
Computing and Informatics, Vol. 30, 2011, 987–1010

PROPERTIES FOR COMPONENT MODEL:
THE DEFINITION PERSPECTIVE

Hazleen Aris

College of Information Technology

Universiti Tenaga Nasional

Jalan IKRAM-UNITEN

43000 Kajang, Selangor, Malaysia

e-mail: hazleen@uniten.edu.my

Siti Salwah Salim

Faculty of Computer Science and Information Technology

University of Malaya

Lembah Pantai

50603 Kuala Lumpur, Malaysia

e-mail: salwa@um.edu.my

Communicated by Ulrich Eisenecker

Abstract. The presence of a large number of component models to date should
be able to offer software developers a wide variety of component models – which
they can easily choose from – for their software development projects. However,

the opposite situation is currently observed, where the presence of many compo-
nent models has caused difficulties in making the selection. Lack of properties or
characteristics that can be used as a basis to perform objective comparison between
the existing models is believed to have caused the difficulties. In this paper, a list
of component model properties is derived by thoroughly examining the available
component model definitions. Results from a comparative analysis performed on
six component models using the properties show that the properties enable a more
objective comparison between the existing component models to be performed.

Keywords: Component model properties, derivation of properties, comparative
analysis



988 H. Aris, S. S. Salim

1 INTRODUCTION

Component-oriented software development (COSD) is an approach in software de-
velopment where software applications are produced by composing (software) com-
ponents. To enable such composition, components have to be developed according
to the specifications introduced in a component model.

The need for components to comply with a component model is clearly stated
by Councill and Heinemann [1] when they define component as “a software ele-
ment that conforms to a component model and can be independently deployed and
composed without modification according to a composition standard”. Compliance
with a component model is also one of the prerequisites that distinguish components
from other forms of packaged software [2, 3]. Therefore, the success of COSD largely
depends on a clear definition and precise specification of a component model.

Due to the significant role played by the component model, considerable amount
of research effort has been spent on its specification and construction, resulting in
the birth of a large number of component models. To date, at least 32 component
models are available [4], which range from domain specific to generic component
models. The presence of a large number of component models is expected to offer
software developers a wide range of component models from which they can easily
choose any suitable ones to be used in their software development projects. Instead,
the opposite scenario is observed where their presence has made it more difficult for
the software developers to find suitable component models [5].

Amongst the reasons that have caused the difficulties is the fact that existing
component models vary from one another in many aspects [6], making comparison
of the component models extremely difficult if not impossible. When comparison
is not possible, a selection cannot be made and software developers resort to ei-
ther creating a new component model when they need one or using only the com-
monly used component models such as EJB and COM. Both options have their
respective disadvantages. Creating new component models is reinventing the wheel
and adds up to the already large number of component models. Using only the
most commonly used ones eliminates the chances of other component models be-
ing used, even though they have been introduced after considering the drawbacks
of the commonly used component models [7, 8]. To rectify the situation, there
is a need to have a list of component model properties or characteristics that can
serve as a basis for comparison of existing component models. The properties can
be regarded as the lowest level architectural elements that each component model
should have or specify. The list of component model properties allows comparison
between component models to be made in a more objective and directed man-
ner.

In this article, we present the outcome of our research to derive a set of com-
ponent model properties from the perspective of component model definition. This
means that the derivation of the component model properties is based on the el-
ements that, by definition, constitute a component model. It is later extended to
also include the architectural information entailed by the definitions.



Properties for Component Models 989

The rest of this article is organised as follows. Section 2 outlines the approach
taken in this research. Component model definitions are presented in Section 3,
followed by component model standards in Section 4. Section 5 refines component
model standards to derive component model properties. In Section 6, we demon-
strate how the derived component model properties are used to compare a selection
of component models. The results of the comparison are presented and discussed
in Section 7. Section 8 summarises related research, comparing and contrasting it
with ours, and finally, Section 9 concludes the article.

2 METHOD

First and foremost, a firm understanding of component model definition is required.
To achieve this, we searched through all related literatures to gather as many com-
ponent model definitions as possible. Four definitions were included, which are
presented in Section 3.

Even though the definitions vary from one another, it is believed that com-
monalities exist amongst them because they share the same purpose; to produce
components that can fulfil the expectations of COSD. This becomes our hypothesis
and the basis for the derivation of the component model properties. Therefore, each
definition is reviewed in detail and compared against the others to extract the de-
scriptions that are common across the definitions. These common descriptions are
regarded as the essential elements that constitute the component model definition.

These essential elements are found to be the standards that a component model
should specify, known as component model standards. The standards can be seen as
the lower level representation of the elements, which refines the granularity of the
elements.

Next, we establish the relationships between the standards and the correspond-
ing architectural elements of a component model that are responsible for the speci-
fications of the standards. Each architectural element is then hierarchically decom-
posed into more finite elements by reviewing the relevant literatures that discussed
about them. From the decomposition, a list of component model properties under
each element is identified. Evaluation of the properties is performed by comparing
a number of selected component models against the properties.

3 COMPONENT MODEL DEFINITION

Since there is no consensus yet on the definition of a component model, we have
decided to take into consideration a number of component model definitions that
are available to date. A total of four definitions from four different sources were
eventually found and are quoted below. Although implicit definitions of component
model also exist using other terms such as services and objects, only definitions that
explicitly mention the term “component model” are considered, because they are
more focused towards COSD and more relevant to the context of the discussion.



990 H. Aris, S. S. Salim

Definition 1. A component model specifies the standards and conventions imposed
on developers of components. Compliance with a component model is one of the
properties that distinguish components from other forms of packaged software [2].

Definition 2. A component model defines specific interaction and composition stan-

dards. First, it defines how to construct an individual component. Second, it en-
forces global behaviour on how a set of components in a component-based system
will communicate and interact with each other [1].

Definition 3. A component model is a combination of a) a component standard

that governs how to construct individual components and b) a composition standard

that governs how to organize a set of components into an application and how those
components globally communicate and interact with each other [9].

Definition 4. A (software) component model is a definition of [10]

• the semantics of components, that is, what components are meant to be,

• the syntax of components, that is, how [the components] are defined, constructed
and represented, and

• the composition of components, that is, how they are composed or assembled.

It is found that the above definitions are in agreement with one another on the
fact that a component model defines standards. This is highlighted in each definition.
These standards are of two types, as stated in Definitions 2, 3, and 4. The first
type of standard governs the construction of individual components and the second
type of standard governs the interaction between the constructed components and
their environment. This finding supports our earlier hypothesis that commonalities
indeed exist in these definitions, which provides strong foundation for the derivation
of component model properties.

4 COMPONENT MODEL STANDARD

Bachmann et al. [2] started work on component standards by introducing three
standards (and conventions) that constitute a component model. These standards
are component types, interaction schemes, and resource binding.

A component type is defined in terms of the interfaces that it implements [2].
It is a collection of component interface types, which describes the interfaces that
components of this type must or may have at runtime [11]. A component type
captures the semantics of a component’s behaviour, the kind of functionality it
implements, its performance characteristics, and its expectations of the style of
interaction with other components [12].

Different component types can play different roles in a system and participate
in different types of interaction schemes. A component interacts with other com-
ponents and also with its framework. Therefore, at least two kinds of interaction



Properties for Component Models 991

schemes exist; component-component interaction and component-framework inter-
action. The former deals with topological issues, such as the number of simultaneous
connections allowed, while the latter concerns with resource management issues such
as component lifecycle and thread management. Interaction schemes may be com-
mon across all component types or unique to particular component types.

Resource binding binds a component to one or more resources. A resource is
a service provided either by a framework or by some other components deployed in
that framework. A component model should describe which resources are available
to components as well as how and when components bind to these resources.

From the description of each component model standard above, the following
conclusions can be drawn regarding the component model standards and their rela-
tionships with the entities involved in COSD.

1. All of the three component model standards discussed above are defined by
the component model developer, that is, the person who develops or constructs
a component model.

2. Of the three component model standards, the first two standards, component
type and interaction scheme, are the standards that need to be adhered to by the
component developer, that is, the person who develops individual components
in accordance with the chosen component model.

3. The third standard, resource binding, is the standard that needs to be adhered
to by the component user, that is, the person who uses existing components
from the repository to produce applications.

In Figure 1, component types and interactions schemes are attached to the line
connecting the component developer to the repository of pre-existing components
and resource binding is attached to the line connecting the component users to the
same repository to illustrate items 2 and 3 above.

Figure 1 also emphasises the fact that component developers and component
users do not necessarily have to belong to the same party. In fact, third party
components usage is one of the desiderata of COSD [10].

5 DERIVING THE PROPERTIES

From the previous section, it is learned that first, component model definition is
about specification of standards for components development and standards for
components composition, and second, the standards for components development
are component type and interaction scheme, and the standard for components com-
position is resource binding.

The question now is: “Which part of a component model architecture is respon-
sible for the specifications of its type, interaction scheme and resource binding?”
The need to associate component model standards to the corresponding component
model architecture elements that specify them is obvious. Without the association,



992 H. Aris, S. S. Salim

Applications
Composite 

components

Pre-existing 

components

producesuses

Resource 

binding
Interaction 

schemes

Component 

types

deployed into
composed 

into

deposited 

into

Component user Component developer

Fig. 1. Relationship between component model standards and entities in COSD

it is not possible to ascertain whether a particular standard is defined by a particular
component model or not.

To perform the association, four other research works that described the com-
ponent model standards and means to achieve them are identified. These works
however use differing terms to mean component model standards. The differing
terms are summarised in Table 1. From the review of these works, the following
associations between component model standards and corresponding architectural
elements that are responsible for their specifications are determined:

• component interface is responsible for the specification of component type,

• contract is responsible for the specification of interaction schemes, and

• composition mechanism should specify resource binding.

In this article, the interface, contract, and composition are called the aspects of
a component model. These aspects, however, are still too abstract to be used as
a basis to determine whether a particular standard is specified by a particular com-
ponent model or not. Each aspect therefore needs to be decomposed into a number
of lower level architectural elements called properties that belong to each aspect.
Sections 5.1 to 5.3 below elaborate the three component model aspects identified in
order to derive their respective properties.

5.1 Interface

An interface of a component is a specification of its access point [14]. Other resources
access the services provided by the component through this point. As such, in an
ideal component-oriented software development, the interface would be the only



Properties for Component Models 993

Standard Councill Beugnard Crnkovic Lau & Wang
[1] [13] [14] [15]

Component interface basic or syntax or
type standard syntactic interface semantic

contracts signature

Interaction interaction behavioural interface component
schemes standard contracts, semantic inputs and

(superset of synchronisation (realised outputs,
interface contracts, through system
standard) QoS contracts contract) inputs and

outputs

Resource assembled * * design phase
binding connections composition,

(C-C), deployment
integrated phase
connections composition
(C-F)

* Information on deployment of components and applications is not found
in the literatures.

Table 1. Terms used to describe component model standards

means by which a resource accesses the provided services. From the definitions
of interface found in [2, 14, 16], the following information regarding interface is
extracted.

• Component type is determined by the interfaces implemented. This is to ensure
uniform composition [2].

• Interface is not only for components, but for all other elements that are involved
in the composition process, such as connector and framework. In Acme [17], for
example, a connector also has its interfaces.

• Interface should express not only functional properties (also referred to as syn-
tactic or signature part [14]), but also non-functional properties (also referred to
as semantic or behaviour part [14]). The reason is, functional properties alone
are not sufficient to express the quality attributes of a system composed from
components [2].

• Interfaces specify the inputs and outputs of a component.

• Non-functional properties, which are required to be specified in the interface
include:

– safety and progress

– non-functional requirements, such as the specifications of behaviour, syn-
chronisation, and quality of service (QoS), and

– time and space requirements,

which can be expressed using a contract [2, 14, 16].



994 H. Aris, S. S. Salim

Therefore, an interface consists of a signature part and a behaviour part, which
is shown using a tree representation in Figure 2. Signature part specifies the inputs
and outputs of a component. Behaviour part is specified in the form of contract.
How these behavioural specifications are achieved using contract is explained in the
next subsection.

interface

signature part

behaviour part

(in the form of contract)

specification 

of input(s)

specification 

of output(s)

Fig. 2. Constitution of the signature part of an interface

5.2 Contract

As mentioned in Section 5.1, the behaviour part of a component can be specified
more accurately using a contract. A contract states what the client component
needs to do to use the interface of a component and what the provider component
has to do to deliver the services promised by its interface [16]. Figure 3 shows
an illustrative example of a contract between the provided and required interfaces
of components C and D, taken from [2]. In the figure, PROD is the provided services
that component D will implement iff component C implements the required services
REQC . The same goes for the contract between PROC and REQD. This is called
a reciprocal obligation [2].

Fig. 3. Contract between components [2]

What constitutes a contract then? The following are amongst the constraints
that should be specified by a contract [2, 14, 16, 18]:

invariant – the list of constraints that the component will maintain throughout its
execution,

precondition – the list of constraints that need to be met by the client, and

postcondition – the list of constraints that the provided component promises to
establish in return.



Properties for Component Models 995

With this information, Figure 2 is extended to include the constitution of a con-
tract as shown in Figure 4.

interface

signature part

precondition

invariant

postcondition

behaviour part

(in the form of contract)

specification of 

input(s)

specification of 

output(s)

Fig. 4. Constitution of the signature and behaviour parts of an interface

5.3 Composition

Composition is a widely used term in COSD to describe the process of binding
a component to one or more available resources to create an application [2, 19]. The
available resources can be another component, a connector, or even the framework
that governs the composition. Binding a component to resources involves questions
of how and when composition occurs. These are termed the binding technique or
binding mechanism and binding time respectively.

5.3.1 Binding Technique

Binding technique is “the technique whereby parameters or connection points are
determined and bound” [20]. At least two entities are composed (bound) in COSD;
components and their framework [2]. Therefore, three possible types of composition
exist; component-component composition, component-framework composition, and
framework-framework composition as illustrated in Figure 5.

composition

component-

component

component-

framework

framework-framework

simple 

composition (C-C)

component sub 

assembly (c-C)

component 

deployment (C-F)

Fig. 5. Types of composition



996 H. Aris, S. S. Salim

Component-component composition is the type of composition that enables in-
teraction among components to deliver application functionality [2]. Compo-
nent-component composition can be further divided into simple composition
(C-C) between components and subassembly of a child (sub) component into its
parent component (c-C)1 as shown in Figure 5.

Component-framework composition is the type of composition that enables in-
teractions between a component and its framework, hence enabling component
deployment. These interactions enable frameworks to manage component re-
sources. Framework in the context of our research is a “mainframe” that en-
ables components to be plugged into it and is at the same time responsible for
managing and monitoring their interactions [14]. An analogy given by [2] is to
think of a component framework as a mini-operating system. In this analogy,
components are to frameworks what processes are to operating systems. There-
fore, the framework manages resources shared by components, and provides the
underlying mechanisms that enable communication (interaction) among com-
ponents. Other implementations of component framework are also possible,
including framework implementation that is bundled with component imple-
mentation [2] and considering framework as component [21]. Nevertheless, the
trend in component technologies seems to be towards framework as independent
implementation [2], making the operating system analogy preferable.

Framework-framework composition is the type of composition that enables in-
teractions between frameworks. These interactions enable composition of com-
ponents that are deployed in heterogeneous frameworks. Even though this is
amongst the ultimate aims of COSD, research in this direction still has a very
long way to go and most of the existing component models at present do not
include specifications for inter-framework composition. Framework-framework
composition is therefore beyond the coverage of our research and will not be in-
cluded in deriving the properties of composable component models. Its exclusion
is indicated by faded writing in Figure 5.

5.3.2 Binding Time

Binding time is “the point in the lifecycle of a component when a parameter or con-
nection point is determined and bound” [20]. One way of interpreting this definition
is by thinking of binding time as a time line, with early binding at one end and late
binding at the other, as shown in Figure 6. Binding of component to resources can
take place at any point on the time line. At the two extremes, two types of binding
are possible; late and early binding.

Early binding requires that the component developer makes some decisions
which effectively constrain how resource binding will occur later [2]. In Aßmann [20],
this is referred to as static binding, where the decisions cannot be changed at run-
time. Static binding occurs during component development or system assembly.

1 Note the use of lowercase c to distinguish from simple composition (C-C).



Properties for Component Models 997

Fig. 6. Early and late binding [2]

Late binding on the other hand means that the component developer makes no
decisions that constrain future resource binding [2]. Also referred to as dynamic

binding, this type of binding occurs at runtime.

Each of the properties that constitute each of the aspects shown in Figures 2, 4,
and 5 respectively are combined to form the properties for a component model from
the definition perspective, shown in Figure 7. Composition includes component-
component composition and component-framework composition. However, if other
elements such as connectors are also involved in the composition process, component-
connector composition can be added. This possible extension is represented as an
ellipsis (. . . ) in the figure. For each type of C-C, c-C and C-F composition, interface
that covers the signature part and behaviour part of the component or framework
should be defined. Due to space constraints, interfaces for c-C and C-F composition
are represented as " to indicate that they should be defined in the same way as the
interface for C-C composition.

composition

component-

component

component-

framework

framework-framework

simple 

composition (C-C)

component sub 

assembly (c-C)

component 

deployment (C-F)

signature part

precondition

invariant

postcondition

behaviour part

(in the form of contract)

specification of 

input(s)

specification of 

output(s)

"

"

...

...

Fig. 7. Component model properties

Other ways of representing the properties are also possible, such as using feature
modelling, which gives more details about each property, such as cardinality and
relationships between properties. However, to compare existing component models,
we would only want to determine the presence or absence of these properties, and
for that purpose, tree representation is already sufficient.



998 H. Aris, S. S. Salim

6 COMPARING COMPONENT MODELS

In this section, the component model properties derived in Section 5 are used to
compare a number of selected component models as a way of evaluating the derived
properties. The purpose of the evaluation is to determine the extent to which the
derived properties can be used to perform an objective comparison between existing
component models. To do this, a number of existing component models need to be
selected as samples.

Existing component models can be divided into two categories; industry-based
component models and research-based component models. Industry-based compo-
nent models, as the name suggests, are those that are being widely used in the
industry [22]. Examples of industry-based component models include JavaBeans,
COM+, and CORBA. Even though they are widely used in the industry, their adher-
ence to the fundamental concepts of component model is still a subject of discussion.
Amongst the reasons is that industry-based component models focus on practical
problems and are described in technical terms, thus providing many implementation
details that render their concepts and principles difficult to understand [22].

As opposed to the industry-based component models, research-based component
models are the component models proposed by researchers by observing the core
concepts of a component model in proposing them. In fact, a number of these
research-based component models are also proposed after reviewing the pitfalls and
fallacies of the industry-based component models [7, 8]. Therefore, in making the
selection, only research-based component models are considered.

Performing comparative analysis on all research-based component models, al-
though possible, is too time consuming due to the large number of research-based
component models available to date. Instead, we have decided to select the three
most frequently used and three least frequently used research-based component mod-
els from the list available in [4] to be compared against the derived properties. We
pay attention to the following criteria in making the selection.

1. The component models are not domain-specific. Domain specific component
models such as those that are specifically designed for embedded systems are
excluded from our analysis because their applications are limited to their re-
spective domains.

2. Recent and up-to-date work on the component models exists, which shows that
the component models are still relevant to the current development of COSD.
Component models that have ceased from further work after its introduction are
not considered.

3. Sufficient written information about the component models is found. Sufficient
information enables an accurate evaluation of the component models to be made.
Sufficient in this respect means that the information needed to satisfy our ques-
tions in the course of analysing the component models can be obtained, either
through textbooks, publications in reputable journals and conferences, or direct
electronic correspondence with their authors.



Properties for Component Models 999

As a result, we end up with the following six component models. From the most
frequently used component models category are Fractal [23], KobrA (Komponenten
basierte Anwendungsentwicklung) [24] and SOFA (SOFtware Appliances) [25]. From
the least frequently used category, the selected component models are UML Compo-
nent [18], Acme ADL [17] and Palladio Component Model (PCM) [26]. Sections 6.1
to 6.6, which follow, provide brief descriptions of the selected component models
above with respect to the properties derived in Section 5.

6.1 SOFA

SOFA components are described using frame construct that defines a set of provided
and required interfaces of the component, and architecture constructs that defines
the implementation of the respective frame [27]. Composed components contain
subcomponents while primitive components do not.

Communications among SOFA components are captured using behaviour proto-

col, which describe the behaviour of software components as a set of traces appearing
on component interfaces [25]. It consists of frame protocol, architecture protocol and
interface protocol [28].

A single environment for developing, distributing, and running SOFA applica-
tions is called a SOFAnode. It is a distributed runtime environment consisting of
a single repository and set of deployment docks. The deployment dock is a container
inside which the components are instantiated and run.

6.2 Fractal

Specification of Fractal components is organised into three increasing levels of reflec-
tive capability; foundation, introspection, and configuration. Two types of interfaces
exist in Fractal; a client interface that emits operation invocations and a server

interface that receives the operation invocations.

With the exception of the base component, Fractal components consist of a con-

troller (membrane) and a content. In a composite component, the content is a finite
number of subcomponents which are controlled by the respective controller. In
a primitive component, it may contain implementation code or encapsulation of
legacy components [29].

Binding between ordinary components, including subcomponents is called pri-

mitive binding, which is further divided into normal binding, export binding, and
import binding. Composite binding is the binding between (ordinary) components
and connectors. A connector is a Fractal component whose role is dedicated to
communication.

Fractal adopts the protocols used by the SOFA component model to govern the
interaction schemes between components [29]. However, Fractal specification does
not address issues pertaining to components deployment [29].



1000 H. Aris, S. S. Salim

6.3 KobrA

KobrA is a UML-based method for describing components and component-oriented
software. A component in KobrA may or may not have subcomponents. A super
component that does not have any functionality of its own and only serves to en-
capsulate a group of its lower level components (subcomponents) is called a virtual

component.
KobrA has a uniform view of components in which they are modelled in the same

way regardless of their granularity and location. Thus, it does not differentiate be-
tween component-component (C-C) composition and component subassembly (c-C)
composition. Communication between components is achieved through each other’s
functionality, that is, operations, by sending messages [30]. Operation specification

is written for each operation to describe its effects. The operation specification is
the outcome of the functional view of a component specification.

Implementation and building activities in KobrA are orthogonal, that is, mutu-
ally exclusive and well separated, to the specification and realisation activities [24].
This means that the executable forms of the components described in the speci-
fication and realisation activities can be implemented using almost any available
development technology. Thus, KobrA does not provide its own framework to bind
components to resources to produce an application.

6.4 UML Component

UML Component uses unified modelling language (UML) to demonstrate how it can
be used to specify component architecture [18]. Its interface specifies the operations
(signatures, precondition, postcondition), interface information model (IIM), and
additional invariants on the IIM.

The building block of a component architecture is component specification, which
is defined as a stereotype of class marked 〈〈comp spec〉〉. Two types of contract in
UML Component are a usage contract between a component object’s interface and
its clients and a realisation contract between a component specification and its
implementation. A usage contract is achieved through operation specifications and
an information model specified by the interface.

A subcomponent in UML, denoted by the 〈〈sub comp spec〉〉 stereotype, is re-
lated to a “containing component”, that is, 〈〈comp spec〉〉. The subcomponent is
not a replaceable unit on its own. It has to be replaced as a single unit with its
containing component. Implementation of runtime UML Components is open to
any suitable target technology. Thus, it does not define its own implementation
framework.

6.5 Acme ADL

Acme is a generic, second generation architecture description language (ADL) [17].
A component in Acme may have multiple interfaces. Each interface is called a port.



Properties for Component Models 1001

It can be as simple as a single procedure signature or as complex as a collection of
procedure calls in a specified order or an event multi-cast interface.

Components connect to each other through connectors. Connectors also have
interfaces that are defined by a set of roles. Therefore, the port of a component
connects to the role of a connector.

Acme supports hierarchical descriptions of architectures by allowing the compo-
nent or connector to be represented by one or more lower-level descriptions called
representation. Associations between a component or connector and their lower level
representations are provided by rep-maps.

To describe its design constraints, Acme uses a constraint language based on
first order predicate logic (FOPL). Constraints can be attached to design elements
as an invariant or heuristic. While the former cannot be violated, the latter may
be selectively violated. Acme is chosen here to represent other ADLs because it
supports the architectural description of component-oriented software as shown
in [17].

6.6 Palladio

Palladio Component Model (PCM) is a component modelling approach that focuses
on performance analysis to enable early design-time evaluation of software archi-
tectures [31]. It distinguishes between basic components and composite components.
Basic components represent atomic building blocks while composite components are
created from other components [31].

In PCM, a component interface is characterised by a number of service sig-

natures, consisting of a name, a list of parameters, a return type, and a list of
exceptions [31]. They serve as a contract between a client (requiring a service) and
a server (providing the service). Interfaces can also include call protocols using, for
example, finite state machines.

For the implementation, a model-to-text transformation based on the openAr-
chitectureWare (oAW) framework generates code skeletons from the PCM model
instances. It uses either Plain Old Java Objects (POJOs) or Enterprise Java Beans
(EJBs), and the respective implementations thereof are followed.

7 RESULTS AND DISCUSSION

The comparison first looks at the types of compositions supported by the component
models; simple composition (C-C), component subassembly (c-C), and component
deployment (C-F), which were derived in Section 5.3 and shown in Figure 5. The
results are tabulated in Table 2. In the table, a tick (✓) means that the composition
type is supported by the component model and a cross (✗) means otherwise.

From Table 2, it can be seen that the component models vary in terms of the
types of compositions that they support. All component models support simple
composition between components. All component models also support component



1002 H. Aris, S. S. Salim

Component Simple Component Component
models composition subassembly deployment

SOFA ✓ ✓ ✓

Fractal ✓ ✓ ✗

KobrA ✓ ✓ ✗

UML ✓ ✗ ✗

ADL ✓ ✓ ✗

PCM ✓ ✓ ✗

Table 2. Types of composition supported by the component models

subassembly, except the UML component model. In UML, components of the same
category can be grouped into packages, but this is just for organisational purposes.
Therefore, it is not considered as supporting component subassembly. With the
exception of the SOFA component model, none of the component models under
review support all of the composition types.

Based on the information tabulated in Table 2, it can be observed that existing
component models are already established in terms of support for simple composition
and support for component subassembly. However, they are still lacking in terms
of the support for component deployment. In the next level of analysis, we zoom
into each of the supported types of composition to determine how each component
model implements each type of composition that it supports.

From the review of the component models presented in Section 6, we populate
Tables 3 and 4 for each type of composition with the information on how the respec-
tive properties are supported. However, due to space constraints, only the terms
used for each property are included in these tables.

From the comparative result in Table 3, it can be seen that even though all
component models under review support simple composition, not all of its properties
are fulfilled. Further investigation however shows that for the most frequently used
component models, the properties are not absent, but rather are being implemented
differently. For example, in SOFA, behaviour protocols consisting of a series of
allowed events (traces) are specified. Hence, there is no need to specify precondition,
invariant, and postcondition, as any series of events that do not adhere to the
specified traces will not be accepted.

The UML component model has all of the properties defined, except the speci-
fication of outputs, while the ADL component model has only invariant specifically
defined for its behaviour part. The SOFA and Fractal component models implement
behaviour protocols that are made up of acceptable series of events (traces) for their
behaviour parts, which can be regarded as preconditions. PCM implements inter-
face protocol for its behaviour part, which is something similar to the behaviour
protocol of SOFA and Fractal. For PCM, detailed specifications of precondition and
postcondition are still a work in progress [26]. As for KobrA, the emphasis is mainly
on the operations that constitute the components, and the components in KobrA
are very much like the objects in object-oriented software development. Interactions



Properties for Component Models 1003

Com- Signature part Behaviour part
ponent Specification Specification Precondition Invariant Postcondition
models of input of output

SOFA requires provides behaviour – –
interface interface protocol

Fractal client server behaviour – –
interface interface protocol *

KobrA – – can be complemented using OCL constraints

UML business – precondition invariant postcondition
operations

ADL (input) (output) – design –
port port constraint

PCM provided required interface – –
interface interface protocol
connected connected
via provided via required
role role

– Information pertaining to the property cannot be found
* Adopting SOFA protocol

Table 3. Support for simple composition properties

take place by exchanging messages through operations, and no specific information
about the interfaces of components is found.

From this result, we can see that although simple composition is already es-
tablished by all of the component models, only the signature part, that is, the
specifications of inputs and outputs, is unanimously implemented. As for the be-
haviour part, different kinds of implementations can be seen across the component
models that implement them.

Next, the analysis focuses on the properties for component subassembly to iden-
tify the extent to which these properties are supported by the component models
under review. Since the UML component model does not support component sub-
assembly, it is being excluded from the analysis result presented in Table 4.

From the result in Table 4, the only difference that can be seen is the term used
to describe the binding between a component and its subcomponent. Specifications
of inputs and outputs are still implemented in the same way as simple composition,
and so is the behaviour part for the component subassembly.

For component-framework composition, as shown in Table 2, only the SOFA
component model provides support for component-framework composition. The
other component models either do not support component-framework composition
or do not have their own specific way of supporting it, that is, they make use of the
existing technologies.

However, it is not possible to clearly identify the properties for the signature
part and behaviour part of the component-framework composition in the same way



1004 H. Aris, S. S. Salim

Com- Signature part Behaviour part
ponent Specification Specification Precondition Invariant Postcondition
models of input of output

SOFA provides requires interface – –
interface via interface via protocol
delegating subsuming
interface tie interface tie

Fractal client server interface – –
interface via interface via protocol *
import export
binding binding

KobrA – – can be complemented using OCL constraints

ADL internal/ internal/ design
external external constraint
input port output port

PCM provided required interface – –
interface interface protocol
connected via connected via
delegation delegation
connector connector

– Information pertaining to the property cannot be found
* Adopting SOFA protocol

Table 4. Support for component subassembly properties

that we identify the properties for simple composition and component subassembly.
During the deployment phase, the approach is to retain what has been defined and
specified during the design phase by automatically generating the codes required for
deployment from the design specifications.

From the results of the component models comparison presented above, the
following observations are made.

1. None of the component models under review have all the required properties of
a component model.

2. The most commonly fulfilled properties are the properties belonging to the sim-
ple composition (C-C) type of composition. A lesser number of component
models support component subassembly (c-C) and the least number support
the component deployment (C-F) type of composition.

3. The most frequently used component models under review support more prop-
erties compared to the least frequently used component models.

4. The component models under review use the same mechanisms to specify the
behaviour part for simple composition and component subassembly.

The above observations show that the list of component model properties de-
rived in Section 5 enables objective comparison of existing component models to be



Properties for Component Models 1005

achieved to a certain extent, despite the differences that exist between them. As can
be seen from Tables 3 and 4, the differences mainly lie in terms of the terminologies
used. Nevertheless, they are still describing the same properties, making classifi-
cation, comparison, and hence selection possible. Other than allowing objective
comparison to be performed, the list of properties can also be used in:

1. Identifying properties that are not sufficiently covered by a particular component
model, hence indicating areas for its improvement or extension. This undoubt-
edly saves researchers from spending valuable time repeating what others have
done. It can also widen the chances of existing component models being used
by others (after the enhancement is made).

2. Predicting the usability of component models. This is especially needed for new
component models. For example, we can see from Table 4 above that even
though PCM belongs to the least frequently used component model category,
it supports most of the criteria. Therefore, we can predict that the component
model has a high chance of being used increasingly often in the future.

3. Constructing (yet) another new component model. In the situation where the
construction of a new component model is unavoidable, the list of properties can
also be used to guide the construction of the new component model to ensure
that the properties are implemented by the new model.

Nevertheless, the success of the component model selection process depends on
the comprehensiveness of the list of component model properties. For example,
the list can be extended horizontally for each type of composition to include more
properties. However, we have thoroughly examined the available definitions of com-
ponent models in deriving the properties as described in Section 5. Therefore, it is
believed that the fundamental properties are already included.

The comparison can also be extended vertically to include more component
models so that more representative results can be obtained. In this paper, only the
three most frequently used component models and the three least frequently used
component models are included for the reasons stated earlier in Section 6.

One possible way of making the component model selection as part of the COSD
approach is by having it explicitly included as one of the processes in the COSD
process model. Having a comprehensive list of component model properties that
enables comparison and selection of a suitable component model can pave the way
towards this.

8 RELATED WORK

A number of research works that perform classification or categorisation of concepts
and structures in software engineering are found, such as the classification of archi-
tectural description languages (ADLs) in [32] and [33]. However, in the more specific
area of component model, there are two works that are closely related to ours and
worth mentioning here.



1006 H. Aris, S. S. Salim

The first one is the work on the creation of a taxonomy for software component
models [10]. The objective was to identify the state of current component models,
which was regarded as still not fulfilling the promise of COSD. In this work, a tax-
onomy for component models based on component composition was proposed as it
was discovered to be the most practical and relevant to achieve the objective. The
taxonomy is made up of characteristics of an idealised component lifecycle. To de-
termine the current state of component models, the taxonomy was used to compare
a selection of existing component models. It was found that the component mod-
els attempted to fulfil the characteristics of an idealised component lifecycle, but
with varying degrees of success, which opens up rooms for improvement of existing
component models.

An attempt to construct a classification framework for component models has
also been made by Crnkovic et al. [5] with the aim of identifying and quantifying
the basic principles of component models. The framework consists of characteristic
points from the four dimensions of a component model, namely lifecycle, constructs,
extra-functional properties, and domains. The framework was then used to classify
a selection of component models. From the classification exercise, it was observed
that

1. general component models utilise client-server style,

2. specialised component models mainly use pipe and filter style, and

3. support for non-functional properties is rather scarce.

These works are similar to ours in the sense that they tried to establish a basis
to enable comparison between existing component models. However, our work is
based on the architecture of an individual component, while the taxonomy is based
on the lifecycle of a component. The classification framework is based on four
perspectives of a component model; lifecycle, constructs, extra-functional properties,
and domains.

In an area other than component model, but related to selection techniques,
the work done by Coplien on multi-paradigm design [34] is also noted. In his work,
commonality and variability analyses are performed by means of tabular notation to
guide the selection of suitable paradigms for an application domain. Paradigms are
seen there as programming language mechanisms, while in our work, the properties of
the component model are the paradigms. A particular component model (that is to
be selected) is then analogous to the particular programming approach or language
(that is to be selected) and we arrive at it by matching the mechanisms we need.
In his work, the mechanisms are the commonality and variability of the application
domain, while in ours the mechanisms are the component model properties derived.
However, detailed discussion on the selection mechanism of the suitable component
model, that is, how the selection of suitable component model is performed, is
beyond the scope of this article.



Properties for Component Models 1007

9 CONCLUSION

In this paper, research work on the derivation of a list of component model prop-
erties is presented. The properties are derived by refining the standards imposed
by component model definitions and identifying the architectural elements that are
responsible for the implementation of the standards. To evaluate, a number of
selected component models are compared using the derived properties. The evalu-
ation shows that the list of properties enables a more objective comparison to be
performed amongst these component models. Therefore, it has the potential to serve
as a basis for component model selection. Other than that, the list of properties can
also be used to predict the usability of a particular component model and to guide
the development of a new component model.

REFERENCES

[1] Councill, B.—Heineman, G.T.: Definition of a Software Component and its
Elements. In: G.T. Heineman and W.T. Councill (Eds.): Component-Based Software
Engineering Putting the Pieces Together. Addison-Wesley Professional, Upper Saddle

River, NHJ 07458, 2001.

[2] Bachmann, F.—Bass, L.—Buhman, C.—Comella-Dorda, S.—Long, F.—

Robert, J.—Seacord, R.—Wallnau, K.: Volume II: Technical Concepts of

Component-Based Software Engineering. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh 2000.

[3] Åkerholm, M.—Fredriksson, J.: A Sample of Component Technologies for Em-
bedded Systems. Technical report, Mälardalen Research and Technology Centre, De-

partment of Computer Science and Electronics, Mälardalen University, Väster̊as, Swe-
den 2004.

[4] Aris, H.—Salim, S. S.: State of Component Models Usage: Justifying the Need for

a Component Model Selection Framework. International Arab Journal of Information
Technology, Zarqa Private University (to appear).

[5] Crnkovic, I—Chaudron, M.—Sentilles, S.—Vulgarakis, A.: A Classifica-

tion Framework for Component Models. In: T. Arts (Ed.): Proceedings of the Seventh
Conference on Software Engineering and Practice in Sweden, SERPS ’07, Göteborg,
October 2007, pp. 3–12.

[6] Rausch, A.—Reussner, R.—Mirandola, R.— Plášil, F.: The Common
Component Modeling Example: Comparing Software Component Models. Springer-
Verlag, New York, USA 2007.

[7] Cox, P. T.—Song, B.: A Formal Model for Component-based Software. In: Pro-
ceedings of the IEEE Symposia on Human-Centric Computing Languages and Envi-
ronments, HCC ’01, Stresa, September 2001, pp. 304–311.

[8] Teschke, T.—Ritter, J.: Towards a Foundation of Component-Oriented Software
Reference Models. In: G. Butler and S. Jarzabek (Eds.): Proceedings of the Second
International Symposium on Generative and Component-Based Software Engineering
(Revised Papers), GCSE 2000, Efurt, October 2000, pp. 70–84.



1008 H. Aris, S. S. Salim

[9] Lüer, C.—van der Hoek, A.: Composition Environments for Deployable Soft-

ware Components. Department of Information and Computer Science, University of
California, Irvine 2002.

[10] Kung-Kiu, L.—Wang, Z.: Software Component Models. IEEE Transactions on

Software Engineering, Vol. 33, 2007, No. 10, pp. 709–724.

[11] OW2 Consortium: http://fractal.ow2.org/current/doc/javadoc/fractal/

org/objectweb/fractal/api/type/ComponentType.html.

[12] UNICON website:
http://www.cs.cmu.edu/_UniCon/reference-manual/ReferenceManual4.html.

[13] Beugnard, A.—Jèzèquel, J.-M.—Plouzeau, N.—Watkins, D.: Making Com-
ponents Contract Aware. IEEE Computer, Vol. 32, 1999, No. 7, pp. 38–45.

[14] Crnkovic, I.—Hnich, B.—Jonsson, T.—Kiziltan, Z.: Basic Concepts in
CBSE. In: I. Crnkovic and M. Larsson (Eds.): Building Reliable Component-based

Software Systems, Artech House, Inc., Norwood, MA 02062, 2002.

[15] Lau, K.-K.—Wang, Z.: A Survey of Software Component Models. Technical report,
The University of Manchester 2005.

[16] Szyperski, C.: Component Software Beyond Object Oriented Programming. Addi-
son Wesley 2002.

[17] Garlan, D.—Monroe, R.T.—Wile, D.: ACME: Architectural Description of
Component-Based Systems. In: G.T. Leavens and M. Sitaraman (Eds.): Foundations
of Component-Based Systems, Cambridge University Press 2000, pp. 47–67.

[18] Cheesman, J.—Daniels, J.: UML Components A Simple Process for Specifying
Component-Based Software. Addison-Wesley 2001.

[19] Stafford, J.A.—Wallnau, K.: Component Composition and Integration. In:
I. Crnkovic and M. Larsson (Eds.): Building Reliable Component-based Software
Systems, Artech House, Inc., Norwood, MA 02062 2002.

[20] Assmann, U.: Invasive Software Composition. Springer-Verlag, Berlin Heidelberg
New York 2003.

[21] Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving
a Product-line Approach. Addison-Wesley Publishing 2000.

[22] Estublier, J.—Favre, J.-M.: Component Models and Technology. In: I. Crnkovic
and M. Larsson (Eds.): Building Reliable Component-based Software Systems,
Artech House, Inc., Norwood, MA 02062 2002.

[23] Bruneton, E.—Coupaye, T.—Stefani, J. B.: Technical Report on the Fractal
Component Model Specification. The ObjectWeb Consortium, February 2004, Ver-

sion 2.0-3.

[24] Atkinson, C.—Paech, B.—Reinhold, J.—Sander, T.: Developing and Ap-
plying Component-Based Model-Driven Architectures in KobrA. In: Proceedings

of the Fifth International Enterprise Distributed Object Computing Conference
(EDOC ’01), Seattle, September 2001, pp. 212–223.

[25] Bureš, T.—Děcký, M.—Hnětynka, P.—Kofroň, J.—Pař́ızek, P.—

Plášil, F.—Poch, T.—šerý, O.—Tůma, P.: CoCoME in SOFA. In: A. Rausch,
R. Reussner, R. Mirandola and F. Plášil (Eds.): The Common Component Modeling
Example: Comparing Software Component Models, The Dagstuhl Research Seminar



Properties for Component Models 1009

for CoCoME (Common Component Modelling Example) Modelling Contest, Schloss

Dagstuhl, August 2007, pp. 388–417.

[26] Reussner, R.—Becker, S.—Happe, J.—Koziolek, H.—Krogmann, K.—

Kuperberg, M.: The Palladio Component Model. Universität Karlsruhe (TH),

Germany, May 2007.

[27] Hnětynka, P.—Bureš, T.: Advanced Features of Hierarchical Component Models.
In: A. Kelemenová, D. Kolář, A. Meduna and J. Zendulka (Eds.): Proceedings of the

10th International Conference on Information System Implementation and Modelling,
ISIM 2007, Hradec nad Moravićı, Czech Republic, April 2007, pp. 3–10.

[28] Plášil, F.—Vǐsňovský, S.: Behavior Protocols for Software Components. IEEE
Transactions on Software Engineering, Vol. 28, 2002, No. 11, pp. 1056–1076.

[29] Bulej, L.—Bureš, T.—Coupaye, T.—Děcký, M.—Ježek, P.—Pař́ı-

zek, P.—Plášil, F.—Poch, T.—Rivierre, N.—šerý, O.—Tůma, P.: 14 Co-
CoME in Fractal. In: A. Rausch, R. Reussner, R. Mirandola and F. Plášil (Eds.): The

Common Component Modeling Example: Comparing Software Component Models,
The Dagstuhl Research Seminar for CoCoME (Common Component Modelling Ex-
ample) Modelling Contest, Schloss Dagstuhl, August 2007, pp. 357–387.

[30] Atkinson, C.—Bostan, P.—Brenner, D.—Falcone, G.—Gutheil, M.—

Hummel, O.—Juhász, M.—Stoll, D.: 4 Modeling Components and Component-
Based Systems in KobrA. In: A. Rausch, R. Reussner, R. Mirandola and F. Plášil
(Eds.): The Common Component Modeling Example: Comparing Software Compo-
nent Models, The Dagstuhl Research Seminar for CoCoME (Common Component
Modelling Example) Modelling Contest, Schloss Dagstuhl, August 2007, pp. 54–84.

[31] Krogmann, K.—Reussner, R.: Palladio – Prediction of Performance Properties.
In: A. Rausch, R. Reussner, R. Mirandola and F. Plášil (Eds.): The Common Com-
ponent Modeling Example: Comparing Software Component Models, The Dagstuhl
Research Seminar for CoCoME (Common Component Modelling Example) Modelling
Contest, Schloss Dagstuhl, August 2007, pp. 297–326.

[32] Medvidovic, N.—Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages, IEEE Transactions of Software Engi-
neering, Vol. 26, 2000, No. 1, pp. 70–93.

[33] Babar, M.A.—Zhu, L.—Jeffery, R.: A Framework for Classifying and Compar-
ing Software Architecture Evaluation Methods. In: P. Strooper (Ed.): Proceedings of
the 15th Australian Software Engineering Conference, ASWEC ’04, Melbourne, April
2004, pp. 309–318.

[34] Coplien, J.O.: Multi-Paradigm Design. Ph.D. Thesis, Faculteit Wetenschappen –
Departement Informatica, Vrije Universiteit Brussel, 1998.



1010 H. Aris, S. S. Salim

Hazleen Aris is a Senior Lecturer at the College of Information

Technology, Universiti Tenaga Nasional. She obtained her Mas-
ters in Software Engineering from the University of Malaya and
a Bachelor of Engineering (Hons) in Computer Engineering from
the University of Southampton, UK. She teaches software engi-
neering related subjects to undergraduate computer science and
information technology students at Universiti Tenaga Nasional.
Her research interest includes component-oriented software en-
gineering and object-oriented software development.

Siti Salwah Salim is a Professor at the Department of Soft-

ware Engineering, Faculty of Computer Science and Information
Technology, University of Malaya. She holds Ph.D. degree in
Computer Science from the University of Manchester Institute
of Science and Technology (UMIST), United Kingdom, 1998.
She supervises Ph.D. and Masters students in the areas of re-
quirements engineering, human computer interaction, computer
supported cooperative work, component based software develop-
ment and e-learning. She also leads and teaches modules at both
B. Sc. and M. Sc. levels in software engineering.


