
Computing and Informatics, Vol. 34, 2015, 185–209

HOW TO DEVELOP PERVASIVE SOCIAL
APPLICATIONS WITH THE SAPERE MIDDLEWARE

Gabriella Castelli, Marco Mamei
Alberto Rosi, Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria,
University of Modena and Reggio Emilia
Via Amendola 2
42122 Reggio Emilia, Italy
e-mail: {gabriella.castelli, marco.mamei, alberto.rosi,

franco.zambonelli}@unimore.it

Abstract. SAPERE (“Self-Aware Pervasive Service Ecosystems”) is a general
framework to support the decentralized execution of self-organizing pervasive com-
puting services. In this paper we present the rationale underlying SAPERE and
its reference conceptual architecture. Following, we sketch the middleware infras-
tructure of SAPERE and detail the interaction model implemented by it, based
on a limited set of “eco-laws” allowing general-purpose distributed self-organizing
schemes. Finally, we show how a social application can be easily implemented
exploiting such an infrastructure and report on performances.

Keywords: Pervasive computing, middleware, self-organization

1 INTRODUCTION

Pervasive computing technologies are notably changing the ICT landscape, letting us
envision the emergence of an integrated and dense infrastructure for the provisioning
of innovative general-purpose digital services. The infrastructure will be used to
ubiquitously access services for better interacting with the surrounding physical
world and with social activities occurring in it.

To support the vision, a great deal of research activity in pervasive comput-
ing has been devoted to solve problems associated to the development of effective

186 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

pervasive service systems including: supporting self-configuration and context-aware
composition; enforcing self-adaptability and self-organization; and ensuring that ser-
vice frameworks can be highly-flexible and long-lasting [22]. Unfortunately, most of
the solutions so far proposed are in terms of “add-ons” to be integrated in existing
frameworks [2]. The result is often an increased complexity of current frameworks
and the emergence of a contrasting trade-off between different solutions.

In our opinion, there is need for tackling the problem at its foundation, con-
ceiving a radically new way of modeling integrated pervasive services and their
execution environments, such that apparently diverse issues of context-awareness,
dependability, openness, flexibility, can all be uniformly addressed once, and for
all, via a sound and programmable self-organization approach. This is exactly the
goal of SAPERE [21], which proposes a novel nature-inspired approach to support
the design and development of adaptive and self-organizing systems of pervasive
computing services.

To support such a claim, in this paper, we describe an exemplary pervasive social
application named “In good company” and illustrate how to program it according to
the SAPERE abstractions. More in detail, the “In good company” application is set
in a food court of a shopping mall scenario in which a large number of public displays
provide information to users. In particular, each display aggregates the profiles of the
users nearby in order to compute the average characteristics of the people around.
Users can query the system to identify those places that are frequented by people
sharing similar interests and profiles.

In this context, the contribution of this paper is threefold:

• we present the overall conceptual architecture of the SAPERE approach, and
show how it has been realized in the SAPERE middleware

• we detail the specific approach to distributed self-organizing coordination pro-
moted by SAPERE and discuss how that supports the effective development
and execution of self-organizing pervasive applications

• we describe how to program a social application via the SAPERE framework
providing commented portions of the application code and preliminary perfor-
mance assessment.

The remainder of this paper is organized as follows. Section 2 introduces the
SAPERE approach and sketches its reference architecture. Section 3 details how
such an architecture has been realised in a middleware infrastructure for infras-
tructural and mobile Android devices and presents its API. Section 4 presents the
self-organising approach at the base of SAPERE with the help of coding examples
and Section 6 provides a preliminary performance assessment. Section 7 surveys
the most relevant proposals that, in different areas, are related to the general is-
sue of coordinating and self-organising services in a pervasive environment. Finally
Section 8 offers conclusions.

How to Develop Pervasive Social Applications with the Sapere Middleware 187

2 THE SAPERE APPROACH AND ITS REFERENCE
ARCHITECTURE

SAPERE takes its primary inspiration from nature, and starts from the considera-
tion that the dynamics and decentralization of future pervasive networks will make
it suitable to model the overall world of services, data, and devices as a sort of
a distributed computational ecosystem.

As we can see from Figure 1, SAPERE conceptually architects a pervasive ser-
vice environment as a non-layered spatial substrate, laid above the actual pervasive
network infrastructure. The substrate embeds the basic interaction laws (or eco-
laws) that rule the activities of the system, and it represents the ground on which
components of different species interact and combine with each other (in respect of
the eco-laws and typically based on their spatial relationships), so as to serve their
own individual needs as well as the sustainability of the overall ecology. Users can
access the ecology in a decentralized way to use and consume data and services,
and they can also act as “prosumers” by injecting new data or service components
(possibly also for the sake of controlling the ecology behavior).

For the components living in the ecosystem, which we generically call “agents”,
SAPERE adopts a common modeling and a common treatment. All agents in the
ecosystem (and whether being sensors, actuators, services, users, data, or resources
in general) have an associated semantic representation (in the case of pure data
items, the entity and its representation will coincide), which is a basic ingredient
for enabling dynamic unsupervised interactions between components. To account
for the high dynamics of the scenario and for its need of continuous adaptation,
SAPERE defines such annotations as living, active entities, tightly associated to
the agent they describe, and capable of reflecting its current situation and context.
Such Live Semantic Annotations (LSAs) thus act as observable interfaces of re-
sources (similarly to service descriptions), but also as a basis for enforcing semantic
and context-aware interactions (both for service aggregation/composition and for
data/knowledge management).

The eco-laws define the basic interaction policies among the LSAs of the various
agents of the ecology. In particular, the idea is to enforce on a spatial basis, and pos-
sibly relying on diffusive mechanisms, dynamic networking and composition of data
and services. Data and services (as represented by their associated LSAs) will be
sort of chemical reagents, and interactions and compositions will occur via chemical
reactions, relying on a semantic pattern-matching between LSAs. As it is detailed
later on, the set of eco-laws includes: Bonding, which is the basic mechanism for
local interactions between components, and acts as a sort of virtual chemical bond
between two LSAs (i.e., their associated agents); Spread, which diffuses LSAs on
a spatial basis, and is necessary to support propagation of information and inter-
actions among remote agents; Aggregate, which enforces a sort of catalysis among
LSAs, to support distributed data aggregation; Decay, which mimics chemical eva-
poration and is necessary to garbage collected data.

188 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

Adaptivity in the SAPERE approach will not be in the capability of individual
components, but rather in the overall self-organizing dynamics of the ecosystem. In
particular, adaptivity will be ensured by the fact that any change in the system
(as well as any change in its components or in the context of the components, as
reflected by dynamic changes in their LSAs) will reflect in the firing of new eco-laws,
thus possibly leading to the establishment of new bonds or aggregations, and/or in
the breaking of some existing bonds between components.

Pervasive Environment
(Web, devices and networks)

SAPERE Ecosystem

Users and Prosumers

Use &
Consume

Prosume &
Constrol

LSA

LSA

LSA

LSA

LSA

LSALSA

LSA

LSA

LSA

LSA
Eco-laws

LSA

LSA

LSA

LSA LSA LSA

LSA

LSA

LSA

LSA

Figure 1. The SAPERE reference architecture

3 THE SAPERE MIDDLEWARE AND ITS PROGRAMMING
INTERFACE

In this section we overview how SAPERE applications can be programmed by intro-
ducing the API of the SAPERE middleware and exemplifying its usage. Without
having an ambition of a fully detailing the SAPERE programming approach, we
intend to give readers a clue and enable them to better understand the overall
SAPERE development methodology.

3.1 The Middleware

The execution of SAPERE applications is supported by a middleware infrastruc-
ture [20] which reifies the SAPERE architecture in terms of a lightweight software
support, enabling a SAPERE node to be installed in tablets and smartphones. Ope-
rationally, all SAPERE nodes (whether fixed at the infrastructure level or mobile)
are considered at the same level since the middleware code they run could support
the same services and it provides the same set of functions.

How to Develop Pervasive Social Applications with the Sapere Middleware 189

Each SAPERE node hosts a local tuple space [8], that acts as a local repository
of LSAs for local agents (LSAs are realised as tuples), and a local eco-laws engine.
The LSA-space of each node is in the network with a limited set of neighbor nodes
based on spatial proximity relations. Such relations consequently determine the spa-
tial shape of the SAPERE substrate. From the viewpoint of individual agents (that
will constitute the basic execution unit) the middleware provides an API to access
the local LSA space, to advertise themselves (via the injection of an LSA), and to
support the agents’ need of continuously updating their LSAs. The update opera-
tion, that is peculiar for SAPERE in respect to traditional tuple spaces, provides
support for the liveness of LSAs. In addition, such API enables agents to detect
local events (as the modifications of some LSAs) or the enactment of some eco-laws
on available LSAs.

Eco-laws are realized as a set of rules embedded in SAPERE node. For each
node, the same set of eco-laws is applied to rule dynamics between local LSAs
(in the form of bonding, aggregation, and decay) and those between non-locally-
situated LSAs (via the spreading eco-law that can propagate LSAs from a node to
another to support distributed interactions). From the viewpoint of the underlying
network infrastructure, the middleware transparently absorbs dynamic changes at
the arrival/dismissing of the supporting devices, without affecting the perception of
the spatial environment by individuals.

3.2 The SAPERE API

In the SAPERE model, each agent executing on a node takes care of initializing at
least one LSA (representing the agent itself), of injecting it on the local LSA space,
and of keeping the values of such LSA (and of any additional LSA it decides to inject)
updated to reflect its current situation. Each agent can modify only its own LSAs,
and eventually read the LSAs to which it has been linked by a proper eco-law. More-
over, LSAs can be manipulated by eco-laws, as explained in the following sections.

At the middleware level, a simple API is provided to let agents inject LSA –
injectLSA(LSA myLSA) – and to let agents atomically update some fields later –
updateLSA(field = new-value). In addition, it is possible for an agent to sense
and handle whatever events occur on the LSAs of an agent, e.g., some match that
triggers some eco-laws. For example, it is possible to handle the event represented
by the LSA being bound with another LSA via the onBond(LSA myLSA) method.

The eco-laws assure self-adaptive and self-organizing activities in the ecosystems.
Eco-laws operate on a pattern-matching schema: they are triggered by the presence
of LSAs matching with each other, and manipulate such LSAs (and the fields within)
according to a sort of artificial chemistry [22].

3.3 LSAs

LSAs are realized as descriptive tuples made by a number of fields in the form
of “name-value” properties, and possibly organized in a hierarchical fashion: the

190 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

value of a property can be a property again (called SubDescriptions in SAPERE
terms). A detailed description of semantic representation of LSAs is in [18]. Here
we emphasize that by building tuple-based models and extending upon them [8],
the values in a LSA can be: actual, yet possibly dynamic and changing over time
(which makes LSAs live); formal, not tied to any actual value unless bound to one
and representing a dangling connection (typically represented with a “?”).

Pattern matching between LSAs – which is at the basis of the triggering of
eco-laws – happens when all properties of a description match, i.e., when for each
property whose names correspond (i.e., are semantically equivalent) then the asso-
ciated values match. As in classical tuple-based approaches, a formal value matches
with any corresponding actual value.

For instance, the following LSAa:(sensor-type = temperature; accuracy =

0.1; temp = 45), that can express the LSA of a temperature sensor, can match
the following LSAb:(sensor-type = temperature; temp = ?), which can express
a request for acquiring the current temperature value. LSAa and LSAb matches
with each other. The properties present in LSAa (e.g., accuracy) are not taken into
account by the matching function because it considers only an inclusive match.

4 THE ECO-LAWS SET

Let us now detail the SAPERE eco-laws and discuss their role for a self-organization
in the SAPERE ecosystem.

4.1 Bonding

Bonding is the primary form of the interaction among co-located agents in SAPERE
(i.e., within the same LSA space). In particular, bonding can be used to locally
discover and access information, as well to get in touch and access local services.
All of which with a single and unique adaptive mechanism. Basically, the bonding
eco-law realizes a sort of a virtual link between LSAs, whenever two LSAs (or some
SubDescriptions within) match.

The bonding eco-law is triggered by the presence of formal values in at least
one of the LSAs involved. Upon a successful pattern matching between the formal
values of an LSA and actual values of another LSA, the eco-law creates the bond
between the two. The link established by bonding in the presence of “?” formal
fields is bi-directional and symmetric. Once a bond is established the agents holding
the LSAs are notified of the new bond and can trigger actions accordingly. After
bond creation, the two agents holding the LSAs can read each other LSAs. This
implies that once a formal value of an LSA matches with an actual value in an LSA
it is bound to, the corresponding agent can access the actual values associated with
the formal ones. For instance, with reference to the LSAa and LSAb of the previous
subsection, the agent having injected LSAb, upon bonding with LSAa (which the
agent can detect with the onBond method) it can access the temperature measure
by the sensor represented by LSAb.

How to Develop Pervasive Social Applications with the Sapere Middleware 191

As bonding is automatically triggered upon match, debonding takes place au-
tomatically whenever some changes in the actual “live” values of some LSAs make
the matching conditions no longer in place.

In addition to the ? formal field, which establishes a one-to-one bidirectional
bond between component, SAPERE also makes it possible to express a “*” formal
field, which leads to a one-to-many bond with multiple matchings LSAs. Moreover,
the ! formal field expresses a field that is formal unless the other ? field has been
bound. This makes it possible for an LSA to express a parametrized services, where
the ? formal field represents the parameter of the service, and the ! field represents
the answer that it is able to provide once it has been filled with the parameters.

We emphasize that the bonding eco-law mechanism can be used to enable two
agents to spontaneously get in touch with each other and exchange information,
all of which with a single operation and with both having injected an LSA in the
space. And, in the case of the ! field, automatically invoking a service. That is,
unlike in traditional discovery of data and services [9], bonding makes possible to
compose services without distinguishing between the roles of the involved agents
and subsuming the traditionally separated phases of discovery and invocation.

It is worth noticing that the triggering of bonding between LSAs is driven by
the content of a local LSA space. Indeed, considering a LSA with a formal field that
requires bonding, three different situations may occur:

• there is only a LSA in the local tuple space that matches the formal value and
a single virtual link is established between the LSAs;

• many LSAs in the local tuple space that match the formal value and a single vir-
tual link is established between the first LSA and one randomly chosen between
the matching ones;

• there are no matching LSAs, also because matching LSAs already participate in
a bonding. In this case the virtual link is not established.

In [4] we discuss those issues from a theoretical point of view and propose some
solutions.

4.2 Aggregate Eco-Law

The ability of aggregating information to produce high-level digests of some con-
textual or situational facts is a fundamental requirement for adaptive and dynamic
systems. In fact, in open and dynamic environments, one cannot know a priori
which actual information will be available (some information source may disappear,
other may appear, etc.) and the availability of ways to extract a summary of all
available information (without having to explicitly discover and access the individual
information sources) is very important.

The aggregation eco-law is intended to aggregate LSAs together so as to com-
pute summaries of the current system context. An agent can inject an LSA with the
aggregate and type properties. The aggregate property identifies a function to base

192 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

the aggregation upon. The type property identifies which LSAs to aggregate. In
particular, it identifies a numerical property of LSAs to be aggregated. For exam-
ple LSAc:(aggregation op = max; property = temp) will trigger the aggregation
eco-law that selects all the LSAs having a temp numerical property, computes the
maximum value among them and modifies the LSAs with the result. In the current
implementation, the aggregation eco-law is capable of performing most common
order and duplicate insensitive (ODI) aggregation functions [14].

The aggregation eco-law supports separation of concern and allows to re-use
previous aggregations. On the one hand, an agent can request an aggregation process
without dealing with the actual code to perform the aggregation. On the other hand,
the LSA resulting from an aggregation can be read (via a proper bond) by any other
agent that needs to get the pre-computed result.

4.3 Decay Eco-Law

The decay eco-law enables that components can vanish from the SAPERE envi-
ronment. The decay eco-law applies to all LSAs that specify a decay property to
update the remaining time to live according to the specific decay function, or actu-
ally removing LSAs that, based on their decay property, are expired. For instance,
in LSAd: (sensor-type = temperature; temp = 10; DECAY = 1000) it makes
that LSA to be automatically deleted after a second.

The decay eco-law therefore is a kind of garbage collector capable of remov-
ing LSAs that are no longer needed in the ecosystem or no longer maintained by
a component, for instance because they resulted from a propagation.

4.4 Spread Eco-Law

The above presented eco-laws basically act on a local basis, i.e., on a single LSA
space. Since the SAPERE model is based on a set of networked interaction spaces,
it is of course fundamental to enable non-local interactions, and specifically provide
a mechanism to send information to remote LSA spaces and make it possible to
distribute information and results across a network of LSA spaces.

To this end, in SAPERE we designed a so called “spread” eco-law capable of
diffusing LSAs to remote spaces. One of the primary usages of the spread eco-law
is to enable searches for components that are not available locally, and vice versa
to enable the remote advertisement of services. For an LSA to be subjected to
the spread eco-law, it has to include a diffusion field, whose value (along with
additional parameters) defines a specific type of propagation.

Two different types of propagation are implemented in the SAPERE framework:

1. a direct propagation used to spread an LSA to a specified neighbor node, e.g.,
LSAe:(...diffusion op = direct; destination = node x; ...);

2. a general diffusion capable of propagating an LSA to all neighboring SAPERE
nodes, e.g., LSAf:(...diffusion op = general; hop = 10; ...),

How to Develop Pervasive Social Applications with the Sapere Middleware 193

where the hop value can be specified to limit the distance of propagation of the LSA
from the source node.

General diffusion of an LSA via the spread eco-law to distances greater than one
is a sort of broadcast that induces a large number of replicas of the same LSA to
reach the same nodes multiple times from different paths. To prevent this, general
diffusion is typically coupled with the aggregation eco-law so as to merge together
such multiple replicas.

4.5 From Eco-laws to Distributed Self-Organization

The four above presented eco-laws form a necessary and complete set to support
self-organizing nature-inspired interactions.

The four eco-laws are necessary to support decentralized adaptive behaviors
for pervasive service systems. Bonding is the necessary mean to support adaptive
local service interactions, subsuming necessary phases of discovery and invocation
of traditional service systems. Spreading is necessary since there must be a mean to
diffuse information in a distributed environment to enable distributed interactions.
Aggregation and decay are necessary to support a decentralized adaptive access to
information without being forced to dynamically deploy code on the nodes of the
system, which may not be possible in decentralized environments.

Further, and possibly of more software engineering relevance, the eco-law set
is sufficient to express a wide variety of distributed interaction schemes (or “pat-
terns”), including self-organizing ones. Bonding and spreading can be trivially used
to realize local and distributed client-server scheme of interactions as well as asyn-
chronous models of interactions and information propagation. Coupling spreading
with aggregation and decay, however, it is possible to realize also those distributed
data structures necessary to support all patterns of nature-inspired adaptive and
self-organizing behaviors, i.e., virtual physical fields, digital pheromones, and vir-
tual chemical gradients [2].

In particular, aggregation applied to the multiple copies of diffused LSAs can
reduce the number of redundant LSAs so as to form a distributed gradient struc-
tures [10], also known as computational force fields. As detailed in [12], many dif-
ferent classes of self-organized motion coordination schemes, self-assembly, and dis-
tributed navigation can be expressed in terms of gradients. For instance, Figure 2
shows how it is possible to define a GuideAgent that builds, with its LSA, a dis-
tributed computational field spanning at a 1 hop distance and another SearchAgent
that follows such a field uphill by binding to a “guide” LSA available in its local
tuple space and accessing the information in it.

In addition, spreading and aggregation can be used together to produce dis-
tributed self-organized aggregations, i.e., dynamically computing some distributed
property of the system and have the results of such computation available at each and
every node of the system, as we can see from [14]. Distributed aggregation is a basic
mechanism via which to realize forms of distributed consensus and distributed task
allocation and behavior differentiation. For instance, the code in Figure 3 shows

194 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

GuideAgent extends SapereAgent{

public void setInitialLSA(){

addProperty("name", "guide");

addProperty("diffusion_op", "general");

addProperty("hop", 1);

addProperty("aggregation_op", "min");

addProperty("source", "GuideAgent");

}

...

}

SearchAgent extends SapereAgent{

public void setInitialLSA(){

addProperty("name", "guide");

addProperty("hop", "*");

}

public void onBond(Event e) {

LSA l = e.getLSA();

float d = computeDistanceFromHop(e.getProperty("hop"));

print("guide distance = "+d);

print("go toward "+e.getProperty("source")); }

}

...

}

Figure 2. Generating and navigating distributed data structures. The agent Guide uses
the spread eco-law combined with aggregation to create field-like data structures,
that agent Search can then detect and follow downhill.

how it is possible to aggregate temperature information from multiple distributed
sensors. Many SensorAgent exist in the ecosystem and inject a LSA with the tem-
perature value in the local LSA space. A RequestingAgent can inject an LSA
that can adaptively compute the maximum temperature of sensors exploiting the
aggregation eco-law also in remote tuple spaces combining it with spreading.

By bringing also the decay eco-law into play, and combining it with spreading
and aggregation, one can realize pheromone-based data structures, which makes pos-
sible to realize a variety of bio-inspired schemes for distributed self-organization [2].
In particular, while general diffusion and progressive decay can be used to realize
diffusible and evaporating pheromone-like data structures, direct propagation can
be used to navigate by following pheromone gradients.

How to Develop Pervasive Social Applications with the Sapere Middleware 195

RequestingAgent extends SapereAgent{

public void setInitialLSA(){

addProperty("aggregation_op", "max");

addProperty("property", "temp");

addProperty("diffusion", "general");

addProperty("hop", 1);

addProperty("source", "GuideAgent");

}

...

}

SensorAgent extends SapereAgent{

public void setInitialLSA(){

float t = sample();

addProperty("temp", t);

}

public void run() {

while(true) {

float t = sample();

updateProperty("temp", t);

}

...

}

Figure 3. Distributed aggregation. Many temperature sensors 1N exist in the ecosystem.
A Requesting agent can inject an LSA that, by combining spreading and aggre-
gation, can adaptively compute the maximum temperature of sensors.

5 AN EXEMPLARY PERVASIVE SOCIAL APPLICATION

SAPERE naturally accounts for application scenarios characterized by people in-
teracting with each other and with network displays providing services to guide, to
inform, to raise attention of passing by people. Among many possible applications
we propose “In good company” – a distributed application allowing people to spend
some time with friendly persons or in whatever way sharing common affinities.

196 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

5.1 Application Description

“In good company” has been developed to suit with crowded and wide environments
(as a museum or a shopping mall) where the occupants of each location (or room,
floor, building, etc.) may vary dynamically during the day, and with them, the
characterization of “how friendly” (i.e. the concentration of people sharing common
interests) is that location for a person.

To distinguish from existing “find your friends” applications, the realization in
SAPERE terms results as totally privacy safe, since personally identifiable infor-
mation (as real name/surname, GPS positions, or checkins at determined place) is
not publicly exposed or requested. Each user of the application is only requested
to provide his/her ID from an adopted Social Network (e.g. Facebook, Google Plus,
Foursquare, etc.) thus only the information the user has already set in his/her pub-
lic profile concurs to calculate how friendly (or affine) is a restaurant of a mall food
court, a showroom in a museum, a waiting room of a train station.

In this section we concentrate on making the “In good company” app for the food
court in a shopping mall (despite the implementations for other application scenarios
would result totally equivalent from a technical point of view) where the public
display of each restaurant, beside showing information about the meals, waiting
time, promotions, directions to services, etc. also interconnects to each other displays
(thus restaurants) of the mall (see Figure 4). Before detailing how we coded the
application in SAPERE terms, the application use case could be described as follows:

1. an user running the app (see Figure 5, on the left) on his/her mobile phone
approaches the mall food court willing to launch “In good company”;

2. user’s request for friendly locations is brought from one display of the ecosystem
and forwarded to other displays (each of them associated to a food provider of
the court);

3. for each given restaurant, its display takes care of polling its customers (using
the app) to provide a measure of friendship affinity towards the requesting user;

4. each display aggregates such measures and push back the answer to the request-
ing user;

5. given such information the user will decide in which restaurant to have lunch
and which group of people eventually to join (see Figure 5, on the right).

5.2 SAPERE Implementation

This section describes the realization of the 5 steps stated above using the elements
SAPERE provides to developers. For this app we assume that a SAPERE node with
the app code is running both on users’ smartphones, both on restaurants display
stands. From the point of view of deployed agents, the application is realized through
the use of 2 agents running on each phone and 4 agents running on each display of
the ecosystem.

How to Develop Pervasive Social Applications with the Sapere Middleware 197

Figure 4. On the left, the idea behind the “In good company” app: a network of restaurants
where public displays help people to find the right place in which to have lunch.
On the right, a public display providing directions to a restaurant beside other
public utility information (e.g. restaurant waiting time, directions to restrooms,
availabilities of public transportations.

2:30

SEARCH RESULT SETUP

Two places
found:

1) Mike's

2) Cora

2:30

SEARCH RESULT SETUP

See the Menu

Reserve a Table

Join a Group

Figure 5. Two screenshots from the prototyped version of the “In good company” app. On
the left, the Search menu providing a path to selected restaurant and a measure,
with stars, of the affinity. On the right, the Result menu where the user, as
an option, can see the menu, reserve a table or join an existing one.

198 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

The first step of the app sees the CustomerAgent running on the user’s smart-
phone to detect a display of the food court (the one at the entrance or one of the
others) and to inject an LSA with the user profile (in our example, linking to a Face-
book user ID) and an affinity query, as shown in the code snippet in Figure 6. The
agent is notified by the space of events happening to its own LSA (bonding, propa-
gations, etc.), thus enabling it to react modifying the content of the LSA itself. In
particular, the CustomerAgent injects a LSA in the local smartphone space to be
propagated to the display Room1 node (as declared by properties diffusion op and
destination) to start the app.

CustomerAgent extends SapereAgent {

...

public void setInitialLSA(){

addProperty("in-good-company-app", "query");

addProperty("fb-id", "#123456");

addProperty("diffusion_op", "direct");

addProperty("destination", "display_Room1");

}

...

}

Figure 6. The code managing the basic actions of the CustomerAgent

InteractionManagerAgent extends SapereAgent

{

...

public void onBond(Event e) {

Lsa l = e.getLSA(); // bonded LSA

new QueryPropagatorAgent

(l.getProperty("fb-id"));

}

...

}

Figure 7. The code of the InteractionManagerAgent to match a query request

On the other hand, in each display an InteractionManagerAgent exposes a LSA
to match a query request in order to start the app interaction. Once the two LSAs
have bound, the second step of the application sees the InteractionManagerAgent

to start a QueryPropagatorAgent (see code snippet in Figure 7) to propagate the
affinity query (with a gradient indicating the number of hops and decay time) to sur-

How to Develop Pervasive Social Applications with the Sapere Middleware 199

public class QueryPropagatorAgent extends SapereAgent {

LSA myLSA;

String my_fbId;

public QueryPropagatorAgent(String my_fbId){

super();

this.my_fbId = my_fbId;

}

public void setInitialLSA(){

addProperty("diffusion_op", "general");

addProperty("hop", "10");

addProperty("decay", 10);

addProperty("fb-id", my_fbId);

addProperty("remote-affinity-request", "10");

addProperty("source", display_name);

}

...

}

Figure 8. The code of the QueryPropagatorAgent to propagate the affinity request into
the network of displays

rounding displays to find an affine place to have lunch (see code snippet in Figure 8
and the Figure 10 for a gradient propagation example).

During the third step, other people participating to the app receive (through the
displays of the ecosystem) the affinity request: once the LSA request for affinity has
been propagated to remote displays through a gradient, the QueryManagerAgent on
each display starts propagating an affinity evaluation to all the smartphone directly
connected to itself as depicted in code snippets in Figure 9.

QueryManagerAgent extends SapereAgent {

...

public void onBond(Event e) {

addProperty("fb-id", my_fbId);

addProperty("diffusion_op", "direct");

addProperty("destination", "all");

}

...

}

Figure 9. The code of the QueryManagerAgent to match a query request

200 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

Thus the AffinityEvaluatorAgent running on the mobile phone evaluates the
affinity between its own user and the received Facebook profile.

AQ AQ AQ AQ

AQ AQ AQ

Spread
eco-law Spread

eco-law

AQ

Aggregation
eco-law

Figure 10. The restaurant Agent propagates the affinity query (AQ) – with a gradient
indicating the number of hops and decay time – to surrounding displays

Affinity is calculated given a positive weight to the fact that such Facebook ID
is between users’ friends or, in any case, if interests in the user public page find
a match.

After each display has aggregated the received affinity values, a per-restaurant
aggregated affinity value is propagated back with a self-organizing pattern called
chemotaxis (see Figure 12) by the QueryAggregatorAgent as in code snippet in
Figure 11.

The QueryPropagatorAgent running on the display which made the initial re-
quest aggregates (using the max operator) the received values (see code snippet in
Figure 13) and passes the result to the CustomerAgent on the smartphone. The
user can now follow the suggestion about where having lunch “In good company”
(this final step is omitted for the sake of brevity).

6 EXPERIMENTS

The purpose of this section is to demonstrate that the SAPERE middleware is ready
to handle a realistic application (“In good company” app), distributing the efforts
between the nodes and tolerating – linearly – an increasing topology complexity in
terms of nodes of the network (e.g. the restaurants) and occupants (e.g. the people
occupying them). Reported results concern the middleware cycle timing, the number
of middleware cycles and the number of LSAs that each node must shoulder to run
the app (tests have been performed on a 2 GHz Apple MacBook pro however similar
tests have been conducted on an Android mobile device with a predictable worsening
of performances reaching the 60 %). For each of the experiments we executed 1 000
runs (and averaged the results) with varying number of nodes – from 10 to 50 – and

How to Develop Pervasive Social Applications with the Sapere Middleware 201

QueryAggregatorAgent extends SapereAgent {

LSA myLSA;

String my_fbId;

public QueryAggregatorAgent(String my_fbId){

super();

this.my_fbId = my_fbId;

}

public void setInitialLSA(){

addProperty("aggregation_op", "avg");

addProperty("property", "affinity-eval");

addProperty("fb-id", my_fbId);

addProperty("remote-affinity-request", "10");

addProperty("chemotaxis", <spread_id_value>);

}

...

}

Figure 11. The code of the QueryAggregatorAgent that triggers the aggregation of affinity
values and propagates it back exploiting the chemotaxis

varying number of people occupying them – reaching 10, 30 or 50 units. Despite
the fact that the selected configurations of nodes and people most of the time could
be considered “realistic” for a mall food court, our experiments are not defying
a working range for the application, but rather tracing a trend for those parameters
to impact workload of nodes.

Average Cycle Timing. Figure 14 reports the average timing requested for each
node to complete a middleware cycle. As we can see from the figure, the timing
performances span from very few ms to nearly 60 and are mostly influenced by
number of the nodes rather than by number of people populating the nodes.
This is rather intuitive since the more the nodes, the more spread propagations
have to be handled by each single node (and thus the more are the copies of
each LSAs flowing around the network).

Average Cycles per Node. In Figure 15 we report the average number of mid-
dleware cycles that each node of the network should hold to realize the app. In
the worst case, to serve 2 500 people (50 people on each of the 50 nodes) the
app requests in average 16 cycles for each node to complete. Given the fact that
a middleware cycle hardly can keep more that 60 ms (from first experiment)
a waiting time strictly less than 1 second represents a fully tolerable delay for
a person to enjoy the service.

Average LSAs per Node. Figure 16 reports the average number of LSAs pop-
ulating each node of the network for the above depicted configurations. For

202 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

AV2
AV2 AV4 AV6

AV1 AV3 AV5

Aggregation
max Affinity

Aggregation
on Affinity

Aggregation
on Affinity

Aggregation
on Affinity

Aggregation
on Affinity

Aggregation
on Affinity

Aggregation
on Affinity

Chemotaxis

AV2AV2AV2

Figure 12. Per-restaurant aggregated affinity values (AVn) is propagated back with chemo-
taxis

QueryPropagatorAgent extends SapereAgent {

...

public void onPropagation (Event e) {

removeGradient();

addProperty("aggregation_op", "max");

addProperty("aggregation_field"),"affinity-eval");

}

}

Figure 13. After the gradient is propagated, the QueryPropagatorAgent triggers the ag-
gregation of affinity values calculated in remote nodes

a number of nodes equal to 10, 30 and 50 we also report the minimum and max-
imum number measured. Also in this case, in the worst configuration (50 people
on each of the 50 nodes) the number of LSAs populating a node does not pass
300 units. Given the fact that a LSA hardly overcomes 0.5 KB in memory, this
makes the app suitable to run on low-end personal computer or even in modern
PDAs or smartphones.

7 RELATED WORKS

7.1 Coordination

The issue we face in this article can be framed as the problem of finding the proper
coordination model for enabling and ruling interactions of pervasive services. We
take as a ground the archetypal Linda model, which simply provides for a black-

How to Develop Pervasive Social Applications with the Sapere Middleware 203

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50

m
s

Number of Nodes

Average Cycle Timing

People per Node=10
People per Node=30
People per Node=50

Figure 14. The average timing requested for each node to complete a middleware cycle

board with associative matching for mediating component interactions through in-
sertion/retrieval of tuples. Then, we followed the idea of engineering the coordina-
tion space of a distributed system by some policy “inside” tuple spaces, following
the pioneer works of approaches like Tucson [15] and MARS [3]. In particular, our
proposal tries to extend these models to include bio-inspired ecological mechanisms,
by fine-grained and well structured chemical-like reactions. In particular, the coor-
dination approach we propose in this paper originates from the chemical tuple space
model in [19], though with some notable differences:

1. here we provide a detail notational framework to flexibly express eco-laws that
work on patterns of LSAs and affect their properties;

2. the chemical concentration mechanisms proposed in [19] to exactly mimic che-
mistry is not mandatory here – though it can be achieved by a suitable design
of rate expressions;

3. the way we conceive the overall infrastructure and relationship between agents
and their LSAs goes beyond the mere definition of the tuple-space model.

Our approach aims at specifically tackling coordination infrastructures for per-
vasive systems, which calls for dictating specific mechanisms of fuzzy matching,
diffusion, context- and spatial-awareness, and agent-LSA interaction.

7.2 Situatedness and Context-Awareness

Considering the issues of situatedness and context-awareness, extensions or modifi-
cations to the traditional SOAs have been recently proposed to address adaptivity

204 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50

N
u

m
b

e
r

o
f

C
y
c
le

s

Number of Nodes

Average Cycles per Node

People per Node=10
People per Node=30
People per Node=50

Figure 15. The average number of cycles requested for each node to handle a varying
number of nodes and occupants

in pervasive environments. Similarly to our approach, in PLASTIC [1] service de-
scriptions are coupled with dynamic annotations related to the current context and
state of a service, to be used for enforcing adaptable forms of service discovery.
However, our approach gets rid of traditional discovery of services and enforces dy-
namic and adaptive service interaction via simple chemical reactions and a minimal
middleware.

In many proposals for pervasive computing environments and middleware infras-
tructures, the idea of “situatedness” has been promoted by the adoption of shared
virtual spaces for services and components interactions. The pioneering system Gaia
[17] introduces the concept of active spaces, that is active blackboard spaces acting
as the means for service interactions. Later on, a number of Gaia extensions where
proposed to enforce dynamic semantic pattern-matching for service composition and
discovery [6] or access to contextual information [5]. Other related approaches in-
clude: Egospaces [11], LIME [13] and TOTA [12]. Our model shares the idea of
conceiving components as “living” and interacting in a shared spatial substrate (of
tuple spaces) where they can automatically discover and interact with one another.
Yet, our aim is broader, namely, to dynamically and systemically enforce situated-
ness, service interaction and data management with a simple language of chemical
reactions, and most importantly, enacting an ecological behavior.

7.3 Self-Organization

Several recent works exploit the lessons of adaptive self-organizing natural and social
systems to enforce self-awareness, self-adaptivity and self-management features in

How to Develop Pervasive Social Applications with the Sapere Middleware 205

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

L
S

A
s

Number of Nodes

Average LSA number per Node

People per Node=10
People per Node=30
People per Node=50

Figure 16. The average number of LSA populating each node to handle a varying number
of nodes and occupants. Error bars show the min and max LSA values for 10, 30
and 50 nodes.

pervasive computing systems. At the level of individual component modeling, these
proposals take the form of either situated reactive agents or proactive and goal-
oriented ones [16]. At the level of interaction models, these proposals typically
take the form of a specific nature- and socially-inspired interaction mechanisms [2],
enforced either at the level of component modeling or via specific middleware-level
mechanisms.

We believe our framework integrates and improves these works in three main
directions:

1. it abstracts from the specific internal characteristics of components (no matter
whether they are simple reactive components or complex goal-oriented ones) and
rather proposes an approach that seamlessly applies to both cases;

2. it tries to identify an interaction model that is able to represent and subsume the
diverse nature-inspired mechanisms under a unifying self-adaptive abstraction
(i.e. the semantics chemical reactions);

3. the ecological approach we undertake goes beyond most of the current studies
that limit to ensembles of homogeneous components, defining a suitable frame-
work for supporting the vision of novel pervasive and internet scenarios as made
up of self-adaptive devices and services, that autonomously cooperate for the
creation of global services.

206 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

8 CONCLUSIONS

In this paper we introduced the SAPERE paradigm and proved that implementing
complex applications using the SAPERE middleware offers multiple advantages over
established approaches such as client- server models or aspect-oriented programming.
In particular, SAPERE eases the development of a wide area of pervasive comput-
ing applications since it supports well the decentralized nature of the developed
application, managing the system with a massive number of distributed and inter-
acting components. The reported experiments show that the overall performance
of the framework is in line and can support a large number of pervasive computing
applications.

As plan for future work, we intend to experience the SAPERE approach with
a number of innovative services in the area of crowd management and urban com-
puting, by exploiting the ecosystem of pervasive displays as a technical testbed.

Acknowledgments

Work supported by the EU FET Unit, under grant No. 256873.

REFERENCES

[1] Autili, M.—Benedetto, P.—Inverardi, P.: Context-Aware Adaptive Services:
The Plastic Approach. Proceedings of the 12th International Conference on Funda-
mental Approaches to Software Engineering (FASE ’09), Springer, Berlin, Heidelberg,
2009, pp. 124–139.

[2] Babaoglu, O.—Canright, G.—Deutsch, A.—Di Caro, G.—Ducatel-
le, F.—Gambardella, L.—Ganguly, G.—Jelasity, M.—Monteman-
ni, R.—Montresor, A.: Design Patterns from Biology for Distributed Computing.
ACM Trans. Auton. Adapt. Syst., Vol. 1, 2006, No. 1, pp. 26–66.

[3] Cabri, G.—Leonardi, L.—Zambonelli, F.: MARS: A Programmable Coordina-
tion Architecture for Mobile Agents. IEEE Internet Computing, Vol. 4, 2000, No. 4,
pp. 26–35.

[4] Castelli, G.—Mamei, M.—Rosi, A.—Zambonelli, F.: Behavior Predictabil-
ity Despite Non-Determinism in the SAPERE Ecosystem. Sixth IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW 2012),
Lyon, France, 2012, pp. 205–210.

[5] Costa, P.D.—Guizzardi, G.—Almeida, J. P.A.—Pires, L. F.—Van Sin-
deren, M.: Situations in Conceptual Modeling of Context. Tenth IEEE Interna-
tional Enterprise Distributed Object Computing Conference (EDOC 2006), October
16–20, 2006, Hong Kong, China, IEEE Computer Society, 2006, Workshops, p. 6.

[6] Fok, C. L.—Roman, G.C.—Lu, C.: Enhanced Coordination in Sensor Net-
works Through Flexible Service Provisioning. Coordination Languages and Models,
Springer-Verlag, LNCS, Vol. 5521, June 2009, pp. 66–85.

How to Develop Pervasive Social Applications with the Sapere Middleware 207

[7] Omicini, A.—Zambonelli, F.: Coordination for Internet Application Develop-
ment Journal Autonomous Agents and Multi-Agent Systems, Vol. 2, 1999, No. 3,
pp. 251–269.

[8] Gelernter, D.: Generative Communication in Linda. ACM Trans. Program. Lang.
Syst., Vol. 7, 1985, No. 1, pp. 80–112.

[9] Huhns, M.N.—Singh, M.P.: Service-Oriented Computing: Key Concepts and
Principles. IEEE Internet Computing, Vol. 9, 2005, No. 1, pp. 75–81.

[10] Fernandez-Marquez, J. L.—Arcos, J. L.—Di Marzo Serugendo, G.—
Viroli, M.—Montagna, S.: Description and Composition of Bio-Inspired De-
sign Patterns: The Gradient Case. Proceedings of the 3rd Workshop on Bio-
logically Inspired Algorithms for Distributed Systems, New York, NY, USA, 2011,
pp. 25–32.

[11] Julien, C.—Roman, G.C.: Egospaces: Facilitating Rapid Development of
Context-Aware Mobile Applications. IEEE Trans. Software Eng., 2006, pp. 281–298.

[12] Mamei, M.—Zambonelli, F.: Programming Pervasive and Mobile Computing Ap-
plications: The Tota Approach. ACM Trans. Software Engineering and Methodology,
Vol. 18, 2009, No. 4.

[13] Murphy, A. L.—Picco, G.P.—Roman, G.-C.: Lime: A Coordination Model
and Middleware Supporting Mobility of Hosts and Agents. ACM Trans. Software
Engineering and Methodology, Vol. 15, 2006, No. 3, pp. 279–328.

[14] Nath, S.—Gibbons, R.H.—Seshan, S.—Anderson, Z.R.: Synopsis Diffusion
for Robust Aggregation in Sensor Networks. Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 2004,
pp. 250–262.

[15] Omicini, A.—Zambonelli, F.: Coordination for Internet Application Develop-
ment. Autonomous Agents and Multi-Agent Systems, Vol. 2, 1999, No. 3, pp. 251–269.

[16] Ricci, A.—Omicini, A.—Viroli, M.—Gardelli, L.—Oliva, E.: Cognitive
Stigmergy: Towards a Framework Based on Agents and Artifacts. Environments
for MultiAgent Systems, Springer, LNAI, Vol. 4389, 2007, pp. 124–140.

[17] Roman, M.—Hess, C.K.—Cerqueira, R.—Ranganathan, A.—Camp-
bell, R.H.—Nahrstedt, K.: Gaia: A Middleware Platform for Active Spaces.
Mobile Computing and Communications Review, Vol. 6, 2002, No. 4, pp. 65–67.

[18] Stevenson, G.—Viroli, M.—Ye, J.—Montagna, S.—Dobson, S.: Self-
Organising Semantic Resource Discovery for Pervasive Systems. 1st International
Workshop on Adaptive Service Ecosystems: Natural and Socially Inspired Solutions,
Lyon, France, 2012, pp. 47–52.

[19] Viroli, M.—Casadei, M.: Biochemical Tuple Spaces for Self-Organising Coordi-
nation. In: Field, J., Vasconcelos, V. T. (Eds.): Coordination Languages and Models,
Springer-Verlag, LNCS, Vol. 5521, June 2009, pp. 143–162.

[20] Zambonelli, F.—Castelli, G.—Mamei, M.—Rosi, A.: Integrating Pervasive
Middleware with Social Networks in SAPERE. International Conference on Selected
Topics in Mobile and Wireless Networking, Shanghai, PRC, 2011, pp. 145–150.

[21] Zambonelli, F.—Castelli, G.—Mamei, M.—Rosi, A.: Programming Self-
Organizing Pervasive Applications with SAPERE. Proceedings of the 7th Interna-

208 G. Castelli, M. Mamei, A. Rosi, F. Zambonelli

tional Symposium on Intelligent Distributed Computing, Springer-Verlag, Studies in
Computational Intelligence, Vol. 511, 2014, pp. 93–102.

[22] Zambonelli, F.—Viroli, M.: A Survey on Nature-Inspired Metaphors for Per-
vasive Service Ecosystems. Journal of Pervasive Computing and Communications,
Vol. 7, 2011, pp. 186–204.

Gabriella Castelli is a software engineer at DQuid working
in the field of Internet of Things. She received her Ph.D. degree
from University of Modena and Reggio Emilia in 2010. From
2010 to 2014 she was with the DISMI Department at the Uni-
versity of Modena and Reggio Emilia. Her research interests
include pervasive computing, distributed systems and coordina-
tion middleware.

Marco Mamei is Associate Professor in computer science at the
University of Modena and Reggio Emilia. He received his Ph.D.
degree in computer science from the same University in 2004. He
has been visiting researcher at Telecom Italia Lab (IT), Nokia
Research Center (USA), Harvard University (USA), Cycorp Eu-
rope (SLO) and Yahoo Research (ES). His current research inter-
ests include mobility data analysis and applications for pervasive
and mobile computing.

Alberto Rosi is an E/E Integration Manager at Ferrari Spa. He
received his master degree in engineering management from the
University of Modena and Reggio Emilia and his Ph.D. degree
in industrial innovation from the same University. From 2006 to
2013 he was a part of the Agent Group at the DISMI Depart-
ment of Reggio Emilia. His research interests included pervasive
devices (e.g. RFID tags, GPS, sensor networks), services and
applications, and currently sportive cars.

How to Develop Pervasive Social Applications with the Sapere Middleware 209

Franco Zambonelli is Full Professor of computer science at the
University of Modena and Reggio Emilia. He received his Ph.D.
degree in computer science and engineering from the University
of Bologna in 1997. His research interests include pervasive com-
puting, multi-agent systems, self-adaptive and self-organizing
systems. He has published over 80 papers in peer-review jour-
nals, and has been invited speaker at many conferences and
workshops. He is the co-editor-in-chief of the ACM Transactions
on Autonomous and Adaptive Systems, and he is editorial board
member for the Elsevier Journal of Pervasive and Mobile Com-

puting, for the BCS Computer Journal and for the Journal of Agent-Oriented Software
Engineering. He is member of the Steering Committee of the IEEE SASO Conference.
He is a scientific manager of the EU FP6 Project CASCADAS and coordinator of the EU
FP7 Project SAPERE. He is ACM Distinguished Member as a scientist working in the
computing field, member of the Academia Europaea, and IEEE Fellow.

