
Computing and Informatics, Vol. 34, 2015, 233–253

AN EMPIRICAL STUDY ON COLLECTIVE
INTELLIGENCE ALGORITHMS FOR VIDEO GAMES
PROBLEM-SOLVING

Antonio Gonzalez-Pardo

Basque Center for Applied Mathematics (BCAM)
Bilbao, Spain
&
TECNALIA, OPTIMA Unit
E-48160,Derio, Spain
e-mail: antonio.gonzalez@uam.es

Fernando Palero, David Camacho

Escuela Politecnica Superior
Universidad Autonoma de Madrid
Madrid, Spain
e-mail: {fernando.palero, david.camacho}@uam.es

Abstract. Computational intelligence (CI), such as evolutionary computation or
swarm intelligence methods, is a set of bio-inspired algorithms that have been widely
used to solve problems in areas like planning, scheduling or constraint satisfaction
problems. Constrained satisfaction problems (CSP) have taken an important at-
tention from the research community due to their applicability to real problems.
Any CSP problem is usually modelled as a constrained graph where the edges rep-
resent a set of restrictions that must be verified by the variables (represented as
nodes in the graph) which will define the solution of the problem. This paper
studies the performance of two particular CI algorithms, ant colony optimization
(ACO) and genetic algorithms (GA), when dealing with graph-constrained models
in video games problems. As an application domain, the “Lemmings” video game
has been selected, where a set of lemmings must reach the exit point of each level.
In order to do that, each level is represented as a graph where the edges store the
allowed movements inside the world. The goal of the algorithms is to assign the

234 A. Gonzalez-Pardo, F. Palero, D. Camacho

best skills in each position on a particular level, to guide the lemmings to reach the
exit. The paper describes how the ACO and GA algorithms have been modelled
and applied to the selected video game. Finally, a complete experimental com-
parison between both algorithms, based on the number of solutions found and the
levels solved, is analysed to study the behaviour of those algorithms in the proposed
domain.

Keywords: Collective intelligence, ant colony optimization, genetic algorithms,
video games solving algorithms, Lemmings video game

Mathematics Subject Classification 2010: 68T20

1 INTRODUCTION

Bio-inspired computation has been widely used in different areas from combinatorial
optimization problems to stochastic search in a huge number of application domains.
From industrial or engineering applications [26] to theoretical developments [32],
they have been applied to study new bio-inspired approaches able to deal with NP-
complete or NP-hard problems [11]. In this kind of problems usually the problem
solving process needs a huge amount of resources (such as computational effort or
time) to find a solution. Some interesting examples of these applications are those
based on scheduling problems [64], constrained satisfaction problems [19], or routing
problems [55]; among others.

From the set of different methods and techniques that can be considered as
bio-inspired (artificial neural networks, fuzzy logic, evolutionary computation and
swarm-based intelligence), this paper will focus on the utilization of two of these
techniques and their application for video games-based problems. Genetic algo-
rithms (GA) have been selected as a representative example of an evolutionary
computation (EC) [30, 34] method, whereas the ant colony optimization (ACO)
algorithm has been employed as an example of a swarm intelligence (SI) [15, 31]
approach.

The selection of these algorithms (GA and ACO) has been made taking into
account two main characteristics. On the one hand, both types of algorithms work
with a population of possible solutions that navigates through the solution space
of the modelled problem. On the other hand, both algorithms need some kind of
a fitness function to guide the algorithm to the optimum solution. These charac-
teristics facilitate the comparison of both approaches through the utilization of the
same fitness function for the selected application domain.

In the case of GA, each individual is evaluated by a fitness function that al-
lows an individual evaluation. Then, those individuals with better fitness values
have a higher probability for being selected for the reproduction phase [14, 52].
The operator that allows the generation of new individuals taking into account the

An Empirical Study on CI Algorithms for Video Games Problem-solving 235

characteristics of the best ones is called the crossover. With this operator, new
individuals’ characteristics (i.e. genotype) are built by recombining their parents’
genotypes. Finally, the mutation operator changes randomly some genes of the new
individuals. Crossover and mutation operations provide the mechanisms for the
exploitation and exploration of the problem space [17, 35].

Swarm intelligence algorithms, such as ACO, focus on the collective behaviour
of self-organizing systems [33] where the iterations among individuals generate col-
lective knowledge based on social colonies [42]. Some examples of this type of
algorithms are particle swarm optimization [45], bee colony optimization [43], bird
flocking [57] or bacterial foraging [25]. In all of these algorithms the initial popula-
tion does not change, this means that there is not any generation of new individuals.
Instead of this, the population travels through the solution space in order to obtain
the best solution to the problem. In these approaches, the fitness function is not
used to measure the quality of the population, but to measure the quality of the
solutions found by the swarm. The fitness values are used to guide the whole popu-
lation, or swarm, to the solution. This fitness function is usually designed as a part
of the meta-heuristics used by this kind of algorithms.

The Lemmings game is a popular proven NP-hard puzzle game [23] that can
be used as a benchmark for CI algorithms. In spite of the popularity that this
game obtained in the 1990s, little research has been applied to it. Computational
intelligence has just been applied to video games such as Mastermind [13], the Art
of Zen [20], Ms Pac-Man [50], Tetris [18] or Mario Bros [60, 61].

The main contributions of this paper are related to the application of a classical
ant colony optimization [22, 29] and a genetic algorithm to the Lemmings video
game. To do that, both algorithms have been adapted to the selected video game.
An adequate problem modelling has been designed and several meta-heuristics have
been tested to determine whether a set of levels can be solved. Finally, this work
tries to provide an empirical study on the influence that the environment (in this
case, the Lemmings level) exerts over these different algorithms. In order to do that
the performance of a genetic algorithm (GA), an ant colony optimization (ACO) and
a heuristic for the ACO will be analysed based on the number of solutions found
and complexity of the levels solved [51].

2 COMPUTATIONAL INTELLIGENCE IN VIDEO GAMES

Traditionally, the utilization of techniques from the artificial intelligence (AI) area
and other sub-areas such as computational intelligence has been employed in classi-
cal board games like chess, checkers, kalaha, go, othello, Tic-Tac Toe, etc. [49, 51].
However, the high impact of video game industry has generated an increasing inter-
est in the practical utilization of AI and CI techniques in commercial video games.
Currently, there exist a wide number of international conferences that propose dif-
ferent competitions, or challenges, whose main goal is based on the utilization of
AI and CI techniques to solve problems like: automatic solving levels, definition of

236 A. Gonzalez-Pardo, F. Palero, D. Camacho

autonomous non-player characters (i.e. autonomous bots), automatic generation of
levels, etc.

Maybe, the most popular competitions are those from the IEEE International
Conference on Computational Intelligence and Games (www.ieee-cig.org). This
conference has promoted different competitions in the last ten years based on popular
video games like Mario Bros, Ms-Pacman or StarCraft. The basic idea behind these
competitions is based on the utilization of a video game platform that can be used
to integrate AI/CI algorithms to test their behaviour in a particular challenge.

2.1 Current Video Games Platforms&Competitions

This section will briefly describe the main and most popular video games com-
petitions offered by CIG conference. In the last edition (CIG’2013) the set of
competitions proposed included: Student Video Competition; Physical Travelling
Salesman Problem (PTSP); Multiobjective – Physical Travelling Salesman Problem
(MO-PTSP); Geometry Friends; Platformer AI Competition (formerly Mario AI);
StarCraft RTS AI Competition. From previous competitions, only some of them
directly related to our video game proposal (Lemmings) will be analysed.

2.1.1 Ms Pac-Man

Ms Pac-Man is a predator-prey arcade game, where the species, pac-man and ghost,
compete, evolve and disperse simply for the purpose of seeking resources to sustain
their struggle for their very existence. The game consists of a maze with paths
and corridors that the Pac-Man moves through collecting food pills that fill some of
these paths. The aim of the game is to control the Pac-Man in order to clear all pills
in the current maze and then advance to the next one. To do that, methodologies
based on AI/CI techniques that have been used for that game are mainly based on
genetic programing and coevolution [50].

During the game, the Pac-Man is chased by four ghosts any of whom will kill
the Pac-Man if they are able to catch him. The ghosts behave in a non-deterministic
way, which makes it hard to predict their next move although their general behaviour
varies from random to very aggressive. The goal of a Ms Pac-Man controller is to
maximise the score of the game. In the competition, it is the average score against
multiple ghost teams that counts and the winning controller is the one which obtains
the highest total average score. Therefore, the goal of a ghost-team controller is to
minimise the average score obtained against it by different Ms Pac-Man controllers.
The winning ghost team will be the team with the lowest average score against it.

2.1.2 Platformer AI

The Platformer AI Competition is the successor for the Mario AI Championship
(www.marioai.org), and it is focused on two main AI topics: procedural content

An Empirical Study on CI Algorithms for Video Games Problem-solving 237

generation (i.e. level generations) and imitating human behaviour. In the past IEEE-
CIG 2012 competition, the Turing Test Track from the Mario AI Championship was
focused on developing human-like controllers.

The test bed game used for the competition is a modified version of Markus
Persson Infinite Mario Bros (mojang.com/notch/mario/) which is a public domain
clone of Nintendo classical two-dimensional platform game Super Mario Bros. The
game-play in Super Infinite Mario Bros takes place on two-dimensional levels in
which the player (Mario) has to move from left to right avoiding obstacles and
interacting with game objects. Mario can move left, right and jump, additionally
two keys can be used to allow Mario to run, jump, or fire (depending on the state
he could be in the game).

One of the main goals of this competition is to be able to compare different
controllers development methodologies against each other. These controllers can be
based on different AI/CI techniques such as artificial evolution, evolutionary neural
networks, genetic programming, fuzzy logic, temporal difference learning, human
ingenuity, hybrids of the above, etc. [61].

2.1.3 Physical Traveller Salesman Problem

The Physical Travelling Salesman Problem (PTSP) is a real-time game played on
a two-dimensional map. The map has walls and obstacles, and several waypoints.
In the MO-PTSP competition each map has 10 waypoints. The map itself is repre-
sented as a bitmap, where each pixel is either a wall or an empty space. The game
proceeds in discrete time steps, usually one step every 40 ms (i.e. 25 per second).
The player controls a spaceship, similar to the one in the classic video game Aster-
oids. The ship can rotate using a constant angular speed, and can apply thrust in
the direction that it is currently pointing. The goal is to minimize three different
objectives: time taken to complete the maze, fuel consumed in the process, and
damage taken by the ship.

In this challenge like in Platformer AI, the aim is to be able to compare different
controllers development methodologies against each other, such as Monte Carlo
tree search, evolutionary neural networks, niched pareto genetic algorithms, non-
dominated sorting genetic algorithms, strength pareto genetic algorithms, etc. [20].

2.1.4 StarCraft

Blizzard’s StarCraft is one the most popular, and fun, examples of the real-time
strategy (RTS) genre. In this game, a set of races (Protoss, Zerg and Terrans) can
be used to build units that have access to different technology skills, every unit
works differently and requires different tactics for a player to succeed.

The enigmatic Protoss have access to powerful units and machinery and ad-
vanced technologies such as energy shields and localized warp capabilities, powered
by their psionic traits. However, their forces have lengthy and expensive manufac-
turing processes encouraging players to follow a strategy of the quality of their units

238 A. Gonzalez-Pardo, F. Palero, D. Camacho

over the quantity. The insectoid Zerg possess entirely organic units and structures,
which can be produced quickly and at a far cheaper cost to resources, but accord-
ingly they are weaker, relying on sheer numbers and speed to overwhelm enemies.
The Terrans provide a middle ground between the other two races, providing units
that are versatile and flexible. They have access to a range of more ballistic military
technologies and machinery, such as tanks and nuclear weapons.

There are two different game modes; one against one, and teams. The game’s
goal is to compete for resources and destroy the enemy. For this reason, once
the game has started, the players must recollect raw material and build as quick
as possible, factories, buildings, etc. During the game, both players (or teams) are
constantly evolving to overcome the opponent, winning land and destroying enemies
settlements. To do this it is needed that the player continuously evolves and adapts
the strategy in function to the enemy movements.

The CIG StarCraft1 competitions have shown some relevant advances in the
development and evolution of new StarCraft bots. Although human top Starcraft
players remain unbeaten, the machines are striving to close the gap between human
and artificial intelligence.

Although each race is unique in its composition, no race has an innate advantage
over the other. Each species is balanced out, so they have different strengths, powers,
and abilities. But their overall strength is the same and therefore an ideal candidate
to test different AI approaches like: neural networks, evolutionary algorithms, fuzzy
systems, swarm intelligence and artificial immune systems [14].

2.2 The Lemmings Video Game

Lemmings are creatures that need to be saved. In each level, lemmings start in
a specific point of the stage and must be guided to the exit point by the player. They
live in a two-dimensional space and are affected by gravity. They start walking in
a specific direction until they find an obstacle. In this case the lemming will change
the direction and walk back. In the case where the Lemming encounters a hole, it
will fall down. The only two ways, considered in this paper, by which a lemming
can die is by falling beyond a certain distance, or by falling from the bottom of the
stage.

In order to make lemmings to reach the exit point, players have a set of “skills”
that must be given (not necessarily all of them) to the lemmings. Using these
skills, lemmings can modify the environment creating tunnels, or bridges, and thus
creating a new way to reach the exit. There are eight different skills which are the
following:

Climber. A lemming given the climber skill can scale vertical walls.

Floater. This skill allow the lemming to open an umbrella if it falls beyond a high
distance, avoiding its death.

1 ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2013

An Empirical Study on CI Algorithms for Video Games Problem-solving 239

Exploder. The lemming will explode after a short delay.

Blocker. Using this skill, a lemming will halt and the rest of Lemmings will turn
around.

Builder. The Lemming with this skill will build a bridge of a specific length.

Basher. To create horizontal tunnels if the environment allows it.

Miner. This skill is similar to the previous one, but in this case the tunnel is dug
in diagonal direction.

Digger. The lemming will dig vertically downwards until it founds air or a solid
material.

In the lemmings’ world, there is a huge number of materials, but all of them
can be grouped in two different classes: the ones that can be modified (i.e. they can
be dug) and the ones that cannot be altered. In the former type, skills like Basher,
Miner and Digger are allowed. In the case that a lemming is digging and finds
a material that cannot be dug, the lemming will stop digging and start walking.
Furthermore, each game level has its own skill configuration, where each skill can
be used (i.e. assigned) a maximum number of times. It is not necessary to use all of
the skills in the levels. Based on both kind of materials, editable and non editable,
three different complexity levels have been designed:

Easy. These levels use both kinds of materials, and the human-like solution is
a short path (few lemmings actions) with few skills that are required to reach the
exit. When a non editable material is used, the lemmings colonies are “guided”
to the exit because those skills related to “digging” abilities cannot be used
(therefore the search space is reduced). Figure 1 a) shows an example of an easy
level.

Hard. This type of level only uses editable materials, and the solution to reach
the exit needs to be taken from a large number of skills and actions (large
solution paths). Figures 1 c) and 2 a) show the representation of two different
hard levels.

Medium. These levels use a combination of previous ones as Figure 1 b) shows.
In these kinds of levels, both materials can be used and the solutions can be
a mixture of actions. In the level, it is possible to find parts with a high
level of freedom for the lemmings (they can use all of the available skills),
and some other parts, where the number of skills, that can be used, is re-
duced.

The Lemmings game can be considered an interesting research video game prob-
lem specially for optimization algorithms. Three main objectives are necessary to
optimize in this game: to save the maximum number of lemmings in each level, to
minimize the use of skills needed to reach the exit of the level, and finally to find
the best path that allows to save as many lemmings as possible using less skills.

240 A. Gonzalez-Pardo, F. Palero, D. Camacho

a) b) c)

Figure 1. a) Easy level, b) medium level, c) hard level with editable and non editable
material.

2.3 Summary on Video Games Platforms for AI/CI

Finally, there is a summary of the main features and characteristics from previous
sections. This summary contains the following:

Competition. The name of the video game competition.

Platform. Examples of framework, or challenges, that have been used in the cor-
responding competition.

Algorithm. Some of the AI and CI algorithms that have been used in the compe-
titions (it is not an exhaustive list).

Goals. The main goals that must be reached for each competition.

Although a wide number of algorithms and techniques from CI (i.e. neural net-
works, evolutionary strategies or fuzzy logic) and other AI methods (from heuristic
search to statistical methods) have been successfully applied, the Lemmings video
game provides two new interesting features. On the one hand, the video game pro-
vides different kinds of terrains, that the algorithm must take into account to avoid
a premature death of the lemming, or to decide an adequate selection from the
available skills. This characteristics provides an interesting “context” that should
be handled by the algorithm (for instance, by using a constraint-based modelling of
the environment or a meta-heuristics to select the best skill). On the other hand,
the game itself needs from the management and control of a colony of lemmings. It
is necessary to coordinate those lemmings to look for the best solution. However,
the optimum solution is based on a mixture of different goals, so multi-objective
algorithms can be easily applied in this domain.

• Competition: Ms Pac-Man

– Platform: Software Kit [1], CSharp Kit, Alternative, Kit Unified Toolkit

– Algorithms: genetic programming, coevolution

– Goals

∗ Ms Pac-man: to maximize the score of the game

An Empirical Study on CI Algorithms for Video Games Problem-solving 241

∗ Ghost Team: to minimize the average score obtained against it by the
different Ms Pac-Man controllers

• Competition: Platformer AI

– Platform: Level Generation Track [2], Turing Test Track [3]

– Algorithms: evolutionary neural networks, coevolution, genetic program-
ming, fuzzy logic, temporal difference learning, human ingenuity, hybrids
of the above, artificial evolution

– Goals

∗ Procedural content generation Pac-Man controllers
∗ To imitate human behaviour

• Competition: PTSP

– Platform: the PTSP Framework [4]

– Algorithms: evolutionary neural networks, niched Pareto genetic algorithm
(NPGA), nondominated sorting genetic algorithm (NSGA), strength Pareto
genetic algorithm (SPGA), Monte Carlo tree search

– Goals

∗ To minimize the fuel consumed in the process
∗ To minimize the damage taken by the ship
∗ To minimize the time taken to complete the maze

• Competition: StarCraft

– Platform: AIUR for Protoss [7], BTHAI for Terran [8], Nova for Terran [10],
Skynet for Protoss [5], BWAPI for all razes [9], Adjutant for Terrain [4]

– Algorithms: evolutionary algorithms (EA), fuzzy systems (FS), swarm intel-
ligence (SI), artificial immune systems (AIS), neural networks (NN)

– Goals

∗ Expansion around the map
∗ Create legions
∗ Adapt the strategy in function to the enemy movements
∗ Destroy the enemy or enemies

• Competition: Lemmings

– Platform: no available platform [38]

– Algorithms: ant colony optimization (ACO), genetic algorithms (GA)

– Goals. To minimize three different objectives:

∗ The use of skill necessary to pass the level
∗ Find the best path that allows to save more lemmings and use less abilities
∗ Save the maximum number of lemmings in each level

242 A. Gonzalez-Pardo, F. Palero, D. Camacho

3 CI MODELLING FOR VIDEO GAMES PROBLEM-SOLVING

3.1 Constraint-Based Graph Modelling

The proposed video game, The Lemmings Game, can be seen as a constraint satis-
faction problem (CSP) where the variables denoted as X are the different positions
of the levels and the possible values D are the skills that lemmings can execute in
each position. The set of constraints C is composed by the number of lemmings that
must be saved, the maximum number of skills that can be applied in each level, or
the different destination from a given position taking into account the applied skill
(i.e. given a position the set of possible destination nodes is different whether the
skill is Builder or Digger).

In order to execute an ACO algorithm to solve a CSP, authors model the CSP
as a graph G = (V,E):

V = {〈Xi, v〉 | Xi ∈ X and v ∈ D(Xi)}
E =

{
(〈Xi, v〉 , 〈Xj, w〉) ∈ V 2 | Xi 6= Xj

}
, (1)

where the nodes V represent the variable/value pairs (〈variable, value〉) and E repre-
sents the edges connecting those nodes whose variables X are different. The problem
with this representation is the size of the resulting graph. On the one hand, if the
problem has N variables and each of them can take M different values, the resulting
graph will contain N ∗ M nodes. On the other hand, the graph is almost fully-
connected (so each node will be connected to the rest of nodes), for this reason the
number of edges is (N ∗M) ∗ (M ∗ (N − 1)) = N2 ∗M2 −N ∗M2 ∼= N2 ∗M2. This
characteristic makes that problems composed by many variables or by variables that
could be assigned with many different values, become really difficult to model due
to the size of the resulting graph.

In this work, the model used to represent CSP as a graph is the one described
in [37]. This model is based on a simplification of the graph that groups different
variables with similar meaning, and creates as many nodes as identified groups.
The improvement in the size of the resulting graph is produced because with this
approach the number of nodes is drastically simplified (instead of having a node for
all pairs 〈Xi, v〉, the resulting graph has as much nodes as groups of variables). If
the Lemmings level is mapped into a graph using the classical approach for each
position, the resulting graph would have eight nodes (each of them represents the
action that can be applied in the corresponding position). With the approach used
in this work, each node only represents a position and the ants are in charge of
selecting a specific skill to be applied in this position.

This simplification entails two disadvantages:

1. The behaviour of the ants is more complex. In the classic approach, ants travel
through the graph and the action of visiting a node represents an assignation in
the problem. For example, if an ant visits the node 〈Xi, vi〉, the ant is assigning

An Empirical Study on CI Algorithms for Video Games Problem-solving 243

the value vi to the variable Xi. In the simplified model, used in this work, each
time any ant visits a node, the ant must select a variable (position) contained
in the node and assign a value (skill) for this variable taking into account the
different constraints.

2. The different combination of pairs 〈variable, value〉 instead of being represented
in the number of nodes contained in the graphs, are represented in the number of
pheromones that ants can deposit in the graph. This problem is really important
in problems composed by variables with a large set of values for the variables.

The adaptation of Lemmings level into the simplified approach is performed
in two different phases. First of all, the level is represented in a two-dimensional
representation that contains information about the starting point, the exit point
and the terrain information of the level. Figure 2 shows an original Lemmings level
(Figure 2 a)) and the simplification of this level into a two-dimensional represen-
tation (Figure 2 b)). Once the two-dimensional representation is extracted, this
representation is mapped into a constraint-based graph.

The constraint-based graph contains as many nodes as squares are contained in
the two dimensional representation and the edges represent the allowed movement
that ants can perform. It is important to note that the application of different skills
in the graph will produce the creation of new edges in the graph, thus ants deal with
a dynamic graph. An example of the constraint-based graph is shown in Figure 2 c).

a) b) c)

Figure 2. A hard Lemmings level. a) shows one of the Lemmings level designed for the
experiments carried out in this paper, b) shows a two-dimensional representation
of this level where only the starting and exit point, and the walls are represented.
Finally, c) screenshot shows the constraint-based graph model for this level.

Using this representation, the two described problems arise, nevertheless these
problems are not very important in the application domain of this work for following
reasons:

1. Although the behaviour of the ants is more complex, the resulting behaviour is
still a swarm-behaviour that allows the simulation with a high number of ants
executing at the same time in a machine.

244 A. Gonzalez-Pardo, F. Palero, D. Camacho

2. The number of pheromones in the graph is not important due to the number of
possible skills that can be applied in each position is, at maximum, eight.

3.2 Genetic Algorithm Approach

The GA applied in this work initializes individuals with a random genotype length.
The maximum length of the genotype depends on the maximum time of the level or
the maximum genotype length allowed. This genotype is a list of genes where each
gene (〈T, S〉) contains the skill (S) that is going to be executed in the step T . Both
values (step and skill) are selected randomly depending on the maximum time given
to solve the level, and a total number of remaining skills. The genotype represents
different decisions that the player could make. This genotype is then evaluated
against the level. The lemming starts its execution applying the skills specified in
the given steps.

The goal is to maximize the fitness function represented by Equation (5) that it
is composed by: Equations (2), (3) and (4). Equation (2) represents the number of
lemmings saved in the level, and it takes into account the total number of lemmings
available in the level, the number of blockers and the number of exploded lemmings.
Equation (3) takes into account the total time that is given and time spent by the
lemming to solve the level while Equation (4) is used to favour those paths that use
less actions, or less skills. For this reason this last equation uses the total number
of available actions and the number of actions that the lemming has used.

S(Ind) = TotalLemmings− BlockersUsed(Ind)− ExplodedLemmings(Ind) (2)

T (Ind) = MaxTime− Time(Ind) ∗ S(Ind) (3)

A(Ind) = TotalActionsAvailable− ActionUsed(Ind) (4)

F (Ind) =
T (Ind) + A(Ind) + S(Ind)

MaxTime + TotalActionsAvailable + TotalLemmings
(5)

Although ACO will use the same function (Equation (5)) to evaluate the good-
ness of the paths, only GA can produce a negative fitness value. This negative
value is obtained in the case where the individual produces an invalid path (i.e. in
the evaluation the lemming is not able to reach the exit point or the lemming dies
trying it). In this case, the fitness value is F (Indi)− 1, in such a way, paths really
close the optimal solution will have a fitness value close to 0 while the corresponding
values for the worst path will be close to −1.

3.3 Ant Colony Optimization Approach

This work uses a classical ACO to search for the best paths of the levels. In this
case, the nest of the colony is located in the node that represents the level starting
point and the food is located in the node that represents the level exit point.

An Empirical Study on CI Algorithms for Video Games Problem-solving 245

From the nest, ants start building their own local solution while they travel
through the graph. In order to do that, each ant executes the behaviour described
in Algorithm 1.

Algorithm 1: Ants behaviour

1 S ← possibleSkills(currentPosition)
2 P ← pheromoneInformation(currentPosition)
3 skill← selectSkill(S, P)
4 if (skill 6= null)) then
5 if canBeExecuted(skill, currentPositions) then
6 updateRemainingSkill()
7 putPheromone()
8 updateCurrentAction(skill)

9 end

10 end
11 execute(currentAction)

Line 1 in this behaviour corresponds with the problem heuristic. In this work,
two different heuristics have been used called Random Heuristic and Common-Sense
Heuristic. Using the random heuristic, each ant can execute any skill in any position.

The second heuristic used in this work is called Common-Sense Heuristic. In
this case, ants can perceive the environment (i.e. ants know the type of terrain of
the surrounding nodes) and filter the skills that they can apply depending on this
environment. For example, given an ant if the type of the node where the ant is
placed and their surrounding are Air, the ant understands that the lemming is falling
and a possible skill to apply is Floater, but not Builder.

Once the ants have the values for the different skills, corresponding to the heuris-
tic function and the pheromones, the decision of selecting one of them is computed
using Equation (6).

pij =

ταijη

β
ij∑

u∈Nk
i
ταiuη

β
iu

if j ∈ N k
i

0 if j /∈ N k
i

(6)

where N k
i is the set of feasible nodes connected to node i, with respect to the

ant k. τij represents the pheromone value of travelling from node i to node j and
ηij represents the heuristic value of moving from node i to node j. Finally α and β
are two parameters that control the influence of the pheromones and the heuristic
function exerts in the ants behaviour. On the one hand, if β � α, ants will be
guided basically by the heuristic function. On the other hand, if β � α, the ants
will follow the paths found first and thus the algorithm will show a rapid convergence
to suboptimal paths.

Finally, when any ant finishes its path (because the ant has reached the food,
the ant is trapped or because by following this path the corresponding lemming will

246 A. Gonzalez-Pardo, F. Palero, D. Camacho

die), ant undoes the followed path updating the corresponding pheromones with
a value that represents the goodness of this path. In this case, this value is obtained
by the same function as the one used in the GA (Equation (5)). When the ants
reach the nest, they forget the followed path and start a new search.

4 EXPERIMENTAL RESULTS

In this section, some experimental results are given. The aim of the experiments
is to analyse the influence of the environment in the behaviour of GA and ACO
algorithms.

4.1 Experimental Setup

Parameter Value

Population size 100
Max. genotype length 20
Generations 500
Offsprings 1
Crossover rate 90 %
Crossover type One point
Mutation rate 1 %
Elitism No

Table 1. Configuration of the experiments with GA

Fourteen different levels have been designed to measure the efficiency of corre-
sponding algorithms. The complexity of the levels is based on the size of a level,
different blocks contained into each level, the distance from the entry point to the
exit point, the number of skills needed to solve the level, the type of terrains con-
tained in the levels, etc. In this work, three different complexity levels are considered:
easy, medium and hard.

Parameter Value

Ants 100
Steps 500
Evaporation rate 1 %
α 1
β 1

Table 2. This table describes the configuration for the ACO experiments. The parameters
showed in this table are the number of ants that compose the colony, the number
of the simulation steps, the values for α and β that determine the influence of the
heuristic function and the pheromones value exert in the ants selection process, and
the evaporation rate that is used in the stigmergy process

An Empirical Study on CI Algorithms for Video Games Problem-solving 247

All the experiments have been repeated 50 times, and they have been analysed
using GA, ACO with random heuristic and ACO with common-sense heuristics.
From these experiments, the number of different found paths is used to compare the
performance of these algorithms.

The configuration of the different parameters used in the GA are shown in
Table 1 while Table 2 shows the configuration for the ACO experiments.

4.2 Experimental Analysis

Until now, experimental results reveal that both, GA and ACO, can be applied to
search the paths that solve the levels. Nevertheless an important questions can be
formulated: How many different successful paths can these algorithms find? This
is a question about how many different solutions this algorithm can find. This
information is showed in Table 3. The values correspond to the number of different
paths found in 50 executions of the algorithms.

Level Complexity
Genetic ACO ACO

Algorithm (Random Ant) (Common-Sense)

1 Easy 3 219 3 868 2 516
2 Easy 12 629 4 463 4 042
3 Easy 2 364 446 1 330
4 Easy 649 2 128 2 560

5 Medium 370 1 130 2 487
6 Medium 162 575 2 520
7 Medium 54 35 157
8 Medium 1 12 228
9 Medium 7 348 326

10 Hard 2 15 32
11 Hard 0 3 7
12 Hard 2 18 62
13 Hard 164 26 35
14 Hard 1 4 23

Table 3. Number of different solutions found by the algorithms described

Dealing with easy levels, all algorithms founds a large set of different paths. In
general, genetic algorithms and ACO with the random heuristic finds more paths
than ACO with the common-sense heuristic. This is produced because GA and the
random ACO are able to explore different actions that allows them to find different
paths.

Taking into account medium and hard levels, ACO (with both heuristics) finds
more paths than GA. This is an expected result because ACO gradually builds
the solutions and GA needs to create the whole path at the beginning. When the
size of the level increases, the difficulty of building a valid path from the beginning
increases.

248 A. Gonzalez-Pardo, F. Palero, D. Camacho

Finally, in general when the problem is medium or hard, ACO with the common-
sense heuristic finds more paths than ACO with the random heuristic. This is
produced because the common-sense heuristic uses the environment of the ant to
filter the set of possible actions to execute. On the contrary, the random heuristic
makes ants to explore solutions that produce the death of the lemming.

5 CONCLUSIONS

This paper analyses the possibility of applying genetic algorithm and ant colony
optimization to generate automatic game level solver tools. The application domain
of this work is the well-known Lemmings game, where lemmings have to apply dif-
ferent skills in order to reach the exit. Fourteen different levels have been designed
with different complexity depending on the size of the level, the number of avail-
able skills, or the distance between the start and the destination point, amongst
others.

Experimental results reveal that both algorithms can successfully be applied to
solve the levels. Nevertheless, as it can be seen in Table 3, the genetic algorithms
provide less different paths than ant colony optimization, when the levels are medium
or harder. This may be produced because GA generates individuals without taking
into account the level landscape (i.e. it is a blind generation of individuals). On the
other hand, ACO uses the terrain information to apply different skills at specific
steps and thus, it provides better results.

Regarding the question whether it is important, or not, the environment for
the ant colony optimization, the performance of random ants is compared with
the performance of common-sense ants that takes into account the environment in
order to select what skill is going to be applied. Taking into account the number
of different paths found by both algorithms, random ants find more paths when the
level is medium, but when the problem is hard, the common-sense ant algorithm
reports more different solutions. This fact demonstrates that level information is
very important to make automatic level solvers.

We plan the study of these algorithms applied to a real world application such as
Project Scheduling Problem or Traffic Optimization, and to test whether we obtain
good results.

Acknowledgments

This work is supported by the Spanish Ministry of Science and Education un-
der Project Code TIN2014-56494-C4-4-P, Comunidad Autonoma de Madrid under
project CIBERDINE S2013/ICE-3095, and Savier an Airbus Defense & Space pro-
ject (FUAM-076914 and FUAM-076915).

An Empirical Study on CI Algorithms for Video Games Problem-solving 249

REFERENCES

[1] Ms Pac-man Software Kit. http://dces.essex.ac.uk/staff/sml/pacman/

PacManContest.html.

[2] Platformer AI Level Generation Track. http://www.marioai.org/

LevelGeneration.

[3] Platformer AI. Turing Test Track. http://www.marioai.org/turing-test-track.

[4] PTSP Framework. http://www.marioai.org/turing-test-track.

[5] Skynet for Protoss. http://code.google.com/p/skynetbot/.

[6] Starcraft Adjutant for Terran. http://code.google.com/p/adjutantbot/.

[7] Starcraft. AIUR for Protoss. http://code.google.com/p/aiurproject/.

[8] Starcraft. BTHAI for Terran. http://code.google.com/p/bthai/.

[9] Starcraft. BWAPI for All Razes. https://code.google.com/p/bwapi/.

[10] Starcraft. Nova for Terran. http://nova.wolfwork.com.

[11] Abraham, A.—Ramos, V.: Web Usage Mining Using Artificial Ant Colony Clus-
tering and Linear Genetic Programming. The 2003 Congress on Evolutionary Com-
putation (CEC 03), 2003, Vol. 2, pp. 1384–1391.

[12] Acan, A.: GAACO; A GA + ACO Hybrid for Faster and Better Search Capability.
In Ant Algorithms. Springer Berlin, Heidelberg, 2002.

[13] Berghman, L.—Goossens, D.—Leus, R.: Solving Mastermind Using Genetic
Algorithms. Computers & Operations Research, Vol. 36, 2009, pp. 1880–1885.

[14] Blickle, T.—Thiele, L.: A Comparison of Selection Schemes Used in Evolutionary
Algorithms. Evolutionary Computation, Vol. 4, 1996, pp. 361–394.

[15] Blum, C.—Merkle, D.: Swarm Intelligence. Introduction and Applications.
1st edition, Springer, 2008.

[16] Bonabeau, E.—Dorigo, M.—Theraulaz, G.: Swarm Intelligence. From Natural
to Artificial Systems. Oxford, 1999.

[17] Bäck, T.—Schwefel, H.: An Overview of Evolutionary Algorithms for Parameter
Optimization. Evolutionary Computation, Vol. 1, 1993, No. 1. pp. 1–23.

[18] Chen, X.—Wang, H.—Wang, W.—Shi, Y.—Gao, Y.: Apply Ant Colony Op-
timization to Tetris. Proceedings of the 11th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), 2009, No. 1, pp. 1741–1742.

[19] Chunlin, J.: A Revised Particle Swarm Optimization Approach for Multi-Objective
and Multi-Constraint Optimization. GECCO, 2004.

[20] Coldridge, J.—Amos, M.: Genetic Algorithms and the Art of Zen. Technical
report, Manchester Metropolitan University, 2010.

[21] Cole, N.—Louis, S. J.—Miles, C.: Using a Genetic Algorithm to Tune First-
Person Shooter Bots. Proceedings of the Congress on Evolutionary Computation,
2004, No. 1, pp. 139–145.

[22] Colorni, A.—Dorigo, M.—Maniezzo, V.: Distributed Optimization by Ant
Colonies. European Conference on Artificial Life, 1991, pp. 134–142.

250 A. Gonzalez-Pardo, F. Palero, D. Camacho

[23] Cormode, G.: The Hardness of the Lemmings Game, or Oh No, More NP-Comple-
teness Proofs. Proceedings of Third International Conference on Fun with Algorithms,
2004, pp. 65–76.

[24] Daz-Pernil, D.—Gutirrez-Naranjo, M.A.—Perez-Jimenez, M. J.—Ris-
cos-Nuñez, A.: A Linear Solution for Subset Sum Problem With Tissue P Systems
with Cell Division. Lecture Notes in Computer Science, Vol. 4527, 2007, pp. 170–179.

[25] Das, S.—Biswas, A.—Dasgupta, S.—Abraham, A.: Bacterial Foraging Opti-
mization Algorithm. Theoretical Foundations, Analysis, and Applications. Founda-
tions of Computational Intelligence, Vol. 203, 2009, pp. 2355.

[26] Kumar Das, T.: Bio-Inspired Algorithms for the Design of Multiple Optimal Power
System Stabilizers. SPPSO and BFA. IEEE Transactions on Industry Applications,
Vol. 44, 2008, No. 5, pp. 1445–1457.

[27] Demaine, E.D.—Hohenberger, S.—Liben-Nowell, D: Tetris Is Hard, Even
to Approximate. Proceedings of the 9th International Computing and Combinatorics
Conference, 2003.

[28] Dorigo, M.—Gambardella, L.M.: Ant Colonies for the Travelling Salesman
Problem. 1997.

[29] Dorigo, M.: Ant Colony Optimization. A New Meta-Heuristic. Proceedings of the
Congress on Evolutionary Computation, IEEE Press, 1999, pp. 1470–1477.

[30] Eiben, A. E.—Smith, J. E.: Introduction to Evolutionary Computing. Springer-
Verlag, 2009.

[31] Engelbrecht, A. P.: Computational Intelligence. An Introduction. Wiley Publish-
ing, 2nd edition, 2007.

[32] Dressler, F.—Akan, O.B.: Bio-Inspired Networking. From Theory to Practice.
IEEE Communications Magazine, November 2010, pp. 177–183.

[33] Farooq, M.: Bee-Inspired Protocol Engineering. From Nature to Networks. Springer
Publishing Company, 2008.

[34] Fogel, D.B.: Evolutionary Computation. Toward a New Philosophy of Machine
Intelligence. IEEE Press, 1995.

[35] Forrest, S.: Genetic Algorithms. Principles of Natural Selection Applied to Com-
putation. Science, Vol. 261, 1993, No. 5123, pp. 872–878.

[36] Fu, T.—Liu, Y.—Zeng, J.—Chen, J.: An Improved Genetic and Ant Colony
Optimization Algorithm and Its Applications. In: Huang, D.-S., Li, K., Irwin, G.
(Eds.): Intelligent Control and Automation, Springer, Berlin, Heidelberg, Lecture
Notes in Control and Information Sciences, Vol. 344, 2006, pp. 229–239.

[37] Gonzalez-Pardo, A.—Camacho, D.: A New CSP Graph-Based Representation
for Ant Colony Optimization. 2013 IEEE Conference on Evolutionary Computation,
2013, Vol. 1, pp. 689–696.

[38] Gonzalez-Pardo, A.—Camacho, D.: Environmental Influence in Bio-Inspired
Game Level Solver Algorithms. 7th International Symposium on Intelligent Dis-
tributed Computing (IDC 2013), Studies in Computational Intelligence, Springer,
Berlin, Heidelberg, Vol. 511, 2014, pp. 157–162.

[39] Guangdong, H.—Ping, L.—Qun, W.: A Hybrid Metaheuristic ACO-GA with
an Application in Sports Competition Scheduling. Eighth ACIS International Confer-

An Empirical Study on CI Algorithms for Video Games Problem-solving 251

ence on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distri-
buted Computing, 2007.

[40] Houston, R.—White, J.—Amos, M.: Zen Puzzle Garden is NP-Complete. Infor-
mation Processing Letters, Vol. 112, 2012, pp. 106–108.

[41] De Jong, K.A.: Evolutionary Computation – A Unified Approach. MIT Press,
2006.

[42] Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization.
Technical Report TR06, Erciyes University Press, Erciyes, Vol. 129, 2005, No. 2.

[43] Karaboga, D.—Basturk, B.: A Powerful and Efficient Algorithm for Numerical
Function Optimization. Artificial Bee Colony (ABC) Algorithm. J. Global Optimiza-
tion, Vol. 39, 2007, pp. 459–471.

[44] Kendall, G.—Spoerer, K.: Scripting the Game of Lemmings with a Genetic
Algorithm. Proceedings of the Congress on Evolutionary Computation, 2004, Vol. 1,
pp. 117–124.

[45] Kennedy, J.—Eberhart, R.: Particle Swarm Optimization. Proceedings of the
Congress on Evolutionary Computation, Vol. 4, 1995, pp. 1942–1948.

[46] Luca Lanzi, P. (Ed.): Proceedings of the 2009 IEEE Symposium on Computational
Intelligence and Games (CIG 2009), Milano, Italy, September 7–10, 2009, IEEE,
2009.

[47] Lee, Z. J.—Su, S. F.—Chuang, C.C.—Liu, K.H.: Genetic Algorithm with Ant
Colony Optimization (GA-ACO) for Multiple Sequence Alignment. Applied Soft
Computing, Vol. 8, 2008, No. 1. pp. 55–78.

[48] Lim, C.U.—Baumgarten, R.—Colton, S.: Evolving Behaviour Trees for the
Commercial Game Defcon. In EvoGames, 2010.

[49] Lucas, S.: Computational Intelligence and AI in Games. A New IEEE Transactions.
T-CIAIG, 2011.

[50] Martin, E.—Martinez, M.—Recio, G.—Saez, Y.: Pac-mAnt. Optimization
Based on ant Colonies Applied to Developing an Agent for Ms. Pac-Man. Proceedings
of the Symposium on Computational Intelligence and Games (CIG), 2010, Vol. 1,
pp. 458–464.

[51] Miikkulainen, R.—Bryant, B.D.—Cornelius, R.—Karpov, I. V.—Stan-
ley, K.O.—Yong, C.H.: Computational Intelligence in Games. Computational
Intelligence, Principles and Practice, 2006.

[52] Miller, B. L.—Goldberg, D. E.: Genetic Algorithms, Selection Schemes and the
Varying Effects of Noise. Evolutionary Computation, Vol. 4, 1996, No. 2. pp. 113–131.

[53] Nemati, S.—Basiri, M.E.—Ghasem-Aghaee, N.—Aghdam, M.H.: A Novel
ACOGA Hybrid Algorithm for Feature Selection in Protein Function Prediction.
Expert Systems with Applications, Vol. 36, 2009, No. 10, pp. 12086–12094.

[54] Pilat, M.—White, T.: Using Genetic Algorithms to Optimize ACS-TSP. In:
Dorigo, M., Di Caro, G., Sampels, M. (Eds.): Ant Algorithms, Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 2463, 2002, pp. 101–172.

[55] Potvin, J. Y.: A Review of Bio-Inspired Algorithms for Vehicle Routing. CIRRELT,
Vol. 30, 2008.

252 A. Gonzalez-Pardo, F. Palero, D. Camacho

[56] Revello, T. E.—McCartney, R.: Generating War Game Strategies Using a Ge-
netic Algorithm. Proceedings of the Congress on Evolutionary Computation, 2002,
Vol. 1, pp. 1086–1091.

[57] Reynolds, C.W.: Flocks, Herds and Schools. A Distributed Behavioral Model.
SIGGRAPH Comput. Graph., Vol. 21, 1987, pp. 25–34.

[58] Ridge, E.—Curry, E.: A Roadmap of Nature-Inspired Systems Research and
Development. Multiagent Grid Syst., Vol. 3, 2007, No. 3–8.

[59] Ruan, X.—Gong, D.: A Hybrid Approach of GA and ACO for TSP. Proceedings
of the 5 World Congress on Intelligent Control and Automation, 2004.

[60] Shaker, N.—Togelius, J.—Yannakakis, G.N.—Weber, B.G.—Shimi-
zu, T.—Hashiyama, T.—Sorenson, N.—Pasquier, P.—Mawhorter, P.A.—
Takahashi, G.—Smith, G.—Baumgarten, R.: The 2010 Mario AI Champi-
onship, Level Generation Track. IEEE Trans. Comput. Intellig. and AI in Games,
Vol. 3, 2011, No. 4, pp. 332–347.

[61] Togelius, J.: Mario AI Competition.

[62] Feng, X.—Lau, F.C.M.—Gao, D.: A New Bio-Inspired Approach to the Travel-
ling Salesman Problem. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, Vol. 5, 2009, pp. 1310–1321.

[63] Xu, Y. L.—Lim, M.H.—Ong, Y. S.—Tang, J.: A GA-ACO-Local Search Hybrid
Algorithm for Solving Quadratic Assignment Problem. Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, 2006.

[64] Li, Y.—Mascagni, M.: A Bio-Inspired Job Scheduling Algorithm for Monte Carlo
Applications on a Computational Grid. IMACS-World Congress, 2005.

Antonio Gonzalez-Pardo is a Post-Doctoral researcher at
BCAM-TECNALIA. He received his Ph.D. degree in computer
science (2014) from Universidad Autónoma de Madrid, his B.Sc.
degree in computer science from Universidad Carlos III de Mad-
rid (2009) and his M.Sc. degree in computer science from Uni-
versidad Autónoma de Madrid (2011). Currently he is a post-
doctoral researcher in a join position offered by Basque Center
for Applied Mathematics (where he belongs to the Machine
Learning group) and also by TECNALIA (where he participates
with the Optima group). He is involved with AIDA interest

research group at EPS-UAM. His main research interests include computational intelli-
gence (genetic algorithms, PSO, swarm intelligence. . .), multi-agent systems and machine
learning techniques. The application domains for his research are constraint satisfaction
problems (CSP), complex graph-based problems, optimization problems and video games.

An Empirical Study on CI Algorithms for Video Games Problem-solving 253

Fernando Palero received his B.Sc. degree in computer scien-
ce from Universidad Politécnica de Valencia (2009) and his M.Sc.
degree in computer science from Universidad Autónoma de Mad-
rid (2014). He is involved with AIDA interest research group at
EPS-UAM, his main research interests include computational
intelligence (genetic algorithms and swarm intelligence), and
multi-agent systems.

David Camacho is currently working as Associate Professor in
the Computer Science Department at Universidad Autónoma de
Madrid (Spain) and leads the Applied Intelligence & Data Ana-
lysis group (http://aida.ii.uam.es). He received his Ph.D.
degree in computer science (2001) from Universidad Carlos III
de Madrid, Spain. His research interests include data mining
(clustering), evolutionary computation (GA & GP), multi-agent
systems and computational intelligence (swarm computing), au-
tomated planning and machine learning. His work has appeared
in leading computer science journals. He serves in the editorial

boards of International Journal of Bio-Inspired Computation, International Journal of
Computer Science & Applications, Applied Artificial Intelligence, and Engineering Letters
Journal, among others.

