
Computing and Informatics, Vol. 44, 2025, 983–1008, doi: 10.31577/cai 2025 4 983

PERSONALIZED LEARNING PATH
RECOMMENDATION BASED ON LEARNER PROFILE
AND KNOWLEDGE GRAPH

Xin Xie, Xiangyang Feng

School of Computer Science and Technology
Donghua University
Shanghai, China
e-mail: xiexin 0920@163.com, fengxy@dhu.edu.cn

Abstract. E-learning is increasingly popular because it allows learners to freely
choose their class times and locations. However, traditional E-learning platforms
face issues of information overload and fragmented resources. The proposition of the
concept of personalized learning has effectively alleviated these problems. However,
current personalized learning recommendation methods fail to comprehensively and
systematically address learners’ needs. To solve this issue, this paper proposes
a learning path recommendation method based on learner profiles. First, by col-
lecting learners’ personal information, learning history, and behavior data, a learner
profile is established considering multiple aspects. Then, generating a path eval-
uation function for learners from the profile. Using the Ant Colony Optimization
algorithm, the most suitable personalized learning path for the learner’s needs is
searched within the knowledge graph. Experimental results demonstrate that the
personalized learning path recommendations generated by our algorithm meet ex-
pectations and achieve the best overall performance in comparative experiments.
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1 INTRODUCTION

With the widespread adoption of the “Internet+Education” model and the close
integration of big data and artificial intelligence technologies, the online education
industry has experienced significant growth, accumulating a substantial amount
of valuable data in the process. MOOC, which stands for Massive Open Online
Courses, saw a pivotal year in 2011 when the Stanford University offered a free
course titled “Introduction to Artificial Intelligence”, attracting 160 000 registrants
from around the globe. Shortly thereafter, Udacity, Coursera, and edX, the launch of
three major online course platforms which marked the participation of over a dozen
world-renowned universities, establishing MOOCs as a globally popular educational
model. In this educational context, online learning platforms, unrestricted by time
and space, have become increasingly favored by learners for their convenience, free-
dom, and openness [1]. During the isolation periods of the pandemic, many uni-
versities adopted MOOC-based online teaching, allowing students to choose their
study time and location independently [2]. Additionally, students could repeatedly
review knowledge points they found challenging, thus addressing the limitation of
single time teaching in traditional offline classrooms.

Despite the numerous advantages of online learning, it also presents new chal-
lenges. In most online education platforms, only a single learning path is provided
to learners. This has resulted in less than 10% of learners persisting through to
the end of their courses [3]. A survey conducted on 50 students using MOOCs in-
dicated that over 80% of them felt that the course content did not vary according
to their different learning styles, leading to a lack of content that suited their in-
dividual learning preferences [4]. Another study, which surveyed 94 staff members
at Poland’s largest national teacher-training university, found that over 50% of the
respondents were either uncertain or disagreed with the notion that current online
learning facilitates personalized education [5].

Firstly, learners need to spend considerable time and effort selecting appropriate
educational resources, leading to information overload [6]. Secondly, most online
education platforms lack personalized guidance and feedback for learners, resulting
in feelings of isolation and confusion, and thus making it difficult for learners to stay
motivated. Furthermore, the fragmented, unsystematic, and generalized nature of
online learning resources [7] makes it challenging for learners to build a coherent
knowledge system, thereby compromising optimal learning outcomes. Additionally,
the current design of educational programs often centers around the teacher [8],
relying heavily on the individual teaching experience of educators. This reliance
leads to significant disparities in teaching effectiveness among teachers with varying
levels of experience. Therefore, it is crucial to consider the personalized needs of
students and recommend suitable learning materials and resources [9].

The concept of digital education has proposed new solutions to the challenges
of online learning. It emphasizes a student-centered approach, utilizing technologies
such as data mining and artificial intelligence to effectively analyze students’ learning
characteristics. By identifying content that meets learners’ personalized needs from
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a vast array of learning resources, digital education provides students with tailored
learning plans. This approach can enhance learning efficiency and the utilization
rate of online platforms [10], thereby overcoming the barriers and limitations of
traditional online education.

Regarding personalized learning, some researchers have already considered dif-
ferent learner characteristics to customize personalized learning plans. Joseph et
al. [11] and Klašnja-Milićević et al. [12] recommend resources based on the highest
similarity scores derived from FSLSM learning styles. Kaur et al. [13] described
learner profiles from three aspects: personal details, educational details, and knowl-
edge level. Based on learners’ self-assessments, they can upload their resume PDF
files to the website, which are then parsed using the Affinda API and stored in
a database. However, relying solely on learners’ self-assessments to obtain their
knowledge background is one-sided. Zhang et al. [14] argue that besides considering
the relationship between learners and resources, factors such as social trust also influ-
ence personalized recommendation results. Wang et al. [15] administer tests to new
users upon registration to gather information about their learning ability and inter-
ests, but this method does not consider the accuracy of learners’ self-perceptions or
the variability of their interests over time. Lin et al. [16] proposed a self-supervised
reinforcement learning method based on semantic relationships in knowledge graphs
and learners’ knowledge structures to guide course recommendations, enhancing the
accuracy and interpretability of the recommendations. Zhang [17] designed a stu-
dent interest model, collecting student behavior data and using collaborative filtering
to analyze their knowledge mastery, with feedback provided to teachers. However,
the recommendation results of collaborative filtering depend on historical data, and
sparse data can degrade recommendation quality. Liu [18] improved the traditional
collaborative filtering’s unidirectional influence problem by enhancing data density
through increasing the influence sets within online learning communities.

This paper proposes a personalized learning path recommendation method based
on learner profiles. The learner profile modeling is completed from three aspects:
knowledge background, learning needs, and learning styles, using data analysis
and mining techniques to deeply understand the characteristics of learners. Subse-
quently, different weighted coefficients are generated based on the profiles of different
learners to obtain path evaluation criteria. Using heuristic algorithms, the optimal
current path is iteratively identified in the knowledge graph to achieve personal-
ized recommendations. The goal is to enhance learners’ learning effectiveness and
motivation, helping them better select and acquire learning paths that meet their
needs and interests, thus fulfilling their personalized learning requirements. Experi-
ments demonstrate that learners expressed high satisfaction with our algorithm, and
among other baseline algorithms, the comprehensive performance of our algorithm
was the best.

The rest of the paper is organized as follows. Section 2 introduces related re-
search on learner profiles and personalized learning path recommendations. Section 3
describes the relevant terminology definitions and system framework of this paper.
Section 4 presents the modeling process of learner profiles and the details of the
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path recommendation algorithm. Section 5 conducts experiments and evaluations
on the proposed recommendation algorithm. Section 6 provides conclusions and
future work directions.

2 RELATED WORKS

Studies have shown that knowledge graphs can enhance the interpretability of the
recommendation process [19]. In previous research on personalized learning path
recommendations, researchers’ perspectives can be summarized into the following
three aspects:

2.1 Learner Preferences

Zhu et al. [20] proposed a multi-constraint learning path recommendation model
based on a linear weighting formula. This study addressed the key factors often
overlooked by existing learning path recommendation algorithms, such as learning
scenarios, fragmented learning time, and fine-grained learning resources. There-
fore, based on the analysis of the characteristics of learners and resources, the
algorithm proposed eight learning paths corresponding to four different learning
scenarios, considering constraints such as learning frequency, learning intervals, at-
tention to knowledge units, and centrality, to provide the optimal learning path
for learners in specific scenarios. Shi et al. [21], aiming at the semantic singu-
larity of existing knowledge graph-based learning path recommendations, designed
a multi-dimensional knowledge graph framework. Based on this framework, learn-
ing objects are categorized into three types: fundamental knowledge, algorithms,
and tasks, with six constraints on the relationships between learning objects. From
the input queries of learners, target learning objects are extracted, and all possible
learning paths are identified using greedy search starting from the target learning
objects. Then, considering the novelty, authority, and popularity of the research,
a weighted method is used to constrain features, taking into account different learn-
ers’ preferences for different paths. Liang et al. [22] focused on user-centric reasoning
by utilizing reinforcement learning and graph convolutional networks to recommend
videos, courses, and learning directions, deriving interpretive paths from learners to
the recommended entities.

2.2 Learning Ability and Learning Effectiveness

Zhou et al. [23] identified suitable learning path categories for learners through
similarity clustering and then used LSTM networks to predict learning outcomes,
recommending paths with the best learning effects. This approach requires a large
amount of prior learning data to mitigate the cold start problem. Wang et al. [15]
clustered learners to form a repository of learner models, recommending learning
paths with the fewest knowledge nodes for users with strong learning abilities. Yun
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et al. [24] proposed an offline reinforcement learning algorithm called Doubly Con-
strained Deep Q-learning Network, which effectively enhances learning outcomes.
Han et al. [25] improved the traditional collaborative filtering algorithm by incor-
porating the correlation of learning skills, recommending courses of appropriate
levels to learners. Lang and Wang [26], addressing the shortcomings of existing
classroom education in student learning, proposed a personalized knowledge point
recommendation system model named Knowledge Graph-based Personalized Know-
ledge Points (KG-PKP). This model innovatively constructs an evaluation equation
using accuracy rates, response times, and question types from answer records to as-
sess students’ mastery of knowledge points. Jiang et al. [27] described a knowledge
point difficulty model and established a knowledge point mastery model based on
learning behaviors and exam scores. These two models were used as input parame-
ters to recommend dynamically personalized learning paths.

2.3 Balancing Preferences and Effectiveness

Xie et al. [28] proposed an algorithm that designed two model strategies. The
first is a group analysis strategy, where a prototype is generated for each mem-
ber within the group, then different learning paths are customized and integrated
to form an optimized group learning path. The second is a prototype aggregation
strategy, which first generates an overall group prototype, i.e., an overall learning
path, and then allocates paths based on the preferences and knowledge of group
members. Additionally, the algorithm defines upper and lower time boundary pa-
rameters, considering whether the group has sufficient time to complete the task.
If time is ample, the algorithm prioritizes individual learning preferences of group
members. If time is limited, it considers the pre-knowledge levels of each group
member to maximize learning efficiency. If the time available is between the upper
and lower bounds, multiple learning methods are considered. However, this algo-
rithm requires a large amount of user interaction data, and the cold start problem
cannot be avoided. Furthermore, due to the complexity of the model, it cannot sup-
port systems that require rapid responses. Ma et al. [29] proposed a multi-behavior
learner modeling approach that considers aspects such as academic background,
learning scenarios, learning styles, and preferences. They designed a cascading deep
Q-network with a two-level reward function to enhance the accuracy of recommen-
dation behaviors.

Some researches have considered learning path recommendations from other per-
spectives. Schwab et al. [30] proposed a visual learning platform supporting both
linear and nonlinear learning plans from the perspectives of teachers and students.
This platform utilizes concept maps to accommodate different learning styles. Zhang
et al. [31] addressed the sparsity of interaction data in MOOC courses by iterating
user historical data into a course graph, thereby obtaining course recommenda-
tion results. Diao et al. [32] used association rule mining to uncover connections
between erroneous concepts. They then employed topological sorting to identify
complete learning paths and subsequently derived weak concept paths. Saito and
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Watanobe [33] generated paths based on learners’ submission history logs. They
created ability graphs for each learner and calculated similarities, using LSTM net-
works to predict path sequences. Xu and Wong [34] proposed a multi-feature LDA
recommendation model based on educational image content, using Transformer and
LSTM to deeply understand the relationships between various features in educa-
tional images, providing path recommendations for learners.

3 PROBLEM STATEMENT

This section primarily involves defining specific terms mentioned in the paper and
explaining several sub-problems addressed in the research.

3.1 Definition of Terminology

To better explain the content of the article, the following definitions are provided
for key terms:

Learner Profile (LP): A noun composed of a series of attributes used to describe
learner information.

Knowledge Element (KE): The basic unit of knowledge learning.

Knowledge Graph (KG): A heterogeneous graph consisting of knowledge ele-
ments and relationships. In this paper, it is used as the basis for finding person-
alized learning paths that fit the learner profile.

Knowledge Exercises Set (KES): A collection of exercises that a learner has
answered, where each exercise corresponds to a knowledge element. Multiple
exercises can belong to one knowledge element. The collection of these exercises
grouped by knowledge elements for a learner is termed as KES. The percent-
age of correctly answered exercises in KES is called Knowledge Exercises Set
Accuracy as KESacc. Specifically, the knowledge exercises set of student a for
knowledge point k1 can be denoted asKES(a, k1) and its accuracy is represented
as KESacc(a, k1).

Mastered Knowledge (MK): The set of knowledge elements that a learner has
proficiently mastered. For any set of exercises corresponding to a knowledge ele-
ment, if a learner’s accuracy exceeds 80%, that knowledge element is considered
mastered by the learner.

Weak Knowledge (WK): The set of knowledge elements that a learner has not
fully mastered or has not mastered at all. Similarly, for any set of exercises
corresponding to a knowledge element, if a learner’s accuracy is below 50%,
that knowledge element is considered weak for the learner.

Learning Path (LP): A sequence of knowledge elements studied to master WK.

Learning Need (LN): Refers to how a learner chooses to complete the learning
of MK. Learners have different learning needs in different learning scenarios; for
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example, during regular review, learners may prefer to thoroughly learn content,
while during exam preparation, they may want to review more content in less
time.

Learning Style (LS): In this paper, information perception and comprehension
dimensions extracted from the Felder-Silverman learning style model [35] are
considered. Specifically, if a student S prefers learning factual or real-life scenario
courses and is good at grasping the framework of learning content, it can be
preliminarily determined that they belong to the sensing type in the information
perception dimension and the global type in the information comprehension
dimension.

3.2 Main Work

Through constructing learner profiles and analyzing learners’ characteristics, and
based on these profiles, providing learners with personalized learning paths that
best fit their needs and preferences, thereby enhancing their learning effectiveness
and motivation, is the primary focus of this paper. The following briefly outlines
several key components of the system described in this paper.

1. Education Knowledge Graph Framework Design: Here, we define the en-
tity types, relationship types, and relevant attributes of each knowledge element
for the knowledge graph. These will be used for subsequent path finding and
path evaluation calculations as detailed in Table 1 and Table 2.

2. Identification of Learner’s Mastered Knowledge (MK) and Weak
Knowledge (WK): Utilizing the exercise-knowledge element association ma-
trix and the learner’s historical exercise response records, we derive the learner-
knowledge element mastery matrix. This allows us to determine the learner’s
MK and WK, facilitating the identification of starting and ending points for
path recommendation optimization.

3. Learning Style Computation: From the learner’s online interaction record
data, we extract useful information for experimental behavior pattern definition
and abstraction into learning styles.

4. Determination of Path Feature Weights and Path Evaluation Func-
tion: The learner profile consists of MK and WK, LN, and LS. Based on this
profile, different weights are assigned to path nodes, forming diverse path eval-
uation functions to establish the foundation for finding optimal scoring paths.

5. Path Generation Algorithm: This paper employs a depth-first search strat-
egy based on the education knowledge graph. Starting from the path’s origin, the
algorithm sequentially explores neighboring nodes, maintaining a visited node
set, and selecting an unvisited neighboring node based on pheromone matrices
and roulette wheel selection as the next path node. This process continues until
reaching the path’s endpoint.
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6. Personalized Learning Path Recommendation: Using ant colony algo-
rithm, the learner’s WK serves as the target knowledge points for path plan-
ning. We conduct path searches based on the knowledge graph, evaluate the
current path score according to the learner’s path evaluation function, update
pheromone matrices, and aim to recommend the most suitable path in a short
timeframe to achieve optimal recommendation outcomes.

7. Experimental Evaluation: On one hand, we adopt an external evaluation
method where learners rate the quality of our paths and validate the accuracy
of learning styles. On the other hand, we compare the practical effects of our
algorithm with other algorithms based on path scores and time expenditures.

Entity Type Description

Concept (CON) Some basic concepts and definitions

Structure (STR) Specific types or organizational forms of data

Algorithm (ALG) Methods and procedures designed based on specific
structural operations

Apply (APP) Practical application problems addressed by certain
algorithms or structures

Table 1. Knowledge graph entity types

Entity Type Description

PageRank Importance of entities in KG

Difficulty Difficulty level of KE, ranging from 1 to 5

Type Entity type of KE

TimeCost Learning time of KE

Level The hierarchy level of KE in the tree diagram

Table 2. Attributes of knowledge element entities

4 SYSTEM ALGORITHM DESIGN

In this section, two main tasks are undertaken. Firstly, modeling of learner profiles
is conducted based on collected student data, considering LS, LN, MK and WK.
Secondly, personalized learning path recommendations are formulated based on dif-
ferent learner profiles, using knowledge graphs to establish varied path evaluation
criteria.

4.1 Learner Profile Modeling

4.1.1 Learning Style

The Field-Silverman [35] learning style scale was chosen as the research tool in this
study. By analyzing learners’ behaviors across different dimensions, we inferred
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their distinct LS. As shown in Table 3, this study selected the information percep-
tion and information understanding dimensions from the Field-Silverman learning
style scale. The dimensions of information input and information processing were
excluded because this study focuses solely on path recommendation for knowledge
content, without considering the form of knowledge acquisition (learning from books
or videos). Building upon the behavior pattern descriptions in literature [36], we
refined these descriptions to better align with the recommendation algorithm used
in this study. In Table 3, the “+” and “-” symbols indicate that the behavior char-
acteristic makes the learner’s result lean more towards the left or right side of the
dimension, respectively. For instance, in the Information Perception dimension, if
a learner engages more frequently in studying algorithms and applying KE, they
are more inclined towards the sensing style. Conversely, if they prefer studying
conceptual types of KE, their results lean towards the intuitive style.

In Table 3, we can determine that each behavioral characteristic of learners falls
into a high (H), medium (M), or low (L) range. For a given behavioral pattern Pi

of a learner l, we make the following quantifications for ease of calculation:

P l
i =


1, if P l

i = H,

0, if P l
i = M,

−1, if P l
i = L.

(1)

The quantification of LS for learner l is calculated as follows, where n represents
the total sum of behavioral patterns in that dimension. If the result for learner l in
the information perception dimension is the right style, then according to Table 3,
the learner is classified as an intuitive type:

Vl(LS) =

∑n
i=1 P

l
i

n
, (2)

LS =


right style, ifVl(LS) ∈ [−1,−1/3],

balance style, ifVl(LS) ∈ (−1/3, 1/3),

left style, ifVl(LS) ∈ [1/3, 1].

(3)

4.1.2 Learning Need

For different learning scenarios, such as studying in a library or during fragmented
time, learners might have varying preferences. For instance, during regular review
sessions, learners may prefer a thorough understanding of the content, while before
exams, they might aim to review as much knowledge as possible in less time. Based
on this consideration, this study proposes three different LN: highest learning effi-
ciency, key path (including more nodes with higher degrees), and minimum learning
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content (the smallest number of knowledge points). More detailed calculation rules
will be provided in Section 4.2.

4.1.3 Mastered Knowledge and Weak Knowledge

Through basic natural language processing methods and expert proofreading, we
can obtain the exercise-KE association matrix M . Each row represents which KE is
associated with exercise e, and each column represents all exercises associated with
knowledge element k. Each row can have only one ‘1’, while each column can have
multiple ‘1’s. This is represented as follows:

k1 k2 . . . km

e1
e2
...
en


1 0
1 0

· · · 0
0

...
. . .

...
0 1 · · · 0

 (4)

Next, based on the answer record Ea of learner a, we can generate KES (a, kt)
for each knowledge element kt. This allows us to derive the learner’s MK and WK.
The detailed process is provided in Algorithm 1.

Algorithm 1 Generate learner’s MK and WK set.
MK ,WK = getMKandWK (M,Ea)

Require: Exercises-Knowledge Point Matrix M ; Learner a’s exercise records Ea;
Ensure: Learner a’s MK ; Learner a’s WK ;
1: for all ei ∈ Ea do
2: kj = getKnowledgePoint(M, ei)

// Get the knowledge points kj associated with exercise ei
3: KES (a, kj).add(ei)

// add exercise ei to the knowledge exercise set of knowledge kj
4: end for
5: for all KES (a, kt) ∈ a do
6: if KES acc(a, kt) ¿ 0.8 then
7: MK .add(kt) // add kj to MK
8: end if
9: if KES acc(a, kt) < 0.5 then

10: WK .add(kt) // add kj to WK
11: end if
12: end for
13: return MK ,WK
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Feature Related Parameters Weight

Number of Algorithm and Apply KE f1 = count(KType=ALG or APP) w1

Number of Concept KE f2 = count(KType=CON) w2

Number of High Level KE f3 = count(KLevel=High) w3

Number of Low Level KE f4 = count(KLevel=Low) w4

Reciprocal of KE’s Difficulty f5 =
∑(

1
KDifficulty

)
w5

Reciprocal of KE’s Time Cost f6 =
∑(

1
KTimeCost

)
w6

PageRank f7 =
∑

(KPageRank) w7

Number of KE in the LP f8 =
∑

(K) w8

Table 4. Path feature

4.2 Personalized Learning Path Recommendation

The previous section explained the process of profile modeling. This section relies
on these profiles to customize personalized learning paths for different learners. The
specific work will be described in two parts: defining the path evaluation function
and outlining the path recommendation algorithm.

4.2.1 Path Evaluation Function

Once MK and WK are determined, we can establish the starting and ending points
of a path. However, within a complex knowledge graph structure, there may be
multiple reachable paths between two entities. To achieve personalized paths based
on learner profiles modeled earlier, we quantify this using a path evaluation function
tailored to different learners.

Building upon weighted methods outlined in [21] for quantifying different fea-
tures, this study selects eight features from both learning style (objective) and learn-
ing needs (subjective) aspects to implement the evaluation function. For any given
path P, its features are detailed as shown in Table 4.

Considering learning styles, the combination of learning styles derived from the
two dimensions in Table 3 results in 9 possible combinations. The allocation of
weights for these combinations is detailed in Table 5, where each row represents the
weight distribution for the respective combination, with all unmentioned weights set
to zero.

Considering learning needs, we provide learners with 3 different learning scenar-
ios to choose from, as shown in Table 6. Each row specifies the weight distribution
for the respective scenario, with all unmentioned weights set to zero.

According to the weighted algorithm, the scoring formula for any path score Pi

is represented as:

Pi = fGaussian(path length)

n∑
j=1

(wj ∗ fj (Pi)). (5)
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Where wj represents the values corresponding to Table 5 and 6, fj denotes the
relevant parameters from Table 4, and fGaussian(path length) signifies the Gaussian
decay function, which attenuates the path score as the path length increases beyond
a threshold. This is because longer learning paths are not necessarily better. It is
as follows specifically:

fGaussian(path length) = e−
(path length−max length)2

2σ2 . (6)

4.2.2 Learning Path Recommendation Algorithm

The algorithmic model structure of this paper, as shown in Figure 1, requires in-
putting the learner’s LS, LN, MK and WK, along with the knowledge graph G. The
model outputs the learning path most compatible with the learner.

Recommend 

learning path
Learner’s 

learning 

record

Exercises

Behavior

Mastered Knowledge

Learner profile model

Weak Knowledge

Learning style

Knowledge

graph G

Path

start

Path

end

Learning need

Utilize Ant Colony 

Optimization to 

iteratively find 

the best score path

Using depth-first 

search to find 

connected paths 

Path evaluation 

function

Figure 1. The structure of the learning path recommendation model

Learning Style Weight

Sensing+Global w1 = 0.5, w3 = 0.5

Sensing+Sequential w1 = 0.5, w4 = 0.5

Intuitive+Global w2 = 0.5, w3 = 0.5

Intuitive+Sequential w2 = 0.5, w4 = 0.5

Balanced+Global w1 = 0.25, w2 = 0.25, w3 = 0.5

Balanced+Sequential w1 = 0.25 w2 = 0.25, w4 = 0.5

Sensing+Balanced w1 = 0.5, w3 = 0.25, w4 = 0.25

Intuitive+Balanced w2 = 0.5, w3 = 0.25, w4 = 0.25

Balanced+Balanced w1 = 0.25, w2 = 0.25, w3 = 0.25, w4 = 0.25

Table 5. Learning styles and weights correlation

Here are the detailed algorithm descriptions: In Section 4.1, we have already
determined the learner’s LS, LN, MK, and WK. Within MK and WK, the learner
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Algorithm 2 Random learning path generation.
p = randomPathGeneration(G, nstart, nend)

Require: Knowledge graph G; The path start node nstart; The path end node nend;
Pheromone array of the Graph Ap;

Ensure: Random path p;
1: p.add(nstart) // Add the path start to p
2: ncurrent = nstart // Set nstart to the current node
3: while ncurrent! = nend do
4: N = getNeighbours(ncurrent) // Select a set of neighbor nodes that are not in

the path and have not been visited
5: nnext = choiceNextNode (N,Ap) // According to Ap and roulette wheel

method selecting a node from N as the next node to be visited
6: p.add(nnext) // Add nnext to p
7: ncurrent = nnext // Set nnext as ncurrent of the next loop
8: end while
9: return p

Algorithm 3 The highest score learning path caculation pb.
pb = highestScorePathCaculation(G,LS ,LN ,MK ,WK , Ap)

Require: Knowledge graph G; Learner’s learning style LS ; Learner’s learning need
LN ; Learner’s mastered knowledge set MK ; Learner’s weak knowledge set WK ;
Pheromone array of the Graph Ap;

Ensure: The highest score learning path pb;
1: initParams() // Initializes Nants, Ap, evaporationRate, iterationTime of the ant

colony optimization algorithm
2: nstart, nend = choiceStartAndEnd(MK ,WK );

// Choice start and end node in MK and WK
3: pbest, sbest = None, 0 // Initializes pbest and sbest
4: for i in range(iterationTime) do
5: for j in range(Nants) do
6: pcurrent = generateRandomPath(G,nstart, nend, Ap)

// Generate a new path between nstart and nend

7: scurrent = caculatePathScore(pcurrent,LS ,LN );
// Caculate the score of pnew

8: if scurrent ¿ sbest then
9: pbest = pcurrent, sbest = scurrent;

10: end if
11: updatePheromoneEvaporation(Ap)
12: updatePheromoneDeposition(Ap)
13: end for
14: end for
15: return pbest
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Learning Need Weight

Highest Learning Efficiency w5 = 0.5, w6 = 0.5

Main Path w7 = 1

Minimal Learning Time w8 = 1

Table 6. Learning needs and weights correlation

can freely select two nodes as the starting and ending points for path recommenda-
tion, denoted in Algorithm 3 by the function choiceStartAndEnd(MK, WK). Subse-
quently, based on the learner’s LS and LN, referencing Tables 4, 5 and 6, we derive
the learner’s feature set and weights. Finally, this process yields the personalized
path evaluation criteria for the learner.

Starting from the node nstart and using depth-first search, we explore connected
paths to the endpoint nend. Beginning at nstart, we sequentially search neighboring
nodes, maintaining a set of visited nodes, and filter out unvisited neighbors not yet
on the path. These neighbors form set N . For each node in N , we calculate the
ratio of its pheromone in the list Ap to the total pheromone sum in N . This ratio
represents the probability of selecting the node, where nodes with higher pheromone
levels have a greater chance of being chosen as the next node in the path. Using
a roulette wheel selection method, one node is chosen iteratively as the next node
in the path until reaching nend. For detailed algorithm flow, refer to Algorithm 2.

Algorithm 3 provides the overall framework of the algorithm. Using ant colony
optimization, parameters such as the number of ants Nants, pheromone lists Ap

for each node, evaporationRate, and iterationTime are initialized. During each
iteration, paths accessible to all ants are generated, evaluated based on the learner’s
path evaluation criteria (5), and continually update the local optimal path. After all
ants have completed their traversal in each round, the pheromone evaporation and
deposition are updated. Upon completion of iterations, the current optimal solution
pb is outputted.

5 EXPERIMENTAL EVALUATION

In this section, we employed a series of experimental schemes to validate the fea-
sibility and effectiveness of the system. Firstly, we introduced the datasets and
preparatory work required for the experiments. Secondly, a survey questionnaire
was distributed to investigate the effectiveness of path recommendations. Finally,
we compared our proposed algorithm with other algorithms.

5.1 Dataset and Experimental Procedure Description

In this paper, taking the Data Structures course for Computer Science as an example,
we collected a total of 418 entities and 487 relationships by combining data from
Wikipedia and textbook materials. If learning knowledge node B requires knowledge
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node A as a prerequisite, there will be a relationship from A to B. The local structure
of the knowledge graph is shown in Figure 2.

Tree

Node
Binary

Tree

Forest Operations of 

Binary Tree

Complete Binary Tree

Full Binary Tree

Threaded Binary Tree

Balanced Binary Tree

Preorder Traversal of Forest

Postorder Traversal of Forest

Huffman Tree

Root Node

Leaf Node

Parent Node

Child Node

Sibling Node

Binary Tree Delete NodeBinary Tree Find Node

Binary Tree Traversal Binary Tree Insert Node

Figure 2. The part of the data structure knowledge graph

First, we designed a survey questionnaire consisting of three main parts. The
first part gathers basic information about the learners, the second part assesses
the learners’ learning styles, and the third part presents learning paths generated
by the system for different profiles, which the learners then evaluate. We set five
levels of satisfaction for the path recommendations: 1 represents very dissatisfied,
2 represents dissatisfied, 3 represents neutral, 4 represents satisfied, and 5 represents
very satisfied.

For the controlled experiment, we used both the Depth-First Search algorithm
and Dijkstra’s algorithm to compare the path generation scores within the same
knowledge graph.

5.2 Analysis of Experimental Results

The experimental subjects were students majoring in computer science who had
taken a data structures course. We received a total of 129 valid questionnaires.
Figure 3 a) and Figure 3 b) present the basic information of these learners. From
Figure 3 a), we can see that males accounted for two-thirds of the total number of
participants, while females made up one-third. And these students came from 18
different provinces.
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Gender

Male Female

34.1% 65.9%

a) Learners’ gender information
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Shaanxi

Provincial distribution

b) Learners’ provincial information

Additionally, we surveyed the learners’ exam scores in the data structures course
and mapped these scores to learning abilities. The full score is 100 points, with
the learning ability categorized as follows: scores below 60 are mapped to learning
ability 1, scores from 61–70 to learning ability 2, scores from 71–80 to learning
ability 3, scores from 81–90 to learning ability 4, and scores from 91–100 to learning
ability 5. The statistical results are shown in Figure 3 c). As can be seen, except for
a very small number of students with lower learning abilities, the learning abilities
are evenly distributed between 3 and 5.
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Figure 3. Overview of learners’ information
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In the second part of the questionnaire, we used 12 different multiple-choice
questions to test the learners’ self-perception of their learning styles. The first
6 questions were designed to test the information perception dimension, while the
latter 6 questions were aimed at the information understanding dimension. Fig-
ure 3 d) presents the distribution results of learning styles. From the figure, in the
information perception dimension, the majority of students identified themselves as
sensing types. This indicates that most students believe they are better at learning
factual content but are less adept at innovative thinking. In the information under-
standing dimension, the data for global, sequential, and balanced types are evenly
distributed, indicating a relatively balanced distribution.

Figure 4. The part of the learners’ behavior dataset

We collected behavioral data from students on the OJ website and used the
pandas library in Python for data cleaning. We filtered out learners with low ac-
tivity levels on the website and irrelevant attributes (part of the data is shown in
the Figure 4), obtaining the necessary behavioral features for our study. The final
dataset includes online behavior data from 108 learners. Based on the problem-
knowledge element association matrix and the video-knowledge element associa-
tion matrix, we assessed the learners’ mastery of knowledge points. From this,
we identified the attributes required for calculating learning styles, which include:
learningFrequencyOfALG, learningFrequencyOfAPP, learningFrequencyOfCON, to-
talLearningFrequency, onlineTime, timeOfExercise, navigationClicks, outlineViews,
and learningFrequencyOfLeaves.

Using the data in Table 3, we converted these into the actual learning styles and,
based on the learners’ self-reported learning needs, generated personalized learning
paths for them. According to the learners’ self-perceived learning styles, Table 8
presents the accuracy of learning styles calculated from actual behavior and the
average satisfaction with the generated paths. Over two-thirds of the learners’ self-
perceived learning styles align with their actual performance styles, and the majority
of learners show at least one dimension of consistency between self-perception and
actual performance. The average satisfaction score is 3.65, indicating that most
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learners are satisfied with the path recommendations. Table 7 lists three examples
of the recommended learning paths.

Learning
Style

Learning
Need

Start
Node

End
Node

Path Result

Path 1
Sensing
Global

High
efficiency

Singly
Linked
List

Circular
Queue

Singly Linked List,
Linked List,
Linear List, Queue,
Sequential Queue,
Circular Queue

Path 2
Intuitive
Sequential

Critical path Tree
Huffman
Coding

Tree, Forest,
Conversion between
Forest and Binary Tree,
Binary Tree,
Huffman Tree,
Huffman Coding

Path 3
Balance
Balance

Minimal
learning
time

Graph
Dijkstra’s
Algorithm

Graph, Weight,
Network,
Shortest Path,
Dijkstra’s Algorithm

Table 7. Some examples of path recommend result

Perceive
Information Accuracy

Organize
Information Accuracy

Total
Accuracy

Average
Score

91.16% 86.51% 77.21% 3.65

Table 8. Learning style accuracy

In the controlled experiments, we compared our proposed ACO algorithm with
DFS and Dijkstra algorithms over 5 trials, as illustrated in Figure 5 a) and Fig-
ure 5 b). From Figure 5 a), it is evident that DFS and ACO achieve similar path
scores, where higher scores indicate better alignment with learner profiles. In con-
trast, Dijkstra algorithm exhibits instability, failing to find paths in two out of the
five experiments, and yielding lower scores in the remaining three due to generating
overly lengthy paths leading to score degradation.

Figure 5 b) presents the time costs for these algorithms to find paths. Dijkstra
generates paths in a single pass, allowing minimal time expenditure but with subop-
timal effectiveness as it cannot iteratively update based on path evaluations. DFS,
while capable of identifying the optimal path similar to ACO, incurs variable time
costs due to its undirected search, necessitating repeated traversal of reachable paths
to find higher-scoring alternatives. ACO consistently finds optimal paths within ap-
proximately 10 seconds, demonstrating significantly higher efficiency compared to
DFS.
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Figure 5. Recommend experiments result
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5.3 System Presentation

Figure 6 shows the visualization pages of our research system. In the profile page,
students can view the latest updates on their learner profile, including options to
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b) Learning page of the system

Figure 6. Partial display of system pages
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modify certain information. In the learning page, students can independently choose
weak knowledge points to study. The system incorporates a digital human instructor
to explain the knowledge points, and students can also ask questions.

6 CONCLUSION

This paper proposes a learning path recommendation algorithm based on student
profiles, modeling profiles across learning style, learning needs, and knowledge mas-
tery. It defines distinct evaluation criteria for different profiles and utilizes ACO on
a subject knowledge graph to discover the highest scoring paths for recommendation.
Our algorithm demonstrated superior comprehensive capabilities in experiments, re-
ceiving positive feedback from learners.

In the future, we will focus on finer-grained profile design, considering dynamic
updates to profiles. Additionally, it aims to gather more learner data to enhance
evaluation systems and system development. Exploring additional algorithms will
be pursued to optimize recommendation success rates and efficiency.
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