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Abstract. The consequence finding problem consists in producing all the conse-
quences of a logical theory or, depending on the application context, in a restricted
subset of these consequences. When the available knowledge is naturally scattered
among different sources of information, computing such consequences with respect
to the global theory in a decentralized way is a challenging problem. This paper
presents Somewhere2, a multilayered architecture that may be used to solve such
consequence finding problems in peer-to-peer networks of collaborating entities, that
may evolve over time. The general layout of this architecture is described as well
as the roles of its main components. Thanks to a careful and modular design, the
resulting framework is very generic. This facilitates alternative implementations
of specific components as well as its extension with additional features. First ex-
perimental results are presented, illustrating the scalability and robustness of this
architecture. This framework may be used as a robust building block for more
advanced distributed applications, such as Peer Data Management Systems.
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1 INTRODUCTION

The consequence finding problem [20, 21] amounts to finding formulas that are
consequences of a logical theory. Many practical applications involve reasoning
tasks that aim at discovering such consequences, that are not explicit in the original
theory. In many cases, not all consequences are sought, but only a restricted subset
of these, according to some syntactical property, called a production field [29].

Consequence finding is more complex than the simple proof finding problem,
for which a user simply wants to verify whether a formula is entailed or not by
a theory. Besides, the latter may be viewed as a particular case of the former, since
proving a formula by refutation can be solved by adding the negation of this formula
to the theory and considering the production field reduced to the contradiction.
Consequence finding has proved to be useful for wide range of problems involving
diagnosis, abductive reasoning, hypothetical and non-monotonic reasoning, query
rewriting as well as knowledge compilation (see [21] for a survey). While it has been
addressed essentially in the centralized case, in this work, we consider distributed
approaches of this problem.

A frequent motivation for distributed approaches is to exploit possible paral-
lelism in order to speed up some computing task. The goal is then to decompose
a complex task and to distribute the work among set of available ressources. As
an example, several techniques have been proposed to allow parallel evaluation of
logical queries in datalog programs (e.g. [26, 5]). Decompositions associated to dis-
tributed processing can also be a key for solving problems that are too hard to be
solved in a centralized way. For consequence finding, this can typically be the case
for large theories. The problem can rapidly become out of scope for the processing
capabilities of a single computing unit. In such a case, one possible approach is to
exploit structural properties of the original theory in order to decompose this theory
into subparts. This approach has been followed in the context of theorem proving
by [3, 4] and recently extended to the case of consequence finding in [7].

But the need for a distributed approach becomes essential in situations where
the knowledge from which conclusions have to be drawn is intrinsically scattered at
different places. In this paper we focus particularly on such application contexts.

This is typically the case in multi-agent systems, where each agent has its own
knowledge/point of view and may have to collaborate with other agents in order
to achieve its goals. This is also the case in some semantic data management sys-
tems. The goal is then to exploit simultaneously the content of multiple (often
heterogeneous) sources of information, where each source describes the organization
of its data using its own ontology. Query answering over such networked set of
data sources requires reasoning capabilities over the relevant ontologies. It gener-
ally proceeds in two steps, the first of which is a query rewriting step, where the
original query is reformulated, in terms of the languages of the different relevant
ontologies. The obtained rewritings are then evaluated on the appropriate sources.
For such systems, the query rewriting step can often be reformulated in terms of
a consequence finding problem.
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Given the ever growing number of information sources available over the web,
peer-to-peer architectures look particularly promising for that purpose. The ab-
sence of any centralized control or hierarchical organization and the fact that in
such systems each peer plays the same role gives much flexibility to accommodate
to the dynamic nature of such networks. This also clearly contributes to the scal-
ability and the robustness of such approaches. Such principles are at the core of
Peer Data Management Systems (PDMS) such as Edutella [23], Piazza [13] or
Somewhere [2].

The Somewhere platform is based on a propositional Peer-to-Peer Inference
System (P2PIS). It can be used as a stand-alone application for solving consequence
finding problems over a set of distributed propositional theories. But it can also
be abstracted into more complex frameworks requiring distributed reasoning over
a network of peer theories expressed in richer languages, as far this knowledge can be
translated in an equivalent way at the propositional level. This encompass PDMS,
when peer ontologies are expressed using adequate restrictions of first order logic, as
for instance RDFS, the first standard adopted by the W3C for the semantic web.
It has also been shown in [1] that this is also possible for ontologies expressed using
the description logic DL-LiteR, one of the maximal fragments of the DL-Lite
family, for which query answering over large amounts of data remains tractable [8].
Focusing at the propositional level for the reasoning allows efficient implementations
of consequence finding algorithms. This approach has already proved to be successful
in theorem proving. SAT solvers have gained during the last two decades several
orders of magnitude in the performance. As a consequence, several problems are
currently best solved by prior propositional reduction and the use of a SAT solver.
For instance, current Answer Set Programming (ASP) solvers typically proceed in
that way [11].

Somewhere pioneering work proposed the first ever implemented version of
a fully decentralized consequence finder. Its good scalability on fairly large networks
of peers [2] has been very encouraging. Its code has served as a basis for further
extensions, e.g. to offer more convenient languages to describe peers knowledge or
to allow sound reasoning despite possible inconsistencies between the peers of the
network [10]. However this system was rather a proof of a concept than a rock solid
piece of code. Its code suffered from many flaws, inducing rather high maintenance
costs and making its extensions quite complicated in practice. Moreover, it was
difficult to deploy in a simple way and it lacked a number of essential features to
make it convenient to use for real applications. At some time, all these reasons have
motivated a complete reengineering of the whole system, in order to improve both
its design, robustness and extensibility.

This paper presents the architecture of this new system Somewhere2. In the
next section we first recall the basic principles of P2PIS and consequence finding, as
well as the approach followed to compute such consequences in a fully decentralized
way. In Section 3, we describe the architecture Somewhere2, its organization, the
roles of its main components, its features and new functionalities. In Section 4 we
present some experimental results and Section 5 discusses the related work.
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2 CONSEQUENCE FINDING IN P2P INFERENCE SYSTEMS

The general setting of this work concerns peer-to-peer networks, where each peer can
model its own knowledge using a local propositional theory and can solve inference
tasks such as consequence finding, using its own knowledge and/or by interacting
with its neighbors in the network. For the sake of self-containedness, we recall
from [2] (with slight variations in the presentation) the formal characterization of
the problem that we consider.

2.1 P2P Inference Systems

The P2P Inference Systems that we consider correspond to networks of propositional
clausal theories P = {Pi}i=1..n. We assume that each peer has a unique identifier i
and a proper vocabulary Vi. The global vocabulary of P is defined as V = ∪i=1..nVi.
As usual, a literal l is either a symbol of v ∈ V or its negation ¬v and its opposite
literal l is defined by v = ¬v and ¬v = v. A clause is a disjunction of literals. We
denote by LV (resp. LVi

) the language of clauses without duplicated literals over V
(resp. Vi) and we assume that each peer theory Pi is a set of clauses of LV . In the
following, for the sake of simplicity, we use the peer identifier i as an index to denote
that a propositional variable xi that belongs to the vocabulary Vi.

Definition 1 (Local clauses, mappings, shared variables and literals). In a peer
theory Pi, we distinguish local clauses, that are clauses containing only literals over
the vocabulary Vi, from mappings that are clauses containing literals from the vo-
cabularies of at least two different peers.

A variable of Vi is said to be shared, if it appears in a literal l of clause of Pi and
if its opposite literal l appears in a mapping of another peer. In such a case both l
and l are said to be shared literals.

Intuitively, local clauses describe the very own knowledge of a peer while map-
pings state logical constraints between the knowledge of different peers. Mappings
characterize possible interactions between peers, through shared variables.

Shared variables implicitly define an acquaintance graph, the vertices of which
correspond to the peers and whose edges link together peers containing opposite
shared literals. Figure 1 is an abstract example of such a P2PIS acquaintance
graph, the edges of which are labelled by the corresponding shared variables. The
set of mappings and local clauses of a peer Pi are respectively denoted by Mi and Oi.
The global theory of P is Σ =

⋃
i=1..n Pi = O ∪M where O =

⋃
i=1..nOi and M =⋃

i=1..n Mi.
We assume that each peer Pi is aware of its shared literals and of its acquain-

tances, and given a shared literal l we denote by acq(l, Pi) the set of other peers
with some clause containing the opposite literal l. For a clause c, we also denote by
S(c) the disjunction of its shared literals and by L(c) the disjunction of the other
literals of c.



214 P. Chatalic, A. de Amorim Fonseca

Peer P1

O1: a1 ∨ d1
¬f1 ∨ c1
b1 ∨ e1 ∨ d1

M1:

Peer P2

O2: a2
¬c2 ∨ b2
¬a2 ∨ c2

M2: ¬a2 ∨ b3 (m4)

Peer P3

O3: c3
¬e3 ∨ ¬c3
¬b3 ∨ e3 ∨ ¬a3

M3: ¬b3 ∨ ¬e1 (m2)
¬c4 ∨ ¬d3 (m5)

Peer P4

O4: ¬d4 ∨ ¬a4
a4 ∨ ¬b4 ∨ c4

M4: b4 ∨ ¬d1 (m3)

Peer P5

O5: ¬a5 ∨ ¬b5
M5: a5 ∨ ¬b2 (m1)

e1

d1

b2

b3

c4

Figure 1. A P2PIS network

2.2 Semantics of a P2PIS

The semantics that we consider for a P2P Inference System P = {Pi}i=1..n, is the
classical semantics of propositional logic for the global theory Σ = ∪i=1..nPi.

Definition 2 (Interpretations, Models). Let Σ be a set of clauses over of finite vo-
cabulary V ,

• an interpretation I of Σ is an assignment of each variable of V to true or false.

• for v ∈ V , the literal v (resp. ¬v) is satisfied by an interpretation I iff I(v) = true
(resp. false) and a clause c is satisfied by I iff one of its literals is satisfied by I.

• an interpretation I is said to be a model of a clause c iff I satisfies c (denoted
by I |= c) and it is a model of Σ iff it satisfies each clause of c ∈ Σ.

• Σ is consistent iff it has a model.

The logical consequence relation |= is classically defined by Σ |= c iff any model
of Σ is also a model of c. An interesting problem is then to characterize the log-
ical content of a given consistent theory. More precisely, it is generally sufficient
to characterize its strongest consequences, which corresponds to the notion prime
implicates.
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Definition 3 (Implicates, Prime Implicates). Let Σ be clausal theory and c be
a clause,

• c is an implicate of Σ iff Σ |= c,

• c is an prime implicate of Σ iff

– c is an implicate of Σ

– for any other implicate c′ of Σ, if c′ |= c then c ≡ c′.

Because the number of (prime) consequents of a theory can be huge, producing
the whole set of consequences is not necessarily the most important. It is often the
case that one is rather interested in a particular subset of clauses PF ⊆ LV , called
the production field. Most of the time such a set is not described in an extensional
way but is rather characterized by some syntactical property that must be satisfied
and that may vary according to the application context. Typical properties can
require a maximal length for the clauses of interest, that these clauses are built on
a restricted subset of literals or any combination of such requirements. The goal is
then to determine the strongest consequences that belong to the production field
PF , called the characteristic clauses. In the following, although we do not introduce
special notations for that purpose, we assume the existence of such a production
field and that our concern is to compute consequents that belong to this production
field. The case where no restriction occurs simply corresponds to the case where
PF = LV .

An interesting variant of this problem is to determine the influence of a new
piece of information with respect to the set of characteristic clauses of a theory.
This can be formalized by the notion of proper prime implicate.

Definition 4 (Proper prime implicate of a clause w.r.t. a clausal theory). Let Σ
be a clausal theory and c be a clause

• a clause c′ is said to be an implicate of c w.r.t. P iff Σ ∪ {c} |= c′

• c′ is a prime implicate of c w.r.t. Σ iff

– c′ is an implicate of c w.r.t. Σ

– for any other clause c” implicate of c w.r.t. Σ, if c” |= c then c” ≡ c′

• c′ is a a proper prime implicate of c w.r.t. Σ iff

– it is a prime implicate of q w.r.t. Σ

– Σ 6|= c′.

2.3 Decentralized Consequence Finding

While several approaches have been proposed to compute sets of (proper) prime
implicates in a centralized setting [21], this is not the case for the distributed case.
In a P2PIS setting, the problem addressed here is to compute the set of proper prime
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consequents of some clause c, typically stated using the language of some queried
peer, with respect the global theory Σ = ∪i=1..nPi. But the major difficulty is that
this theory is unknown. None of the peer in the P2PIS has a global view of the
network. A peer only knows its own theory Pi and the variables it shares with its
neighbours.

DeCA [2] is the first algorithm that has been proposed to solve this problem
in fully decentralized way. Basically, it proceeds using a split/recombination strat-
egy. Although implemented as an anytime message passing algorithm, it can also
be described in a functional way. It has been established in [2] that both versions
(functional and message passing) are sound and complete for the problem of com-
puting the set of proper prime consequents and that they compute the same set of
consequents.

We recall in Algorithm 1 the functional version of DeCA (in a slightly gener-
alized version) and describe the main steps of this algorithm. We assume that the
same algorithm is running in the same way on all the peers of the P2PIS and that
DeCA(q, P, PF ) corresponds to the case where the peer P is asked to compute the
proper prime implicates of a clause q w.r.t. to the global theory of the P2PIS, for
the production field PF . We also assume that PF is a stable production field, i.e.
that any strict sub-clause of a clause of PF also belongs to PF .

Algorithm 1: Decentralized Consequence Finding Algorithm
DeCA(q, P, PF )
(1)DeCAH(q, {P}, PF, ∅)

DeCAH(q, SP, PF, hist)
(1) if for every P ∈ SP , (q, P, ) ∈ hist
(2) return ∅
(3) else if (q̄, , ) ∈ hist
(4) return {2}
(5) else
(6) result← ∅
(7) foreach P ∈ SP
(8) local(P )← {q} ∪ LocalCF(q, P, PF )
(9) foreach P ∈ SP and c ∈ local(P )
(10) if c ∈ ∪PF
(11) result← result ∪ {c}
(12) if S(c) 6= 2

(13) foreach literal l ∈ S(c)
(14) Answer(l)←
(15) DeCAH(l,acq(q, P ), PF, [(q, P, c)|hist])
(16) if for every l ∈ S(c) Answer(l) 6= ∅
(17) unionComb← {L(c)}> (>l∈S(c)Answer(l))
(18) result← result ∪ (unionComb ∩ PF )
(19) return result



A Multi-Layered Architecture for Collaborative Consequence Finding 217

When a peer P is asked to compute the proper prime implicates of a literal q,
the initial call just performs a call to DeCAH, which describes the simultaneous
execution of DeCA on a set of peers SP . For the initial call we have SP = {P}.
The additional parameter hist, initialized to ∅, is used as a structure to record the
history of successive recursive calls to DeCAH. It is essentially used to avoid loops
and useless calls in the reasoning (lines 1-4). This parameter is essential because no
further assumption is made on either the topology of the P2P network (that may
contain cycles) or the structure of the peer theories.

Then for each peer P ∈ SP , we first compute all proper prime implicates of q
w.r.t. its own local theory and the production field. This is the role of LocalCF(q, P,
PF ) (line 8) which only keeps those consequents c for which L(c) ∈ PF (it can
be shown that those that do not satisfy this property cannot contribute to produce
a consequent in PF ). Among the consequents produced so far, those that match the
production field are immediately added to the result to be returned. Moreover, any
clause c that contains shared literals is split in two subclauses: L(c) and S(c). S(c)
is then split in turn and for each shared literal l of S(c) DeCA asks its relevant
neighbors in acq(l, P ) (which are running the very same algorithm) to compute
similarly the proper consequences of l w.r.t. the P2PIS. When the answers for all
literals of S(c) have been obtained they are recombined together (using the distri-
bution operator >1) as well as with the non shared literals L(c), to produce the new
consequences. Clauses obtained in this way and that belong to the production field
PF are then also returned as answers for the initial query q.

The main differences between the functional and message passing versions of
DeCA is that the latter is an anytime algorithm, that uses asynchronous com-
munications between peers. Moreover, answers are returned and recombined in an
incremental way. The reader is referred to [2] for further details.

2.4 Illustrative Example

In order to get a better understanding of the DeCA algorithm, let us illustrate its
behavior on the network of Figure 1, when computing the proper prime implicates
of d4 on P4. For simplicity, we assume here that the production field PF = LV (i.e.
the set of all possible clauses).

• Local consequents of d4 on P4 are first computed, which gives: {d4,¬a4,¬b4 ∨
c4,¬d1 ∨ c4}. These clauses are immediately returned as answers for the initial
query. But since c4 and ¬d1 are shared literals, this also triggers two new queries,
to compute the (proper prime) consequents of c4 on P3 and of ¬d1 on P1.

• On P3, the local consequents of c4 are {c4,¬d3}. Since d3 is not shared, the
reasoning stops there and both answers are returned to P4, as answers for the
query c4 (where they will have to be recombined with the non-shared literal
¬b4).

1 If S1 and S2 are sets of clauses, S1 > S2 is defined as {c1 ∨ c2 |, c1 ∈ S1 and c2 ∈ S2}.
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• On P1 the set of local consequents of ¬d1 is {¬d1, a1, b1 ∨ e1}. These clauses are
sent to P4, as answers for the query ¬d1. But since e1 is a shared literal, this
also triggers a new query e1 for P3.

• On P3 the set of local consequents of e1 is {e1,¬b3}. These clauses are sent to
P1, as answers for the query e1. But since b3 is a shared literal, with P2, this
triggers a new query ¬b3 for P2.

• On P2 the set of local consequents of ¬b3 is {2} (which subsumes all other
clauses). 2 is returned as an answer to P3, where it subsumes e1 and ¬b3.
Eventually P3 returns 2 to P1, as an answer to the query e1

• On P1, 2 (which subsumes e1) is then recombined with b1 and the set of conse-
quents of d1 becomes {¬d1, a1, b1}. This set is returned to P4.

• On P4, these three clauses are now recombined in place of ¬d1 in the clause
¬d1 ∨ c4 with the answers obtained of c4, producing: {¬d1 ∨ c4, a1 ∨ c4, b1 ∨ c4,
¬d1 ∨ ¬d3, a1 ∨ ¬d3, b1 ∨ ¬d3}. These answers are added to those previously
obtained, namely {d4,¬a4,¬b4 ∨ c4,¬b4 ∨ ¬d3}.

Eventually, the set of proper prime consequents of d4 w.r.t. to the global theory
returned by the DeCA algorithm is: a1 ∨ c4, a1 ∨ ¬d3, d4,¬a4,

b1 ∨ c4, b1 ∨ ¬d3, ¬b4 ∨ c4,
¬d1 ∨ c4, ¬d1 ∨ ¬d3, ¬b4 ∨ ¬d3


As we can see on this example, the communication between peers induced by

the DeCA algorithm, requires the use of different kinds of messages. The query
messages are sent to ask a peer to compute the consequences of a clause, given some
reasoning history. The answer messages are used to return (some) answers to peers
asking for such queries. Since answers are returned in an incremental way, a third
kind of message (finish messages) is also used to inform a peer that all possible
answers to a given query have been produced and sent back to the querying peer.

2.5 Dealing with Possible Inconsistencies

The P2PIS considered in [2] are assumed to be consistent. However, in a fully
decentralized network where each peer is autonomous and may freely set up its
mappings, such an assumption, is not realistic. All peers do not necessarily agree on
all topics, some of them may have done mistakes or some malicious peer could want
to screw up the network. If the global theory is inconsistent, one may wonder about
the soundness of the derived conclusions, since any formula is then a consequence
of global theory.

This problem has been addressed in [10, 25], where it has been shown that it
is also possible to detect inconsistencies in a P2PIS in a fully decentralized way.
Moreover, it is possible as well to adapt the reasoning techniques used in DeCA
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to insure that the derived consequents can be produced from sound subsets of the
global theory.

This approach assumes that at least each peer theory Pi is consistent, and that
potential causes of inconsistencies are due to mappings. It describes an algorithm
called P2P-NG for detecting nogoods (i.e., minimal sets of mappings that entail
inconsistency). P2P-NG is called each time that a peer Pi wants to create a new
mapping m. It checks if the empty clause 2 is a proper implicate of m. It proceeds in
similarly way to DeCA using a production field PF = {2}, except that it considers
all possible derivations of 2 from m. For each of them it records its mapping support
(i.e. the set of mappings used in the proof). Each such proof induces a new discovered
nogood that is then stored on the peer Pi. As a consequence, all possible causes of
inconsistencies are detected incrementally and stored in the P2PIS in a decentralized
way.

Another algorithm WF-DeCA is then described in [10, 25], that allows to
compute the so-called well founded proper consequences of an input clause w.r.t. to
the global theory, while avoiding those that can only be produced from inconsistent
subsets of the global theory. It uses the same split/recomposition strategy as DeCA,
but also has to deal with the additional complexity induced by the management of
multiple mapping supports and the collection of relevant nogoods.

From an implementation point of view, the code of P2P-NG and WF-DeCA
presents many similarities but also significant differences with the original code of
DeCA. Although it evolved from the same source, it was developed by different
persons, with different coding practices and style as a result. As a consequence
simultaneous maintenance of these different pieces of code has turned out to be very
tricky and costly.

3 A MULTILAYERED ARCHITECTURE FOR SOMEWHERE2

3.1 Motivations and Objectives

The first experimental results obtained with the Somewhere platform have been
very encouraging, in particular from its scalability perspective. Nevertheless, this
system was rather a proof of concept, offering minimal services for the purpose of the
aimed experiments. It suffered from a number of limitations and lacked a number
of essential features to make it convenient to reuse in real applications.

One of the major limitation of this framework was the impossibility to deal with
really dynamic networks. All peers had to be configured in advance (i.e. before being
launched) and the peer addressing schema used for the communications between
peers required fixed addresses to be encoded into peer theories. As a consequence,
it was impossible for a new peer to join an existing network of peers. And the
peer communication protocol was not explicitly handling the possibility for a peer
to leave the P2PIS, what caused lots of instabilities in the case of a faulty process.
This also made the effective deployment of such P2PIS on different physical networks
particularly cumbersome. Moreover, the communication protocol was rather limited
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and implemented using socket-level interactions, that was not able to pass beyond
firewalls.

Another limitation is that it was impossible to modify the peer theories. Func-
tionalities from the user interaction point of view where reduced almost to the
minimum, i.e. the possibility for a user to ask a peer for computing the proper
prime consequents of a formula and, for the inconsistency-tolerant variant, to add
a new mapping and detect possible nogoods. But the structure of the code did not
facilitate the easy addition of such new commands.

From a software engineering point of view, the original code, as well as the
various extensions derived from it, suffered from many flaws. There was a lot of
duplicated code. The development did not followed strict naming/visibility rules
and homogeneous coding practices. The granularity of some pieces of code was also
unequal. And there were lots of serious cross cutting concerns that strongly affected
the modularity of the whole. The lack of modularity was really a crucial problem,
not only because this made the code maintenance tasks more complicated but also
because it was very difficult to test and compare alternatives implementations of
the same functionalities. For instance, the consequence finder used to produce the
local consequents on a peer followed a rather naive strategy. But it was difficult
to abstract this component from the rest of the code, to provide a more efficient
procedure. Another weakness was the lack of sufficient unit and integration tests.
As a consequence, it was difficult to ensure that some attempts to improve/extend
the code preserved all expected behaviors.

The need for reconsidering the whole architecture arose from all these facts. In
order to really improve the structure, robustness and flexibility of the new frame-
work, several objectives have been targeted, among which are the will to:

• reinforce the modularity of the code as much as possible

• make it easier to use alternative encoding of a same functionality

• add a real and extensible user interface

• introduce an abstract layer to characterize the communication protocol and fa-
cilitate the extensibility of the later

• rely on a tested peer-to-peer framework for managing the network of peers and
concrete communications between peers

• improve the performances of the local consequence finding algorithm

• factorize as much as possible the common code between the different variants

Moreover, this was also an opportunity to introduce better software engineer-
ing practices in the development cycle and use appropriate tools for source code
management and versioning, as well as for automated testing.

3.2 Architecture General Layout

Improved robustness has been obtained by a careful analysis of the functional de-
pendencies between the different parts of the code. The goal was to reduce such
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dependencies as much as possible. This has lead to the design of a multilayered
architecture, organized around several components. Each component itself is orga-
nized in several layers. Essential functionalities are first described at an abstract
level and then implemented at a particular level. Such a multi layered approach
greatly improves a flexibility of the code. Particularly, alternative implementations
for the same component can be introduced and tested without altering the existing
code.

The flexibility of Somewhere2 also results from the organization of the code
which is structured around the abstract notion of a module. Each module addresses
a specific concern. While some required modules are automatically loaded by the ap-
plication, others can be included (or not) at build time, according to the user’s needs.
A module manager is responsible for loading and configuring the different modules
in an appropriate way. The genericity of this approach also improves the flexibility
when it comes down to creating extensions and/or selecting different functionalities
during compilation.

The general layout of Somewhere2 architecture is described in Figure 2. It
is made up of 4 components: Module Manager, User Interface, Transport and Dis-
tributed Reasoning, each of which consists of several modules. The default config-
uration of Somewhere2 also rely on an extra component called IASI Libs, that
offers reasoning services, but in a centralized setting. Since such a library can also
make sense for other applications independent of Somewhere2, it is rather seen here
as an external dependency.

The different components have very little dependencies. These are represented
by top-bottom adjacencies. For example: the Distributed Reasoning component only
depends on the Transport and IASI Libs components. The Transport component,
on the other hand, only depends on the Module Manager component. Dependencies
between modules inside a same component are reflected in the same way.

Each component can contain required, abstract, concrete and/or external mod-
ules. The baseApp module plays here a central role, since it is responsible for the
instantiation and configuration of the other modules. Each module may in turn
have specific libraries dependencies and its own configuration scheme. The swr.cli

module extends the swr.baseApp module. It corresponds to the application entry-
point and provides an interface for the management of command line arguments.
A generic model of commands has been introduced to make the extension with
new commands very easy. The format of peer theories descriptions has also been
enhanced in order to facilitate the deployment on physical networks versions.

3.3 The Roles of the Main Components

We briefly describe noticeable features of some of these components.

User Interface This component is responsible for all interactions with a running
peer. It models a generic notion of command in the abtract module (ui) that
may be easily used to provide new interaction possibilities. Currently, there
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Figure 2. Somewhere2 architectural schema

is only one concrete module (ui.console) that corresponds to a command line
interface. But as illustrated in Figure 2, this is the place where the application
could be extended with graphical user interface (e.g. ui.swing).

Transport In contrast with the previous version of Somewhere, where all com-
munications were handled in an ad hoc manner at the socket level, the new
architecture has been designed in order to allow reusing an existing P2P frame-
work. The abstract communication module describes the concurrency model
(which is based on http-like sessions). It defines the core concepts required by
the application for exchanges between peers (messages types, processors, ses-
sions) and all what is relative to the evolution of the network (joining/leaving
peers, lost connections, . . . ).

This abstract layer has really proved to be precious since during the development.
Due to instabilities and/or obsolescence of some different P2P frameworks, three
different concrete modules have been implemented, corresponding respectively
to jxta [17], shoal [28] and jgroups [16], without affecting other part of the
code.

Distributed Reasoning This component is responsible for all knowledge level
aspects, relevant to the distributed consequent finding algorithms described
in [2, 10]. It defines the type of messages exchanged between peers (at the
application level) and those corresponding to relevant user interface commands
(e.g. modification of a theory, addition of mappings, . . . ), the message han-
dlers for the queue, the anytime recombination algorithm. This component is
structured in two modules. The module responsible for algorithms that tolerate
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inconsistency, implement the management of mapping supports and nogoods,
as well as the specialized algorithms P2P-NG and WF-DeCA. This module
depends on the pLogic.distributed module, and thus shares as much code as pos-
sible with the classical version of DeCA. Both modules still support some level
of abstraction, that allows to easily implement (and thus to compare) different
strategies for various key points of these algorithms.

IASI Libs Although it has its own interest (independent of Somewhere2) and is
thus packaged as an independent project, this component has been developed si-
multaneously to the other modules. It is the core library that is used for perform-
ing local consequent finding by the peers. Here again, various abstraction level
have been introduced, that allow using alternative implementations of common
data structures and of different consequence-finding algorithms. In contrast with
the original version the local consequence finder of which was based on a simple
split/backward chaining strategy, the consequence finder used in Somewhere2
may be seen as a corrected and optimized version of IPIA [18, 19].

Besides, the complete reorganization and redesign of the global architecture,
many improvements and functionalities have been added to the new framework. The
most noticeable one being probably the real ability to cope with the dynamicity of
networks, with peers that may safely join and leave the network. It is also possible
for a peer to modify its theory.

The robustness of Somewhere2 is also the consequence of a permanent effort
to follow good software engineering practices, such as the systematic use of unit
tests, the intensive use of design patterns and of static code analyzers (Sonar).
A Jenkins server has also been configured to set up integration tests. In its current
state, the project corresponds to around 13 000 lines of Java code, with less than
5 % redundancy. It is structured as a set of Maven projects with dependencies to
ease the build process.

4 FIRST EXPERIMENTAL RESULTS

In this section we present preliminary experimental results that have been obtained
using Somewhere2. Our main objective here is not to present an exhaustive
experimental study, that would require further work, but rather to show that the
new platform behaves well and scales up in a satisfactory way even on hard instances.

From a methodological point of view, since an extensive experimental work has
already been performed with the former platform, it seems natural to try performing
similar experiments and to compare the results obtained with both architectures.
However one should be careful with raw comparisons because these are meaningful
only for the cases where the experimental conditions are exactly the same and where
the tools that are compared compute the very same result, under the same assump-
tions. Yet, although Somewhere and Somewhere2 have both been designed to
solve the same kind of problems, i.e. to produce sets of proper prime consequents,
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there are some significant differences in the design of the two architectures that can
induce a serious bias on raw comparisons.

One major difference is that the original Somewhere includes a server func-
tionality, that allows hosting multiple peers on a single server. This feature was
introduced in order to make it possible to perform experiments involving a large
number of peers (up to 1 000) while a limited number of machines (75 for the ex-
periments reported in [2]). On this platform, communications between peers hosted
on a same server are managed directly by the server (thus avoiding any network
traffic). In contrast, with the new architecture each peer has to be run as a separate
instance of Somewhere2 and communications between different peers necessarily
transit through the network. Moreover, one may also expect some overhead induced
by layered design on Somewhere2 and particularly by the use of a separate frame-
work for P2P communications, while the earlier platform operates directly at the
socket level.

Another significant difference between the two approaches comes from the al-
gorithms that are used to compute local consequences on each peer. The former
approach uses a naive backward chaining strategy. It does not require the prior
saturation of the local theory but can in some cases produce some consequents that
are not proper ones. If these consequents contain shared literals, this can increase
the number of queries asked to neighbor peers and thus increase the traffic volume.
In contrast, the latter approach uses a more optimized consequence finder that en-
sures that all consequents produced are proper ones. From these two observations,
it is clear that the point here cannot be to compare raw experimental results, but
rather to verify that similar behaviors can be observed for similar instances.

As a consequence, in this study we have considered problem instances having the
same characteristics as those studied in [2]. These correspond to random networks
of peers generated using a small world graph generator (in the sense of Watts and
Strograd [31, 24]), supposed to reflect properties encountered in social networks.
The peer theories are then also generated in a random way, first by generating
a set of m clauses of length 2 over a set of n propositional symbols. For each peer,
a subset of t (t ≤ n) target variables is also randomly generated. These symbols
are used to define the production field PF as the set of clauses containing only
literals made from these variables. Then, for each pair of connected peers in the
small world graph that has been generated, we add a number of q mapping clauses
of length 2, by randomly picking one literal over the vocabulary of each peer. And
for some of them, we add a third literal, again randomly picked over the vocabulary
of both peers (we denote by p3m the proportion of 3-mappings i.e. that have 3
literals). Each mapping is then randomly inserted in one of the two peer theories.
We thus obtain local theories that correspond to 2+p3c formulas, i.e. sets of clauses
containing only clauses of length 2 and 3 (where p3c – which is different from p3m –
denotes the proportion of 3-clauses in the whole theory). The characteristics of such
random theories have been studied by Schrag and Crawford [27], for the problem of
prime implicate computation, and this study has been extended in [2] to the case
of proper prime implicates. It has been shown that even for very small values of
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p3c the number and total size of proper/prime implicates grows exponentially. As
a consequence, reasoning on local theories can already be quite hard, which of course
means that distributed reasoning on a large number of such theories can get even
harder.

For this set of experiments, we have considered local theories with more or less
the same size as those considered in [2], with m = 70 binary clauses and over
a vocabulary of n = 70 variables and a subset of t = 40 target variables for the
production field. We have the considered small world graphs of 100 peers, with
an average number of 5 neighbors for each peer. Then for each pair of neighbors
peers we have added q = 5 additional mapping clauses, with a varying proportion of
3-clauses. This represents 25 mappings between each pair of connected peers and,
since these are randomly assigned to the two peers, an average of 82.5 clauses for local
theories. The global theory thus contains 8 250 clauses over 700 variables and 400
target variables for the production field. Since the proportion of p3m of mappings
of length 3 is known to have strong impact on the difficulty of the problem, we have
considered 4 instances, denoted in the following tables by very easy, easy, medium
and hard corresponding to values for p3m of 0, 20, 50 and 100 %, respectively. Note
that, while the three first instances are in fact less easy than those with similar
labeling in [2], the hard cases in both experiments have similar characteristics.

For each instance, we then have generated a set of 500 random queries (actually
1000 for the two first instances), corresponding to random literals over the global
vocabulary (with an equal positive/negative probability). We then have deployed the
P2PIS corresponding to the different instances on clusters of the Grid’50002 network.
The machines used for these experiments were equipped with the quad core CPU
Xeon Processor X3440 (64 bits, 2.53 GHz, 8 Mb cache memory) and 4 Gb of main
memory, under a Linux OS. Each query has been launched on the appropriate peer,
with a time limit of 60 s, after which a timeout event is triggered and the computation
is interrupted. The table 1 accounts for average time observed to obtain answers
with Somewhere2.

The first four lines report respectively the average time (in seconds) required to
obtain the first, 10th, 100th and 1 000th answer corresponding to the query (charac-
ter ‘–’ means that there where less answers than the corresponding number). We
mention just below the percentage of the queries that effectively returned at least
as many answers (e.g. for the second line and second column, 51.3 % of the queries
asked to the peers returned at least 10 consequents, and the average time for pro-
ducing the 10th answer for those queries was 0.123 s). The last two lines indicate
respectively the average and median time over all answers (including those that
reached the timeout limit). For information, we also recall in the last column the
corresponding results obtained for the “hard” instance described in [10], since its
characteristics are almost the same, apart from the fact that it was in a larger net-

2 Grid’5000 is a French large grid project, being developed under the INRIA ALADDIN
development action with support from CNRS, RENATER and several universities as well
as other funding bodies [12]
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Somewhere2 Somewhere

Difficulty Very Easy Easy Medium Hard Hard
p3m 0 % 20 % 50 % 100 % 100 %

1st ans. 0.029 0.030 0.023 0.080 1.39
100 % 100 % 93.3 % 89 % 89.3 %

10th 0.262 0.123 0.170 0.828 1.13
27.7 % 51.2 % 54.0 % 28.1 % 12.0 %

100th – – 0.276 2.420 4.09
– – 8.4 % 12.1 % 10.7 %

1 000th – – – – 11.35
– – – – 7.15 %

Average 0.021 0.211 1.612 1.411 N.A.
Median 0.020 0.023 0.113 0.093 N.A.

Table 1. Answer time (in seconds) over 500/1 000 queries

work of peers (unfortunately, average and medium time had not been recorded for
these experiments).

The Table 2 reports the proportion of queries that have been completed within
the time limit and of those that have been interrupted by a timeout event. Most
of these timeouts are due to hard queries that were really too complex to be solved
within the allotted amount of time (the production field that is used here is quite
large). A few of them can also be explained by some grid instabilities.

Somewhere2 Somewhere

Difficulty Very Easy Easy Medium Hard Hard
p3m 0 % 20 % 50 % 100 % 100 %

% success 99.37 99.28 94.13 90.56 33.1
% timeout 0.63 0.72 5.87 9.44 66.9

Table 2. Proportion of success/timeouts over 500/1000 queries

As adviced before, raw comparisons with the results obtained with the earlier
version of Somewhere should be considered very cautiously, because of the previ-
ously mentioned differences between the two. Nevertheless, several points are worth
noticing.

First of all, for the easiest cases, propagations in the network should be lim-
ited because the depth and width of the reasoning are known to be small [2]. As
a consequence the reported time essentially reflects the effort spent on local compu-
tations. And since the theories are similar in size, this suggests a clear improvement
of the performances of the local consequence finder. This is however not surpris-
ing since a significant effort has been put in improving this part of the code (in
IASILibs).
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A second observation is that for the most difficult instances, performances still
remain in average much better than what could be observed with the earlier ver-
sion (up to a factor 2 for the difficult case). This looks more surprising since, as
the proportion of 3-clauses increases, the number of messages exchanged in the
network should augment in a significant way. Since in such networks the commu-
nication time generally dominates local computation time, one could expect per-
formances to decrease. This should result from the fact that prior savings due to
the server functionality in Somewhere do not occur anymore. Each peer runs
here on a different node of the grid. Moreover, one could also expect some ad-
ditional overhead induced by the introduction of the different layers in the new
architecture. On the other hand, when comparing these results with those of [2],
we observe that the number of returned answers is much smaller with the new ver-
sion. Two possible explanations might explain such a behavior. This can be due
to the new strategy used to compute local consequents, that filters out non proper
prime implicates. But it could also be biased by the fact that the number of peers
is here 10 times smaller than for the corresponding instances in [2]. Experiments
on similar, but larger networks, will probably help to investigate further on this
point.

The proportion of observed timeouts also vary in a significant way. As men-
tioned earlier, most of these correspond to queries that trigger a very large number
of messages between neighbor peers. We here observe that for the hard case we
have less than 10 % timeouts, while with the previous version this rate was around
67 %. One should however remain extremely cautious again with such a raw com-
parison. First, we here allowed 60 s per query while in previous experiments the
time limit was set to 30 s. But this difference alone cannot explain such an impor-
tant improvement. Another possible explanation could come from the differences
between the local consequence finder used in both approaches. Since non proper
prime implicates are filtered out, this reduces the number of subqueries to neigh-
bors and thus raises the chances for the whole process to complete during the time
limit. The improvement might also reveal that some situations (typically with com-
munication failures) are better handled with the new architecture than with the
former one. Indeed, a timeout occurs as soon as a single message is missing in
the whole tree of induced subqueries. And again, the smaller size of the networks
considered in this paper could also contribute to explain the reduction of time-
outs.

The reason for not having considered much larger networks until now is that this
requires using simultaneously a large number of nodes in the grid for a relatively
long period of time. Although it is possible to request for such time slots with
sufficient nodes, Grid’5000 resources are shared between many users for different
kinds of experiments. Usage policies stipulate that such expensive experimentations
should remain occasional. Therefore our goal was to experiment first with medium
size networks before stepping to larger networks. Since these results look promising
this is definitely one of the next steps in the agenda.
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5 RELATED WORK

To the best of our knowledge, the first Somewhere framework was until recently
the only implemented distributed consequence finder and the previous sections have
already stressed the main differences between the two platforms.

Recently it has been proposed in [7, 15] to generalize the ideas of theory parti-
tioning presented in [3, 4], originally designed to solve theorem proving techniques,
to the case of consequence finding. This method exploit a tree decomposition of the
original theory into a set of buckets gathering formulas expressed on subsets or the
original. Symbols common to different buckets constitute the communication lan-
guage between these buckets. In the original approach, information is propagated
from leaves of the tree to its root. The idea is to compute the consequences of the
information gathered so far, in the communication language of the current bucket
with its parent. While for the theorem proving approach, the ultimate goal is to
derive a contradiction in the root bucket, the idea is to enlarge the set of consequents
produced on each bucket to sets of clauses, corresponding to disjunctions of a sub-
clause that belongs to the production field and of a subclause that may be expressed
using the communication language. They propose adaptations of the Solar conse-
quent finder [22] to this task and study different strategies (sequential and parallel)
for exploiting such decompositions. One of the strength of this approach is that it
can be used over instances expressed in first order language. Bounding strategies
have however to be used on first order instances in order to avoid possible loops
in the reasoning. This work presents experimental results on a number of various
examples, either at the propositional of the first order level. Good results are appar-
ently obtained in many cases but they seem quite sensitive to the tuning of several
parameters. Anyway, although it is a distributed approach, it clearly presupposes
to have the global knowledge available, which contrasts to our fully decentralized
approach.

In another work [14] the same authors have tried to compare their previous
approach with an alternative one, that does not presuppose any decomposition and
thus is supposed to fit better to multi-agent like application contexts. They also
describe a message passing algorithm for consequence finding in a very high level
way. However, this approach looks highly non-deterministic and its description
is lacking sufficient details to get a precise understanding of the behavior on the
whole. It considers a case where the production field is the whole language. The
propagation strategy apparently corresponds to a general saturation of all the peer
theories according to their languages, but since these languages can evolve as new
clauses are received, it is not clear whether this amounts or not to some form of
centralization of the knowledge on most peers of the network, an approach that
would not be much convincing.

Another extension of the DeCA algorithm has been proposed by [6] for the case
where the global knowledge of the P2PIS is inconsistent. Authors suggest to adapt
reasoning techniques from argumentation theory, in order to arbitrate cases where
different conflicting pieces of knowledge could be derived in a well founded way (but
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from different consistent subsets). It can be seen as more refined alternative to [10].
However, this approach has been evaluated through some simulation, but has not
been implemented in a really decentralized framework.

6 CONCLUSION AND PERSPECTIVES

We have presented the architecture of Somewhere2, a complete reengineering
of the Somewhere framework. Its main improvements in comparison with the
previous framework are the following:

• the structure of the code has been completely reorganized as a set of components
with minimal dependencies, thus eliminating most crosscutting concerns,

• most components expose their features at an abstract level in separate modules,
thus allowing the easy integration of alternative implementations,

• the multilayered organisation clearly defines the interactions between compo-
nents, this facilitates the integration of further extensions as well as the main-
tenance of the existing code,

• it reunifies in a single and coherent framework both variants, tolerant or not too
inconsistent theories,

• it is now able to deal with network of peers which topology can evolve over time,

• peers can also safely modify their own theory, without compromising the stability
on the whole,

• the local consequence finder has been redesigned and optimized in order to
improve its performances and to produce only proper prime consequences.

All this characteristics contribute to the increased robustness of this new plat-
form. First experimental results have been reported and seem promising. They
suggest that the overhead induced by the multiple layers are easily compensated by
the optimization introduced elsewhere.

Our plan is to deepen our experimental study in the spirit of [2] in order to eval-
uate on which kind of networks and theories these decentralized consequent finder
can scale up (or not). Of course, we intend to consider much larger networks of peers
than those considered in this paper, but we would also like to consider other kind of
structures for local theories. Particularly, since we aim at using Somewhere2 as
a building block for PDMS systems, we would like to test these solvers on networks
of peers, whose theories are closer to the structure of ontological knowledge bases.

We expect Somewhere2 to be much easier to use, to maintain and to extend,
and for the benefit of the community, the code is released under an open source
licence Cecill-C (similar to LGPL) through the SourceSup forge [30].
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