of patients with depression and promptly assess the influence of dif-
ferent hormone levels on their physical well-being. Our method facilitates doctors
in efficiently analyzing and managing extensive patient data, contributing to a more
efficient allocation of medical resources and efforts. At the same time, compared to
existing studies, we not only focus on the prediction of depression states but also ex-
plore the dynamic mechanisms of hormone effects. Moreover, leveraging the unique
advantages of Petri nets in dynamic modeling and system analysis, our research
goes beyond the limitations of classification problems and further investigates the
interactions within complex physiological mechanisms.

We propose the framework as illustrated in Figure 1. The primary contributions
of this paper include: Considering the changes in neurotransmitter levels (such as
dopamine and norepinephrine), we construct a disease process model based on Un-
bounded Petri Nets (UPNs). This model can be used to analyze various mental
health disorders and other conditions affecting emotional and cognitive functions.
By simulating the changes in neurotransmitter levels and emotion regulation mech-
anisms, medical professionals can achieve a deeper insight into the pathogenesis
and development of these diseases, providing valuable information and guidance
for research and clinical practice in related fields. We utilize the machine learning
method to swiftly and accurately predict the reachability of the patients’ physical
states. We substantiate the effectiveness of this method by validating the predic-
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tion results. This allows doctors to have a clearer understanding of the impact of
different hormone levels on a patients’ health status, providing more solid support
for clinical diagnosis and treatment. The framework proposed in this paper depicts
the process of modeling and analyzing the evolution of the disease. Additionally,
this framework integrates methods such as marking generation software, modeling
method using Petri nets, and machine learning for prediction to gain a clearer un-
derstanding of the disease’s pathogenesis and progression. Finally, we apply this
approach to research on depression, enabling medical professionals to better un-
derstand the pathophysiology of depression caused by changes in multiple hormone
levels.

The remainder of this paper is organized as follows: Section 2 elaborates the
relevant definition and modeling process of the multihormone level analysis model.
Section 3 shows the method of machine learning prediction. Section 4 discusses the
advantages and disadvantages. Finally, Section 5 makes a comprehensive summary
of this paper.

2 MODELING SCHEME

2.1 Related Concept

We delve into the pertinent definitions of original Petri nets, the related concepts of
machine learning. By introducing Petri nets, we aim to enhance our understanding of
information transmission and state transition in the modeling process of depression.
In the process of discussing machine learning, we explore how these approaches can
be utilized to analyze models and unveil the intricate relationship between patient
hormone levels and their status. Ultimately, we offer a comprehensive analysis of
the specific modeling steps and methodologies for depression process, thereby laying
the groundwork and offering guidance for future research.

2.2 Petri Nets

Petri nets can describe and analyze diverse systems [13]. Its characteristics include
concurrency, asynchronous, distributed, parallel, uncertainty and randomness [14].
Using token flow, Petri nets simulate the system’s dynamic and concurrent activi-
ties [15, 16, 17]. Furthermore, as a mathematical tool, it can also establish some
equations to effectively manage the operational behavior of systems [18]. The fol-
lowing are relevant definitions of Petri nets.

Definition 1 ([19]). A Petri net N = (P, T, F,W ), where P is a places set, T is
transitions set, F is directed arcs set, which connects the place and transition, and
describes the flow of resources. W is the weight on the arc. When the resource of
preceding place is less than W (f), the transition cannot occur.

Definition 2 ([19]). The transition firing rules: For any p ∈ ·t, M(p) > W (p, t),
then t ∈ T is enabled. When all input places of a transition have sufficient resources
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(meeting the weight requirements), the transition can occur, and releasing resources
to output places (based on weights). This flow rule ensures that a transition is
triggered only when all prerequisites are met. If multiple transitions are connected
to the same place, these transitions should be mutually exclusive, meaning only one
transition can occur at a time.

M ′(p) =



M(p)−W (p, t), if p ∈ ·t− t·,

M(p) +W (t, p), if p ∈ t · − · t,

M(p)−W (p, t) +W (t, p), if p ∈ ·t ∩ t·,

M(p), if p /∈ ·t ∪ t · .

(1)

Definition 3 ([19]). Let N be a network system and M = {M0,M1, . . . ,Mk} be
a non-empty set of markings, where M0 describes the distribution of resources.

α = {t1, t2, . . . , tk} represent a sequence of transitions, and having a series of
markings M1,M2, . . . ,Mk such that M0[t1 > M1[t2 > M2[t3 > . . . > Mk−1[tk > Mk

(i.e., M0[α > Mk), we say that Mk can be reached from M0.

Definition 4 ([12]). In the net system N , boundedness refers to the existence of
a positive integer k that provides a ceiling for the number of tokens M(p) for any
reachable marking M and every place p within the system. If such k exists, the
system is said to be bounded, indicating that the number of tokens in the system
will not exceed this limit. In the absence of such a limit, the system is considered
unbounded, suggesting that the number of tokens could grow indefinitely.

Definition 5 ([12]). Consider a Petri net N = (P, T, F,W ). A marking refers to
a function M : P → N, which assigns a non-negative integer to each place in the
Petri net.

The marking can also be expressed as a vector of natural numbers with a length
of |P |. For any place p ∈ P , M(p) represents the token count in p.

2.3 Machine Learning

Some scholars [12] have proposed using machine learning combined with BaggingPU
algorithm to train reachable markings and unknown markings in Petri nets, a me-
thod known as Net Learning, thereby predicting the reachability of UPNs. For
discrete event systems, the problem of rapidly increasing state combinations due
to their extremely large state space makes it exceedingly difficult to conclusively
determine state reachability within a finite time. Therefore, the purpose of machine
learning is to achieve probabilistic prediction of unknown marking reachability by
training the known marking reachability of UPNs. The new marking’s reachability
is gradually approached by using finite time and known reachability states. Addi-
tionally, the Net learning method is not only applicable to UPNs but also to large
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bounded Petri nets. For some bounded Petri nets, their reachability graphs or cover-
ability trees are difficult or even impossible to generate. Therefore, the Net learning
method can effectively address these issues.

In our paper, data labeled as 0 does not necessarily indicate unreachable mark-
ings, but rather data that is a mixture of reachable and unreachable markings.
This is because, in an unbounded Petri net, it is impossible to determine whether
a marking is unreachable, making direct judgment unattainable. However, reachable
markings are known, and therefore, we can effectively address this issue using the
BaggingPU algorithm. For the baseline machine learning algorithm, the data needs
to have clearly defined positive and negative sample classifications. In our case, the
positive samples are reachable markings, while the negative samples include both
reachable and unreachable markings. Due to the specificity of this classification, the
baseline machine learning algorithm cannot be directly applied to our experiments.
The comparison between BaggingPU and the baseline machine learning algorithm
is shown in Table 1.

Comparison Item BaggingPU Algorithm Baseline Machine
Learning Algorithm

Data Requirements Requires reachable markings
and unknown markings, can
utilize unknown markings

Requires clearly reach-
able markings and un-
reachable markings

Labeling Cost Low (no need to label a large
number of unknown mark-
ings)

High (requires clearly
reachable markings and
unreachable markings)

Adaptability to Spe-
cific Data Types

Suitable for large amounts of
unknown markings

Adaptability to such spe-
cific data types is poor

Marking Reachabil-
ity Prediction

Yes No

Table 1. Comparison of BaggingPU and baseline machine learning algorithm

Definition 6 ([12]). For an unbounded network system N and a training dataset
(TD), suppose a marking M is given. A classifier is a scoring function f learned
from TD : M → [0, 1]. Dr(M) is a decision function:

Dr(M) =

1, if f(M) ≥ ε,

0, else,
(2)

where ε serves as the threshold for probability reachability. When Dr(M) = 1, it
indicates that M can probabilistically reach from M0.

Definition 7 ([12]). Let Σ = (N,M0) as an UPNs. The definition of triplet (M, lM ,
sM) is as follow: M ∈ N|P | represents a marking that contains the number of
resources in all places. lM indicates whether M is reachable from M0. If M is
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within the reachability relation R(N,M0), then lM = 1; otherwise, lM = 0. And sM
denotes whether M is labeled. If M is labeled, then sM = 1; otherwise, sM = 0.

Consequently, positive samples are denoted as (lM = 1, sM = 1) and negative
samples are denoted as (lM = 0, sM = 1). Respectively, the unlabeled sample is
denoted as (sM = 0).

2.4 Model Research

To enhance our understanding of the characteristics of depression and to create
a model that captures these states. We achieve this by analyzing the interplay be-
tween dopamine and norepinephrine levels in patients with depression. Additionally,
we consider how mood regulation influences their psychological status. We present
the necessary definitions of Petri nets and essential analysis methods required for
Petri nets analysis. Following that, we delve into the specific modeling process. We
establish a Hormone Level Cascade Model (HLCM) by considering the disease evolu-
tion process and the impact of monoamine hormones on patient states. This model
explains the state changes caused by low dopamine and norepinephrine levels, as
well as the influence of mood regulation on patient states. This model is illustrated
in Figure 2.

In HLCM, besides the state changes resulting from variations in a single hor-
mone’s level, changes induced by the simultaneous interaction of two hormones are
also noted. When a patient’s physical condition is suboptimal, the introduction of
emotional regulation mechanisms can induce certain changes in the patient’s state,
facilitating a more accurate analysis of their condition. In cases where a particular
state is induced by a low level of a specific hormone, further reduction in that hor-
mone’s level may occur, creating a circular feedback loop that constitutes an UPN.
For example, p7 (decreased intelligence) caused by p0 (low norepinephrine levels)
and p4 (mental anxiety) caused by p1 (low dopamine levels) together contribute to
t4 (low mood). After the appearance of p8 (low mood), the norepinephrine and
dopamine levels drop again. This creates a closed loop, the UPNs. The meanings
of places are shown in Table 2. In our model, only the places have actual mean-
ings, while the transitions merely serve as intermediaries for occurrences. Therefore,
transitions do not carry any meanings.

The HLCM model incorporates various control architectures, such as sequen-
tial and parallel architectures. The sequential structure elucidates how decreased
hormone levels initiate ongoing alterations in the patient’s physical state. In in-
stances of selective state changes, parallel structures are employed to delineate this
regulatory mechanism. These architectures operate based on deterministic deci-
sion rules that drive state evolution. Assigning biological significance to each place
and transition, we develop further analysis techniques to simulate hormonal inter-
actions [20].

The paper explores a range of changes in patient physical states linked to bi-
ological hormones. Reduced levels of pertinent hormones can result in feelings of
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Place Meaning Place Meaning
P0 Low norepinephrine P12 Emotional stability
P1 Low dopamine P13 Restless
P2 Cognitive decline P14 Lack of concentration
P3 Energy depletion P15 Reduce irritability
P4 Anhedonia P16 Emotional regulation
P5 Bradykinesia P17 Normal state
P6 Decreased immune function P18 Depressive state
P7 Decreased intelligence P19 Boring
P8 Feeling down P20 Decision misery
P9 Emotional regulation P21 Reduced anxiety
P10 Slow thinking P22 Low norepinephrine
P11 Emotional regulation

Table 2. Places meaning

Figure 2. HLCM (Hormone Level Cascade Model)

agitation, diminished pleasure, decision-making challenges, and fatigue. Individuals
with depression may additionally encounter sensations of worthlessness and guilt,
difficulties with concentration and decision-making, and an increased risk of suicide
and mortality [21].

Low levels of norepinephrine, widely distributed throughout the brain, result
in reduced activity of the α1 receptor, leading to decreased energy and cognitive
decline. This is evidenced by low energy levels, sluggish movement, and diminished
willpower [4]. Concurrently, diminished activity of the α2 receptor also contributes
to a loss of motivation and reduced vitality, reflected in slower thinking speed [22].
Furthermore, decreased activity of the β receptors may lead to feelings of low mood,
closely related to symptoms of depression.
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Dopamine is primarily concentrated in the prefrontal cortex, where its neu-
ral projection is highly sensitive to stress [23]. This area responds more intensely
to stress compared to the basal ganglia. Chronic stress has been associated with
potential harm to this system, leading to insufficient dopamine levels in the pre-
frontal cortex. This deficiency might reduce appetite and pleasure, ultimately
contributing to the onset of depression. Some scholars [24] developed a chronic
stress model in rats to mimic human depression. In their model, rats were subjected
to repeated mild stresses in response to environmental changes. Through testing
the rats’ consumption of saccharin-containing solutions, researchers observed a de-
cline in the animals’ activity, appetite, and pleasure drive. Reduced appetite is of-
ten associated with decreased functioning of dopamine receptors, and the dopamine
system in regulating appetite and other fundamental motivations. The dopamine
system is intricately linked to the reward mechanism, aiding in our adaptation
to new stimuli and the development of corresponding behavioral patterns [25].
Impairment of the reward system can result in irritability, apathy, and anhedo-
nia, symptoms reminiscent of depression. This altered physical and mental state
due to reduced dopamine levels can be reversed and improved with standard
antidepressants, such as TCAs and selective serotonin reuptake inhibitors
(SSRIs) [26].

In response to the changes in hormone levels mentioned above, we can alleviate
symptoms of depression by employing emotion regulation strategies. Emotion reg-
ulation encompasses a series of intentional or unintentional physiological responses,
behavioral adjustments, and cognitive processes aimed at lowering, maintaining, or
enhancing an individual’s emotional level [27]. Emotion regulation can assist pa-
tients in better understanding and managing their emotions, leading to improved
emotional experiences and alleviation of depressive symptoms [28].

2.5 Model Process

In order to construct this model, we start from the requirements analysis in the
system design phase to extract the key functional features in the progression of
depression. We then follow these steps to build the model:

Symbol definition for the Hormone Level Cascade Model (HLCM): based
on medical literature and clinical research reports, we precisely define the clin-
ical parameters and other potential influencing factors, declaring the necessary
elements and their connections for the model construction.

Constructing the local HLCM: we identify factors such as hormonal changes
and psychological states that affect the evolution of depression. Following key
clinical observations and design standards, we establish the critical events and
interactions that lead to the worsening and change of depressive symptoms.

Construction of the local behavior model for hormonal levels: we analyze
the interactions between different hormonal levels and their effects on the pro-
gression of depression. Key factors affecting depression, such as fluctuations in
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hormone levels, stress responses, and emotional regulation, are identified, and
their input and output channels are defined through cause-and-effect logical re-
lationships, represented by directed arcs.

Fusion operation of HLCM: based on clinical evidence and the definitions in
the previous steps, we integrate to form a comprehensive behavioral model of
depression (HLCM). At the initialization of the model, we introduce indicative
data that represent the onset stage of the illness, such as baseline hormone levels
and initial psychophysiological states.

3 MODEL ANALYSIS AND PREDICTION

3.1 Model Running Rules

We construct an original Petri net-based model to explore the interaction of hor-
mones and intrinsic interventions in depression. To ensure that the model works
efficiently, we need to mention some supporting rules. Below, we elaborate on the
operational rules of the HLCM model to deepen understanding of the simulation
process. In our HLCM model, p0 (low norepinephrine level) and p1 (low dopamine
level) constitute the initial input places of the model. These input places receive
resources to form the initial marking M0. In this initial state, there are multiple
transitions that can be activated. By randomly selecting and triggering a tran-
sition, we obtain a new marking M1. Continuing this process, in the M1 state,
there are multiple transitions that can be triggered. After randomly selecting and
executing a transition, the next new marking M2 is generated. The operational
process of the HLCM model involves a continuous sequence of changes in mark-
ings and transitions, illustrating the dynamic evolution process as the simulation
progresses.

3.2 Model Prediction

A major challenge in analyzing UPNs is dealing with infinite states [29]. The vast
number of numbers in ω within the finite reachability tree makes it difficult for ex-
isting reachability analysis methods to deliver precise results. This is particularly
challenging without excessive computing time and space requirements. As a result,
this concept has led to the development of a machine learning approach, which
can partially address the reachability problem in UPNs. By initially defining the
probabilistic reachability of markings, the machine learning approach redefines the
UPNs reachability challenge as a problem of predicting markings. This method
combines machine learning with the BaggingPU algorithm to train on the reachable
markings generated by Petri nets and the unknown markings produced according
to specific rules, thereby predicting the reachability of unknown markings. By de-
signing an iterative strategy to continuously update the classifier, the reachability of
samples beyond the training and testing sets can be predicted. Experimental results
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demonstrate that the proposed method performs well in terms of accuracy and time
efficiency.

The core idea of Bagging PU (Positive-Unlabeled) is to construct multiple clas-
sifiers using Positive-Unlabeled (PU) data and reduce model variance through the
Bagging method. Bagging works by repeatedly sampling from the training dataset
to create multiple subsets, training multiple base learners on these subsets, and
finally obtaining the final prediction through voting or averaging.

Assume there are T base learners, where each learner ht is trained on a sampled
training set. The final prediction is obtained through the weighted combination of
all the learners:

H(x) =
1

T

T∑
t=1

ht(x). (3)

In Bagging PU, random sampling is performed on unlabeled samples and com-
bined with all positive samples to form the training set. The sampling process is
completed using the Bootstrap method. For the dataset D, a subset Dt is generated
through sampling with replacement, where its size is at most max samples times the
original dataset. The process is represented as:

Dt ∼ Bootstrap(D,max samples), (4)

where max samples represents the sampling ratio. Bootstrap refers to randomly
sampling from D with replacement.

We can utilize machine learning methods to predict the reachability of marking
in the HLCM model, enabling us to quickly determine whether a patient is likely to
transition to other states under certain specific conditions. This approach provides
strong support for clinical decision-making, allowing doctors to better formulate per-
sonalized treatment plans. Through the dynamic analysis of patient states, we gain a
deeper understanding of the disease progression, thereby improving the effectiveness
of prevention and intervention strategies.

Theorem 1 ([12]). The probability calculation formula for the reachability of a new
sample is shown as follows:

Pr(lM = 1 | M) =
Pr(sM = 1 | M)

Pr(sM = 1 | lM = 1)
. (5)

Our team developed a reachability marking generation software primarily de-
signed to automate the generation of data or information related to markings, aim-
ing to improve the efficiency and accuracy of the data labeling process. By using
intelligent algorithms and rule engines, it can automatically identify and generate
markings based on predefined standards. The software is widely applied in data
analysis, machine learning model training, and information management, among
other fields. It not only significantly reduces the time and cost of manual labeling,
but also enhances the consistency and reliability of the markings, which is crucial



Predicting Depression States Using Petri Nets and ML 973

Place Value

P0 1 1 0 0 0 0

P1 1 1 1 1 0 0

P2 1 1 2 2 2 1

P3 0 0 1 0 0 0

P4 0 0 0 0 1 0

P5 1 0 0 0 0 1

P6 0 0 0 1 1 0

P7 0 0 0 1 1 0

P8 0 0 0 0 0 1

P9 0 1 1 1 1 1

P10 0 0 0 0 0 0

P11 0 0 0 0 0 0

P12 0 0 0 0 0 0

P13 0 0 0 0 1 0

P14 0 0 0 0 1 1

P15 0 0 0 0 1 0

P16 0 0 0 0 0 0

P17 0 0 0 0 0 0

P18 0 0 0 0 2 0

P19 0 0 0 0 0 0

P20 0 0 0 0 0 0

P21 0 0 0 0 0 0

P22 1 1 1 1 1 0

Label 1 1 1 1 1 0

Table 3. Part of the data sample

for accelerating data preparation and improving model performance. Furthermore,
the software is not only suitable for generating reachability markings for original
Petri nets but also supports the generation of reachability markings for transition
priority Petri nets, temporal Petri nets, and other types of Petri nets. The main
interface of the software is shown in Figure 4.

We use the custom-developed software and certain specific rules to generate
10 000 markings, including both reachable and unreachable markings. Due to the
diversity of the markings, we were only able to generate a subset of them. Some
of the data samples are illustrated in Table 3. By applying the bagging strategy
in Net learning for training and predicting the data, we found that this method
significantly improved the overall accuracy of the model. The bagging algorithm
works by aggregating the results from multiple base learners, effectively reducing
overfitting and enhancing the model’s generalization ability. To further validate
the effectiveness of this strategy, we compared five different machine learning mod-
els: Support Vector Machines (SVM), Decision Tree (DT), Multi-Layer Perceptron
(MLP), Random Forest (RF), and Extreme Gradient Boosting (XGB). The exper-
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imental results indicate that the DT model demonstrated the highest overall accu-
racy among all the models while also requiring the least training time, highlighting
its efficiency and effectiveness for the specific task in this study. By comparing
the performance of different models, we found that while other models (such as
MLP and XGB) also exhibited certain predictive capabilities, the Decision Tree
model significantly outperformed them in terms of accuracy and training efficiency.
The advantages of the Decision Tree model are not only reflected in its ability
to quickly capture patterns in the data but also in its intuitive and interpretable
decision rules, making it highly applicable to complex system modeling and op-
timization. The results show that the Decision Tree model excels at identifying
critical patterns in the data, providing stable, accurate, and efficient predictions
for this type of task. The comparison results of different models are shown in
Figure 3, further emphasizing the comprehensive advantages of the Decision Tree
model.

Machine learning models calculate evaluation metrics such as Precision, Re-
call, Accuracy, and F1-score for classification results using the following formu-
las:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2 · Precision · Recall
Precision + Recall

. (6)

Figure 3. Performance comparison of machine learning models
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It is assumed that in the initial state, p0, p1, p2, and p5 each contain one resource,
which reflecting the patient’s low levels of norepinephrine and dopamine, cognitive
decline, and bradykinesia. Through repeated iterative training of the data, we can
predict the specific identifier. For example, the state of p1 with one resource, p2
with two resources, and p5 and p12 with one resource each is predicted. The result
is positive, indicating that the state is reachable. This means that patients with low
levels of norepinephrine and dopamine, cognitive decline, and bradykinesia have the
potential to return to an active state after undergoing mood regulation. The model
verification shows that this state can be achieved by undergoing transitions t0, t2,
t7 and t8.

Figure 4. The marking generation software

By training machine learning model with a sufficient amount of data, the mod-
els can digitize the connections between places and transitions, thereby achieving
precise reachability prediction for markings. The prediction based on the data sug-
gests that under the condition of relatively low initial markings for norepinephrine
and dopamine levels, after transition t0, the patient’s energy begins to diminish,
and following transition t2, this manifests further as reduced immune function and
decreased vigor. After transitions t7 and t8, with the introduction of emotional
regulation, the patient’s mental state shows a restoration of vitality. Petri nets,
with their intuitive graphical representation, allow us to convert intricate biological
problems into mathematical models, thereby facilitating mathematical analysis and
problem-solving [30].

Finally, we predict whether the randomly generated data outside the label is
reachable, and running the Petri net to verify the correctness of the prediction
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results. After manually running the HLCM model, we found that the predicted
state reachability was accurate. This indicates the strong predictive capability of
our model. A predicted state of 1 signifies that the patient may reach that men-
tal state under the given input conditions. The prediction result is shown in Fig-
ure 5.

Figure 5. Prediction result

4 DISCUSSION

This paper proposes a method that combines Petri nets with Net learning for
modeling and analyzing the hormonal influences in depression. The innovation
of this method lies in integrating the formal modeling capabilities of Petri nets
with the predictive power of machine learning, enabling the modeling and pre-
diction of state transitions in complex systems. The core innovation of this re-
search is the combination and application of these methods. Compared to ex-
isting approaches, such as the analysis of invariants in monoamine hormones in
depression and the multi-factor modeling and analysis of disease evolution by com-
bining Petri nets with machine learning, our research offers the following advan-
tages:

1. These methods typically lack the ability for dynamic prediction via machine
learning, or are limited to binary classification predictions of depression out-
comes. Our research not only focuses on predicting depression outcomes, but
also extends to predicting multiple states.
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2. We have developed dedicated software for generating reachability markings, sup-
porting automated marking generation and prediction, significantly improving
work efficiency.

3. With the help of Net learning methods and self-developed software, we effec-
tively solve the state space explosion problem. The advantages of Petri nets in
dynamic modeling and system analysis enable us to break through traditional
classification problems and explore interactions within complex physiological
mechanisms.

However, our research has not fully considered external environmental factors
(such as weather, social activities, and lifestyle) and has not fully leveraged multi-
modal data and large-scale data sources.

In conclusion, this method offers a different perspective for the use of artificial
intelligence in depression treatment research. Although there are still many areas for
improvement, it has demonstrated the potential of Petri net analysis techniques in
predicting the treatment effects of depression through machine learning. Therefore,
further research and exploration in this field are crucial.

5 CONCLUSION

The main contribution of this paper is to apply machine learning to the medical field
of depression, and predict the state of patients through the method of reachability
marking, which can reduce unnecessary medical examination and treatment, thus
reducing medical costs and improving the efficiency of medical services. The HLCM
model reveals the changes in physical state triggered by low norepinephrine and
low dopamine levels, and explores the positive effects of mood regulation on patient
recovery.

Additionally, this paper propose a framework regarding depression, which en-
hances the clarity and visualization of the disease’s evolution process and method
usage. Combined with the predictive ability of machine learning, this study broad-
ens the application of intelligent technology in the medical field and advances the
understanding of the treatment mechanism of depression. However, there are some
aspects that require improvement. In the future, we intend to enhance the accu-
racy of the model to accurately represents the real impact of low dopamine and
norepinephrine levels on patient states, and to validate whether the model covers
all pertinent biochemical reactions and pathways. Furthermore, we will explore
utilizing similar dynamic analysis methods to conduct more thorough research on
Petri net models, thereby enhancing the model’s comprehensiveness and reliabil-
ity.
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