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Abstract. As the momentum behind Chip Multi-Processors (CMPs) continues
to grow, Last Level Cache (LLC) management becomes a crucial issue to CMPs
because off-chip accesses often involve a big latency. Private cache design is distin-
guished by smaller local access latency, good performance isolation and easy scal-
ability, thus is becoming an attractive design alternative for LLC of CMPs. This
paper proposes Balanced Private Non-Uniform Cache Architecture (BP-NUCA),
a new LLC architecture that starts from private cache design for smaller local ac-
cess latency and good performance isolation, then introduces a low cost mechanism
to dynamically migrate private blocks among peer private caches of LLC to improve
the overall space utilization. BP-NUCA achieves this by measuring the cache access
pressure level that each cache set experiences at runtime and then using the infor-
mation to guide block migration among different private caches of LLC. A heavily
accessed set, namely a set with high access pressure level, is allowed to migrate its
evicted blocks to peer private caches, replacing blocks of sets which are with the
same index and have low access pressure level. By migrating blocks from heav-
ily accessed cache sets to less accessed cache sets, BP-NUCA effectively balances
space utilization of LLC among different cores. Experimental results using a full
system CMP simulator show that BP-NUCA improves the overall throughput by
as much as 20.3%, 12.4%, 14.5% and 18.0% (on average 7.7%, 4.4%, 4.0% and
6.1 %) over private cache, shared cache, shared cache management scheme UCP and
private cache organization CC respectively on a 4-core CMP for SPEC CPU2006
benchmarks.

Keywords: Chip multi-processors (CMPs), last-level cache (LLC), block migra-
tion, non-uniform cache architecture (NUCA)
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1 INTRODUCTION

Chip Multi-Processors (CMPs) have emerged as the mainstream microprocessor ar-
chitecture of choice in both marketplace and academia. Compared to single core
design, multi-core is a more cost-effective, power efficient design alternative to ex-
plore both intra-application and inter-application thread level parallelism (TLP).
Multi-threaded workloads and multiprogrammed workloads are the two fundamen-
tal ways to take advantage of the rich TLP enabled by CMPs [1]. This paper focuses
on the latter and investigates the scenarios in which multiple disparate applications
are running simultaneously on CMPs.

The increasing transistor budget advocates the usage of large on-chip caches to
compensate for the relatively limited off-chip bandwidth on CMP platforms. Last
Level Cache (LLC) [2] is an extremely important part of on-chip cache hierarchy
because it is the last line before an access goes off-chip.

Traditionally, LLC can be structured as shared or private [2, 3]. In shared LLC,
cache space is shared among all cores, serving misses from above cache level or
bypassed requests of multiple applications running on all cores on demand basis.
Whereas private LLC is composed of multiple private caches, each one private to
and closely coupled to a different core both logically and physically, serving only
local misses and requests. This paper treats all the private caches of private LLC
as a whole and each one is called a LLC slice.

Shared caches usually have higher hit rates and work better under unbalanced
workloads than private caches because shared data are not replicated and appli-
cations can use the entire cache space, as opposed to just the local portion in
private caches. However, the above merits of shared caches could be jeopardized
by two facts. One is that for some simultaneously running applications, absence
of proper control may lead to destructive interferences [4]. The other is that the
access latency of unified shared caches is bounded by the cache block farthest to
the requesting core [5]. Due to poor wire scaling [5], the actual access latency to
different parts of a unified shared cache differs significantly. Non-Uniform Cache Ar-
chitecture (NUCA) [5] is proposed to address this problem by partitioning a cache
to several latency regions, each one having a different access latency.

Private caches are distinguished by smaller access latency [3]. This is because
private cache organization is inherently a NUCA [5] organization in that it has non-
uniform access latencies[6] to different private caches that belong to different cores,
and cache blocks are placed near to their owner cores. Private cache organization
also has the advantages of good performance isolation and easy scalability. These
merits make private cache organization an attractive design alternative for large on-
chip LLC of CMPs. However, in a private organization, cache resources are statically
partitioned among cores without regard to the diversity of application mixes running
on it. This often leads to undesirable low utilization of the precious on-chip cache
resources.

This paper puts forwards a new private LLC architecture, namely Balanced
Private Non-Uniform Cache Architecture (BP-NUCA). BP-NUCA chooses private
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LLC as the base organization of BP-NUCA for the smaller local access latency and
good performance isolation, and then introduces set-level block migration to improve
the space utilization of private LLC through the usage of a low cost hardware mecha-
nism Saturation Counter Table (SCT) [7]. SCT associates each set with a Saturation
Counter (SC), which is used to estimate the cache pressure level of each cache set
at runtime. BP-NUCA then uses the cache pressure level information to guide the
set-level block migration among different private caches of LLC. A heavily accessed
set, namely a set with high access pressure level, is allowed to migrate its evicted
blocks to peer private caches, replacing blocks of sets which are with the same index
and have low access pressure level.

By migrating blocks from heavily accessed cache sets to less saturated cache sets,
BP-NUCA not only balances the cache utilization among different cores effectively,
but also avoids unnecessary interferences. Experimental results using a full system
CMP simulator show that BP-NUCA improves the overall throughput by as much
as 20.3%, 12.4 %, 14.5% and 18.0 % (on average 7.7 %, 4.4 %, 4.0 % and 6.1 %) over
private cache, shared cache, a mainstream shared cache management scheme Utility-
based Cache Partitioning (UCP) [8] and a mainstream private cache organization
Cooperative Caching (CC) [9] respectively on a 4-core CMP for SPEC CPU2006
benchmarks.

Although BP-NUCA is equally applicable to three on-chip cache levels, we as-
sume each core in CMPs executes one application and L2 is the LLC for brevity
throughout this paper. The rest of the paper is organized as follows. Section 2
details the general framework, the basic ideas and hardware support of BP-NUCA.
Section 3 describes experimental methodology used and evaluation results are shown
and analyzed in Section 4. Section 5 elaborates the related work. Finally, Section 6
concludes the work.

2 BP-NUCA ARCHITECTURE
2.1 General Framework

BP-NUCA is based on Least Recently Used (LRU) replacement policy managed
private cache organization. Figure 1 shows the basic framework of BP-NUCA for
a 4-core CMPs. PO, P1, P2, P3 stand for the four processor cores, and L1D, L1I
stand for Level 1 data cache, Level 1 instruction cache, respectively. L2 consists of
four private L2 slices, i.e. L2 A, L2 B, L2 C and L2 D, with each L2 slice closely
coupled to a different processor core. L2 slices are connected with on-chip network.
Actually, various on-chip network topologies can be applied to on-chip interconnec-
tion of BP-NUCA. We choose the commonly used mesh in this study only for brevity.
As can be seen in Figure 1, private LLC organization is a NUCA in its nature due
to the fact that the access latency to a block is determined by the relative distance
between the requesting core and the block. BP-NUCA takes this non-uniformity
into account in its policies, which will be discussed later.
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Fig. 1. The framework of BP-NUCA

As discussed above, private cache organization has the problem of low space
utilization under unbalanced workloads. We call sets of all LLC slices which are
of the same index address peer sets. One fact about private cache organization is
that peer sets often experience very different levels of access demand. This is the
case not only for unbalanced workloads but also for balanced workloads, because
even the accesses of a same application to different sets are often non-uniformly
distributed [7]. Based on the key insight, BP-NUCA addresses the low utilization
problem by introducing set-level block migration. Set-level block migration moves
blocks among peer sets. BP-NUCA performs two complementary set-level block
migration types, namely downward migration and upward migration.

Downward migration migrates private blocks of a private LLC slice to neigh-
boring peer LLC slices to “steal” cache space. A heavily accessed set, namely a set
with high access pressure level, is allowed to migrate its evicted blocks to peer sets
which have low access pressure level.

When an access misses in the local LLC slice but results in a hit in a remote
LLC slice, the block is brought to the local LLC slice in case there is any next access
to the block. This kind of migration is called upward migration.

To sum up, downward migration migrates blocks away from the owner cores to
available space of remote cores to circumvent the low utilization problem of private
caches and to increase on-chip hit rates, while upward migration brings remote hit
blocks to the requesting cores to reduce the hit latency of potential further accesses
to the same blocks.

2.2 Basic Ideas

BP-NUCA seeks to provide well managed cache space sharing over a private LLC.
Downward migration allows sets with high access pressure to “steal” the space of
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neighboring LLC slices, thus is the leading component of BP-NUCA architecture.
It is intuitive that downward migration should be performed with proper control,
otherwise it may end up causing more interferences rather than reducing miss rates.

Downward migration reduces the pressure on the cache sets which are unable to
hold all blocks of their working set, by displacing some of those blocks to peer sets
which are underutilized. Since for shared data blocks there are already replicates at
peer caches, downward migration is only performed on private blocks.

Downward migration requires in the first place a mechanism to measure the
cache access pressure level each cache set experiences at runtime. BP-NUCA in-
troduces a low cost hardware mechanism Saturation Counter Table (SCT) [7] for
this purpose. Rolan et al. [7] propose Saturation Counter (SC) and show that
the cache demand level on each set can be effectively measured with SCs. BP-
NUCA associates an SC to each set of each LLC slice to catch the cache pres-
sure level estimation. All SCs of a LLC slice make up an Saturation Counter
Table (SCT). Figure 2 illustrates the SCT structure. As depicted by Figure 2,
SC [7] is a counter with saturating arithmetics, and is modified each time the set
is accessed. It is incremented if the access results in a miss, otherwise it is decre-
mented.

Cache SCT

.~ Amissin
Setk

Ahitin
/ Setk

Setk SCk

Fig. 2. SCT structure

BP-NUCA then guides the downward migration dynamically using the cache
pressure level estimation. The decision whether a set should migrate its evicted
blocks to peer sets, receive migrated blocks or just do nothing is called downward
migration decision. Figure 3 illustrates our SCT structure-based downward migra-
tion decision algorithm.

Three policy parameters, namely (SAT, Thy;, Thg) are used in the algorithm,
where SAT is the saturation value of SCs, and Thy;, Thr are the two thresholds
used to distinguish the cache pressure levels of cache sets. As shown by Figure 3,
when the SC value of a set is larger than Thy,, it is reckoned to be under high
access pressure, while when the value is smaller than Thg, it is reckoned as an
underutilized set. Since the access pressure of each set is highly dependent on the
set associativity of the cache itself, the proper values for saturation value SAT
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Algorithm DownwardMigrationDecision
Input:  Set number k and its SC value SCy
Output: Downward migration decision of set k Decy,
if SC > Thy
// Set k is under high access pressure
// Set k can migrate to peer sets
Dec;, «— Downward Migrate
elseif SC. < Thyg
/1 Set k is under low access pressure
/1 Set k can receive migrated blocks of peer sets
Dec, <« Receive

else
// Set k is under moderate access pressure
// Do nothing
Dec, <« None

return  Decy,

Fig. 3. SCT-based downward migration decision algorithm

and the two thresholds Thy;, Thg should reflect this correlation. In light of this,
we set the values of SAT, Thys, Thg in the form of aA + 3, with A being the set
associativity. The optimal values for the three parameters are (34A—1,24—1,3A/2),
respectively, which are obtained experimentally.

Appending each set with a SC enables BP-NUCA to make migration deci-
sion at the set level rather than at the slice level. This fine control of migra-
tion would be of great value due to the fact that even different sets of a same
private cache can experience very different levels of demand, which has already
been discussed at length in the bibliography [7, 10, 11]. Note that although in
BP-NUCA, different sets of a same slice may act differently at the same time,
e.g. some sets act as block providers while others act as block receivers, each
set only acts as one identity at one time, either as a provider or as a receiver
but not both, as guaranteed by the downward migration algorithm. Therefore,
there will not be the undesirable case that a set seeks to store its blocks to peer
caches while giving away its own space to other cores [6] at the same time in BP-
NUCA.

To improve cache utilization, we need not only to send blocks away to “steal”
space, but also need to be able to take them back and use them. As the comple-
ment of downward migration, upward migration checks whether there are remote
copies in peer sets on a miss and brings remote hit block to the requesting core. In
fact, although downward migration determines whether and where to displace the
evicted blocks of highly accessed sets and therefore determines whether cache space
utilization can be improved, the actual utilization of the downward migrated blocks
can only be performed by upward migration.
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2.3 Enforcement of Migration
An enforcement mechanism is also required to actually perform migration in BP-

NUCA, apart from the cache pressure estimation. The very timing for perspective
downward as well as upward migration is whenever a miss happens.

Block X is evicted
from Set k of L2 N

Do not spill X, and evict
it directly
A

2. Does X have
any replicate?

Does the miss that
causes the evict hit in
aremote block Y?

Exchange X with Y ]

Is there any peer set ‘l’
with its SCk<Thgr?
Spill X to the peer set
with the shortest
access latency, and

replace the LRU block

Fig. 4. Migration process of BP-NUCA

When an access misses in the local private LLC slice, a victim in the ac-
cessed set is evicted and all other LLC slices are snooped. The latter operation
is also required in the baseline private cache for coherence [6]. When the SC value
of the accessed set suggests it could perform downward migration, if a copy of
the access is found at a remote LLC slice, then the remote copy is exchanged
with the evicted block. That is, a downward migration of the evicted block and
an upward migration of the remote hit block are performed at the same time.
Otherwise, if no copy of the access is found, then the block is fetched from off-
chip memory and in the meantime the evicted block is migrated to one of the peer
sets which can receive blocks according to the decision algorithm. If there is no
such peer set, the downward migration of the evicted block is aborted. The des-
tination peer set is chosen according to the access latency. As discussed above,
private cache organization is a NUCA in nature. BP-NUCA tries to migrate an
evicted block to the nearest peer LLC slice to minimize the hit latency of potential
future access to the block. Figure 4 illustrates the downward migration process
extensively.
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Considering the replacement policy for downwards migrated blocks at the desti-
nation set, we choose the basic LRU rather than other complex policies. The basic
philosophy behind this choice is that the use of SCT already ensures destination sets
of downwards migrated blocks are underutilized, and the migration source set is un-
der high access pressure level. Therefore, we can reasonably assume that treating
migrated blocks just like local blocks at destination sets won’t cause unacceptable
interferences to the local application. Otherwise, if we insert the downwards mi-
grated blocks at the LRU position of the destination set, the blocks will be evicted
soon after one more local miss to the set. A relatively aggressive replacement policy
is required for downward migration to provide considerable performance boost.

When a downwards migrated block is evicted by its destination set, it is possible
that the block will be further migrated to other peer sets if without proper control.
This kind of migration is called secondary downward migration. Secondary down-
ward migration is not allowed in BP-NUCA. In fact, the case that a downwards
migrated block is evicted by its destination set generally indicates that either the
block will not be reused or the reuse distance is quite large. Under either circum-
stance, it is likely to have little to no performance benefit to continue holding the
block in LLC. Moreover, secondary downward migrations may cause deadlocks. To
identify secondary downward migration, a migration bit (called m bit) is added to
each block to distinguish downwards migrated blocks from local blocks.

From the above discussion, we can see that BP-NUCA requires rather little
change to coherence protocols and nearly no change to replacement policies. It
should be mentioned that the downward and upward migration processes are done
concurrently with the fill operation of the miss, thus it is not in the critical path of
memory access.

2.4 Discussion

Figure 5 shows a simple example of the operation of a BP-NUCA with four 2-way
associative sets for each L2 slice. The optimal values for SAT, Thy;, Thg are
therefore 5, 3, 3, respectively. 8-bit addressing is used for simplicity, with the lower
two bits being the set index and the upper 6 bits the tag. In the two tags of each
set, the one above is the Most Recently Used (MRU) and the one below is the LRU.

The first reference (Ref 1) is mapped to set 0 of L2 A, where SC = 4, and
results in a miss, thus SC' is incremented. Coherence status indicates that there
is no copy of the miss in peer L2 slices. The SC value of set 0 of L2 A (SC = 5)
suggests downward migration is allowed, therefore the LRU block of set 0 of L2 A,
the block with tag 010100, is migrated to the MRU position of set 0 of L2 C, where
SC < Thg. The corresponding m bit of set 0 of L2 C is set as well.

The second reference (Ref 2) is mapped to set 3 of L2 D, where SC = 5.
Ref 2 results in a miss and there is no copy of the miss in peer L2 slices. Therefore,
a downward migration of the victim (with tag 110000) to set 3 of L2 A is performed.
The corresponding m bit of set 3 of L2 A is set as well. This example clearly
demonstrates that the fine level migration control of BP-NUCA allows different sets
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Fig. 5. An example of BP-NUCA references

of a same slice to act differently at the same time. In this case, set 0 of L2 A works
as a downward migration source, meanwhile set 3 of L2 A works as a downward
migration destination.

The third reference (Ref 3) is mapped to set 0 of L2 A, where SC = 5, which
results in a miss. Coherence status suggests there is a remote copy at set 0 of L2 C.
According to Figure 4, the LRU block of set 0 of L2 A is exchanged with the remote
copy at set 0 of L2 C.

The adoption of SCT [7] renders BP-NUCA great adaptability in that SCs could
follow and reflect the dynamic changes of cache access pressure status of each set
real-timely. When downward migration starts to exert great pressure on a desti-
nation peer set, the corresponding SC catches this pressure and its value increases
correspondingly. By the time the value starts to go beyond Thpg, further downward
migration to the set is then prevented by the SC value. Therefore, with proper pa-
rameter values, the SCT-based downward migration algorithm itself can ensure that
the interferences to destinations caused by downward migrations are under control.

3 EXPERIMENTAL METHODOLOGY
3.1 Configurations

We use g-cache of Virtutech Simics [12], a full system simulator for our performance
studies. Evaluation is performed on a 4-core CMP with configuration given in
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Table 1. An in-order core model is used so that we can evaluate our proposal
within a reasonable time.

System 4-core CMP
Processor Core UltraSPARC-III, in-order
(0N Linux2.6.18

L1 1/D (Private) 32KB, 64 B-block, 2-way,
LRU repl., 1-cycle hits
L2 (Private) 512 KB, 64 B-block, 8-way,
LRU repl., 10-cycle local hits,
two peers with 38-cycle remote hits,
one peer with 46-cycle remote hits

L2 (Shared) 2 MB, 64 B-block, 32-way,
LRU repl., 19-cycle hits

CC Protocol Snoop based MESI protocol

Memory 350-cycle access latency

Table 1. Simulation configuration

To fully evaluate BP-NUCA, we extend the simulator with four other schemes
for comparison, i.e. Private, Shared, UCP [8] and CC [9]. Private and Shared stand
for the basic private and shared LLC organization, respectively, with no further
optimization. As BP-NUCA starts from private organization, we choose Private as
the baseline for comparison. UCP [8] is a mainstream shared cache partitioning
scheme to tackle the destructive inter-thread interference problem of shared cache
organization. UCP seeks to minimize the overall miss rate of shared cache by giving
a cache way to the application that benefits most from it. CC [9] is a mainstream
private cache optimization scheme for CMPs, and is the first to explicitly introduce
“cache stealing” to improve space utilization in private cache.

Each core is coupled with a 512 KB L2 for all the schemes considered. For private
schemes, i.e. Private, CC and BP-NUCA, this means a 512 KB private L2 per core,
with a 10-cycle hit latency to the local L2, a 38-cycle hit latency to two peer L2s
and a 46-cycle hit latency to one peer L2. As for shared schemes, i.e. Shared and
UCP, this results in a unified 2 MB L2 with a global 19-cycle hit latency. We use
relatively small cache configuration so that the cache will be under higher access
pressure, with more obvious contentions and interferences. The basic philosophy
behind is that a large fraction of the current real-world applications already have
working sets much larger than those of the selected benchmarks.

Mesh network is used for intra-chip data transfers, modeling non-uniform access
latency of private organization. A unified organization for shared schemes is used,
with access latency bounded by the farthest bank. We model on-chip network and
cache latencies with CACTT 6.0 [13]. All caches are of a uniform block size of 64 B
and use LRU as baseline replacement policy. Off-chip memory access latency is
350 cycles.
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3.2 Workloads

For our study, we use 23 SPEC CPU2006 benchmarks to create 16 4-benchmark
multiprogrammed workloads, as listed in Table 2. Benchmarks for each workload
are randomly selected. All workloads are simulated till each benchmark in the
workload executes at-least 250 M instructions. When a benchmark reaches 250 M
instructions, its statistics are “frozen”, but it continues to execute so that it still
competes for cache resources.

Name Benchmarks in Workloads

MIX00 perlbench.c mef.i milc.s dealll.r

MIX01 bwaves.b cactusADM.r dealll.r libquantum.r
MIX02 dealll.r soplex.r povray.s lbm.r

MIX03 milc.s dealll.r namd.r xalancbmk.r
MIX04  bzip2.ip bwaves.b leslie3d.r omnetpp.r
MIX05 gamess.c leslie3d.r dealll.r libquantum.r
MIX06 cactusADM.r soplex.r omnetpp.r astar.b
MIX07 mcfi zeusmp.r libquantum.r astar.b
MIX08 hmmer.r sjeng.r libquantum.r astar.b
MIX09  bzip2.ip gce.1l gobmk.1 lIbm.r

MIX10 bwaves.b milc.s zeusmp.r libquantum.r
MIX11 bwaves.b soplex.r libquantum.r astar.b
MIX12  bzip2.ip milc.s mcf.i hmmer.r

MIX13  zeusmp.r gobmk.1 libquantum.r astar.b
MIX14  milc.s gobmk.1 lbm.r specrand.r

MIX15  bzip2.ip milc.s povray.s lbm.r

Table 2. Workloads (reference input sets)

3.3 Metrics

Throughput, Weighted Speedup (WS) and Harmonic Mean (Hmean) [14] are the
three metrics commonly used to quantify the aggregate performance of a system
with multiple applications (threads) running concurrently. Let I PCM? and I PCPP
be the number of useful instructions executed per cycle of application i under
multiple-application and single-application execution respectively, for N-application
(or N-thread) workloads, throughput, WS and Hmean are defined as follows [14]:

N-1
throughput = > IPCMF (1)
0
N-1 [PCMP

ws =y LG 2)
2 TpcsT
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N
Hmean = W (3)
0  1pPCMP

Throughput reflects the overall performance boost but may favor high IPC ap-
plications too much. WS weights the relative speedups of all applications evenly and
indicates the improvement on execution time. Hmean is a fairness metrics and ba-
lances both fairness and performance. We use all the three metrics for performance
comparisons. Besides, since BP-NUCA is based on private cache organization and
the number of accesses to each slice of BP-NUCA is different, the commonly used
miss rate metric is meaningless. For the purpose of memory access analysis, we
adopt the L1 misses breakdown metric used in CC [9] to show the changes to LLC
accesses.

4 RESULTS AND ANALYSIS

We compare BP-NUCA to four other schemes: Private, Shared, UCP and CC. (SAT,
Thy, Thgr) are policy parameters used in BP-NUCA. Their values not only impact
the accuracy of the cache pressure level estimation, but also tune the aggressiveness
of BP-NUCA. We conduct a parameter sensitivity study to pinpoint the optimal
parameter configuration. Simulation for more than 20 combinations of (SAT, Thyy,
Thpg) are examined and (34 — 1, 24 — 1, 34/2) are found to be the optimal values
for the three parameters.

In addition, we examine the sensitivity of BP-NUCA performance to cache size
and associativity as well as its scalability to larger CMP systems with more cores.

4.1 Performance on Throughput Metric

Figure 6 shows the throughput of Shared, UCP, CC and BP-NUCA, normalized to
Private. Geomean is the geometric mean of all 16 workloads.
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Fig. 6. Throughput of Shared, UCP, CC and BP-NUCA (normalized to that of Private)
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We expect BP-NUCA to outperform the other four schemes due to several rea-
sons:

1. first and foremost, we adopt saturation counters (SCs) [7] to measure the access
pressure level of each cache set;

2. BP-NUCA proposes a SCT-based downward migration, which enables adaptive
control of cache space “stealing”;

3. as we discussed in Section 2.2, the SCT-based downward migration is performed
at set level, and this fine control style promises more performance boost due to
the fact that different sets of a same application can experience very different
levels of demand [7];

4. the private organization of BP-NUCA allows a smaller hit latency for most of
the cache accesses over shared organization, the hit latency of which is bounded
by the farthest bank and which may sometimes store local blocks of a core far
away due to its global addressing style.

As can be seen in Figure 6, BP-NUCA outperforms both Shared and UCP
for 11 of 16 workloads, with an average improvement of 4.4 %, 4.0 %, respectively,
which confirms our expectation. In contrast, another private scheme CC degrades
throughput when compared to Shared or UCP for 10 out of the 16 workloads.
This suggests that BP-NUCA can effectively simulate a shared cache organization
and explore the capacity sharing potential with SCT-based downward migration,
improving cache resource utilization of private cache organization.

Shared and UCP work better than BP-NUCA for 5 of the 16 workloads. It
is easy to understand since BP-NUCA is based on private organization, which is
totally different from shared schemes, i.e. Shared and UCP, due to the fact that they
can adequately share the cache space, especially under unbalanced workloads. We
perceive BP-NUCA fails to achieve comparable performance to Shared and UCP
for the 5 workloads is because of its sort of conservative “stealing”. However, it
is difficult to tune the aggressiveness of BP-NUCA, since the performance boost is
highly dependent on the inherent characteristics of the workload mixes. Dynamically
tuning the parameters may be profitable.

BP-NUCA shows stable and consistent performance boost over Private, out-
performing Private for all 16 workloads simulated. As for another private scheme
CC, BP-NUCA significantly outperforms it for 13 out of the 16 workloads, with an
average performance boost of 6.1 %.

The use of cache pressure level information collected with SCT to guide cache
space “stealing”, including both when to migrate and when to stop, contributes
to BP-NUCA'’s benefit over CC. In general, BP-NUCA improves throughput by as
much as 20.3 %, 12.4 %, 14.5 % and 18.0 % (on average 7.7 %, 4.4 %, 4.0 % and 6.1 %)
over Private, Shared, UCP and CC, respectively.
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4.2 Performance on Weighted Speedup and Hmean

Figure 7a) shows the WS of Shared, UCP, CC and BP-NUCA, normalized to Pri-
vate. The WS with BP-NUCA is higher than those with Shared and UCP for 13 out
of the 16 workloads. BP-NUCA achieves better WS than Private for all 16 work-
loads, and than CC for 13 out of the 16 workloads. The results of WS are consistent
with those of throughput. Generally, BP-NUCA improves WS by as much as 33.8 %,
24.3%, 23.9 % and 25.9% (on average 11.2%, 7.7 %, 6.8 % and 9.0 %) over Private,
Shared, UCP and CC, respectively. This indicates that BP-NUCA can bring a con-
siderable reduction in overall execution time.
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Fig. 7. WS and Hmean of Shared, UCP, CC and BP-NUCA (normalized to that of Private)

Although BP-NUCA improves the overall throughput and WS significantly, it
is important that this does not come at the expense of fairness of the system. Fig-
ure 7b) shows the Hmean fairness of Shared, CC, UCP and BP-NUCA, normalized
to Private. BP-NUCA has better Hmean value over Private for all 16 workloads,
and better Hmean value over CC for 13 out of the 16 workloads. BP-NUCA also has
better Hmean value over Shared and UCP for most workloads. The results are con-
sistent with those for throughput and WS. To sum up, BP-NUCA improves Hmean
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fairness by 27.5 %, 17.3%, 15.5 % and 21.1 % on average over Private, Shared, UCP
and CC, respectively. Thus, BP-NUCA not only improves performance but also
balances fairness well.

4.3 Memory Access Breakdowns

Figure 8 shows L1 miss breakdowns [9] for Private, Shared, UCP, CC and BP-NUCA
schemes. We break down the L1 misses into three parts, namely local L2 access rate,
remote L2 access rate and off-chip access rate respectively. BP-NUCA can effectively
reduce the amount of off-chip accesses and increase the on-chip L2 hit rates when
compared to Private for most of the workloads. For several workloads, the on-chip
hit rates (local combined with remote) of BP-NUCA are even higher than that of
Shared or UCP. This suggests that the downwards migrated blocks truly promise
more hits for most applications.
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Fig. 8. L1 misses breakdown (left to right in each group: Private, Shared, UCP, CC and
BP-NUCA)

However, for some workloads, the miss rates of BP-NUCA even increase over
other schemes, although the corresponding throughput, WS and Hmean are im-
proved. Comparing Figure 6 and Figure 8, we see that lower total miss rates do
not necessarily result in higher performance. This is because the contribution of
an access to performance is highly dependent on the importance of the access to the
application and on the inherent behavior characteristics of the application itself.

4.4 Memory Configuration Sensitivity

We now evaluate the performance robustness of BP-NUCA. Cache size and cache
associativity are the two aspects of memory configuration that impact cache access
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behaviors greatly. When cache size increases, more data in working set can be held
in cache, reducing cache access pressure. On the other hand, larger associativity
can reduce conflict misses, and that is why a lot of modern microprocessors adopt
highly associative non-first level caches. The main idea of the memory configuration
sensitivity study is to examine the benefit of BP-NUCA across a spectrum of memory
configurations, including different size and different ways.
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Fig. 9. Throughput sensitivity of BP-NUCA to cache size (from top to bottom: 16-way
1MB L2 per core, 32-way 2 MB L2 per core, normalized to Private)

The benefit of BP-NUCA is impacted by the aggregate cache capacity. We
vary the cache size by keeping the number of sets constant while changing the
associativity. Figure 9 shows the throughput of Shared, UCP, CC and BP-NUCA
with larger cache size.

As the aggregate cache size increases, the advantage of BP-NUCA over Private
also increases gradually. In contrast, as the aggregate cache size increases, the
benefit of Shared, UCP and CC is diminishing in general, as shown by Figure 9.
Therefore, the performance of BP-NUCA shows better scalability with increasing
cache size. With larger cache size, BP-NUCA is able to explore more cache access
pressure imbalance among different cores for more performance benefit. With the
increasing problem size and number of applications, access pressure on future large
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on-chip caches and the access pressure gap between different sets are more likely to

increase rather than decrease, which makes BP-NUCA more favorable.

In general, BP-NUCA improves the average throughput by 8.9%, 5.3 %, 8.7%

and 6.8 % over Private, Shared, UCP and CC for 16-way 1 MB L2 per core respec-

tively, by 10.2%, 7.5 %, 8.6 % and 9.5 % for 32-way 2 MB L2 per core respectively.
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Fig. 10. Throughput sensitivity of BP-NUCA to associativity (from top to bottom: 4-way,

16-way and 32-way 512 KB L2 per core, normalized to Private)

Figure 10 compares the throughput of Shared, UCP, CC and BP-NUCA with

different associativity (4-way, 16-way or 32-way 512 KB L2 per core, respectively).
Combining Figure 6 and Figure 10, we can see that BP-NUCA achieves notice-

able average performance boost for all 4 associativity configurations over Private,



1054 X. Jia, J. Jiang, Y. Wang, S. Qi, T. Zhao, G. Fu, M. Zhang

though the performance benefit of individual workload varies slightly across config-
urations. It can also be observed that with associativity increasing under constant
cache size, the performance benefit of Shared, UCP and CC changes unpredictably.
In contrast, the performance boost of BP-NUCA over Private increases slightly with
increasing ways. The stability of BP-NUCA makes it more suitable for caches with
high associativity, which is the case for large on-chip LLCs in many modern CMP
platforms.

In general, BP-NUCA improves the average throughput by 7.0 %, 2.8 %, 3.9 %
and 4.7 % over Private, Shared, UCP and CC for 4-way 512 KB L2 per core respec-
tively, by 8.0%, 5.4 %, 6.3% and 5.2 % for 16-way 512 KB L2 per core respectively,
by 9.5%, 4.6 %, 5.9 % and 5.1 % for 32-way 512 KB L2 per core respectively.

4.5 Scalability of BP-NUCA to Larger CMP Systems
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Fig. 11. Throughput of Shared, UCP, CC and BP-NUCA on 8-core CMPs (normalized to
Private)

To examine the scalability of BP-NUCA performance to larger CMP systems
with more cores, we evaluate BP-NUCA for 8-core system with 12 8-benchmark
workloads formed by randomly combining from 20 SPEC CPU2006 benchmarks.
We use the same 8-way 512 KB per core basic configuration. Figure 11 shows the
throughput of Shared, UCP, CC and BP-NUCA, also normalized to Private. BP-
NUCA outperforms Private and CC for all 8-core workloads except for 8P_03. BP-
NUCA also achieves considerably better performance over Shared and UCP for 8 out
of the 12 workloads considered. In general, BP-NUCA improves throughput by up
to 11.6 %, 10.9 %, 10.6 % and 11.4 % (on average 4.1 %, 3.2 %, 2.7 % and 3.1 %) over
Private, Shared, UCP and CC, respectively.
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4.6 Hardware Overhead

The storage overhead of BP-NUCA is composed of three parts, i.e. SCT, m bits and
threshold registers. Assuming SAT = 3A — 1, let S, A, L and T be the number
of sets, associativity, block size and tag size respectively; total storage overhead of
BP-NUCA can be calculated by Equation (4).

A+log, A+2 3 xlogy, A+ 6
Ax(L+T) SxAx(L+T)

(4)

As can be seen, the total storage overhead of BP-NUCA is mainly dependent
on terms associativity, block size and tag size. Assuming a 40-bit physical address
space, for the baseline 8-way 512 KB private LLC per core with 64 B cache block,
BP-NUCA requires not more than 0.3% of the LLC storage overhead, incurring
fairly small silicon area cost; and this value decreases with increasing associativity.
Note that none of the structures or operations required by BP-NUCA is in the
critical path, resource-intensive, complex, or power hungry.

5 RELATED WORK

The related work on LLC of CMPs generally falls into two categories, namely shared
cache based and private cache based. Most [8, 15, 16, 17, 18] of the studies are built
on top of a physically shared cache for its good space utilization and low complexity.
The main challenge for a physically shared design is to tackle the inter-thread inter-
ferences. Cache partitioning [8, 15, 17] is the most studied and relatively effective
solution to the challenge, with UCP [8] being the prevailing scheme. However, while
a large shared LLC provides good utilization of cache space, latency and power con-
sumption worsens, particularly with aggressive porting or banking due to poor wire
scaling [5, 19], which limits its scalability with growing cores.

Several other designs [2, 19, 20, 21] seek to optimize distributed shared caches.
Distributed shared cache is a more scalable design, and the local access latency is
also much smaller. However, it faces the challenge of bringing a block close to the
requestor, which, if not neatly realized, may lead to big hit latency.

Since compared to shared cache, private cache organization has the advantages of
smaller access latency, good performance isolation, easy scalability and non-uniform
access latency [5] in its nature [6], it is becoming an attractive design alternative
for large on-chip LLCs of CMPs. However, in a private organization, the stati-
cally partitioned fashion of cache resources may lead to undesirable low utilization
problem.

As a private cache sharing scheme for LLC of CMPs, CC [9] is the first to
explicitly introduce “cache stealing” for cache capacity utilization improvement.
When a block is evicted from a private LLC, CC [9] decides whether to store it to
peer LLCs randomly with a pre-set probability. However, one problem with CC is
that the migrated blocks can only “steal” the space of replicates (blocks that have
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more than one copy) of peer caches, which limits the potential performance benefit.
Another problem with CC is that CC [9] decides whether to migrate an evicted
block randomly with a pre-set probability. Neither the control with a probability
nor the probability value selection takes into account the cache access pressure of
each application.

CMP-NuRAPID [22] suggests stealing capacity of neighboring caches when there
is not enough capacity for private data in local cache. However, the “stealing” in
CMP-NuRAPID is simply demand-based, with no proper control. BP-NUCA differs
from CC [9] and CMP-NuRAPID [22] in that it introduces SCT [7] to measure the
access pressure on each set, which is then used for downward migration control.

In Dynamic Spill-Receive (DSR) [6], each private cache learns whether it should
act as a downward migration source (or spiller in their words) or a destination
(receiver) using set dueling monitors. DSR determines downward migration source
or destination at the granularity of the whole LLC slice, thus could waste some
opportunity for improvement due to the uneven distribution of application cache
access across different sets whereas BP-NUCA performs downward migration at set
level, providing a much finer control to account for the uneven access distribution
across sets.

To the best of our knowledge, existing studies on private LLCs either migrate
evicted blocks only into invalid or replicate blocks of peer caches [6, 9] or without
proper control [22]. In contrast, BP-NUCA allows evicted blocks to use the same
LRU replacement policy at the destination to derive more benefit, and to use the
SCT structure to adaptively avoid the undesirable interferences to local applications.

6 CONCLUSIONS

Private LLCs of CMPs suffer from the inability to share cache capacity among
cores, especially when the cache requirement of each core is unbalanced [6]. This
paper presents a new private LLC architecture BP-NUCA, which introduces a low
cost mechanism SCT [7] to help smartly perform the block migration among peer
LLC slices to effectively balance the cache utilization. BP-NUCA enables fine level
control of private LLC management and great adaptability to the dynamical changes
of workload behaviors. Experimental results using a full system CMP simulator show
that BP-NUCA improves the overall throughput by 7.7 %, 4.4%, 4.0% and 6.1%
on average over private cache, shared cache, UCP [8] and CC [9], respectively on
a 4-core CMP for SPEC CPU2006 benchmarks. Moreover, BP-NUCA requires
a total storage overhead of no more than 0.3% the current LLC storage, and does
not require changes to the current cache structure.
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