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Abstract. In this contribution we describe an efficient GPU implementation of
the Monte-Carlo simulation of the Ginzburg-Landau model. We achieve the per-
formance close to 50 % of the peak performance of the used GPU. We compare this
performance with a parallelized and vectorized CPU code and discuss the observed
differences.
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1 INTRODUCTION

The Graphical Processing Units (GPU) emerge these days as the most efficient
devices for numerical calculations. To ascertain this it is sufficient to look at the list
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of 500 supercomputers and count how many of them have GPU accelerators; and this
trend is still increasing [2]. This was made possible not only by the accessibility of the
hardware but also by the realization from the side of the vendors that those units can
be used also for computations, and providing user with suitable software interface
to do this. Technologies like CUDA and OpenCL make the GPU relatively easily
accessible to C/C++ programmers. In the meantime also most of the numerical
packages vendors have added GPU support to their tools.

However, like with most of the computer languages there is a learning gap be-
tween using them and using them efficiently. The GPU are not only massively
parallel machines containing thousands of computing cores but can be also con-
sidered as vector machines. While the NVIDIA GPU we are using does not have
explicit vector instruction, the scalar kernel code is implicitly distributed over thou-
sands of threads, each thread executing the same program. NVIDIA calls this Single
Instruction Multiple Threads (SIMT) architecture. Moreover, the smallest execu-
tion unit is one warp currently containing 32 threads. From the point of view of
the programmer all threads in a warp execute in Single Instruction Multiple Data
(SIMD) fashion. That is why it can be advantageous to consider NVIDIA GPUs
as vector machines with vector length equal to 32 [3]. This is a trend visible also
in the CPU market: the SSE extensions introduced four floats wide vector (SIMD)
instructions, AVX eight floats wide and Xeon Phi 16 floats wide1. To get most out
of the hardware it became crucial to vectorize the algorithm we want to implement.

In this contribution we present an efficient implementation, both on GPU and
CPU, of the Monte-Carlo simulations of the discretized version of the Ginzburg-
Landau model. The Ginzburg-Landau model is probably after the Ising model –
the second most important model of the statistical physics (for an excellent intro-
duction to those topics [4]). It is the basis for the modern theory of the phase
transitions. Under the name of the ϕ4 theory it is a model for the scalar field that
describes among other things the much publicized Higgs particle. It is a simple
model to formulate, but in spite of its simplicity it is unsolvable. While many ap-
proximate methods exist to study its properties, Monte-Carlo simulations are used
extensively and their importance is growing as the speed and the accessibility of the
new hardware increases.

Our motivation was to develop a tool to accompany the lecture on Statistical
Field Theory given by one of the authors. The idea was to create a kind of “virtual
lab” where students could study the effects of various parameters on the properties
of the model. This requires a fast implementation working on the easily accessible
commodity hardware, so the results can be obtained in reasonably short time. For
the educational reasons we also included a “cut-off” term (see next section) in the
model, which, while not strictly necessary, allows for greater clarity of the presen-
tation. This term, however, introduces the interactions between the sites that are
not nearest neighbors (see Figure 1) complicating the parallelization/vectorization

1 Strictly speaking, the Xeon Phi is not a CPU but an accelerator. However, its cores
are based on Intel Pentium CPU micro-architecture.
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of the algorithm. We have obtained a hundredfold speedup compared with our old
CPU version. That drew our attention to the inefficiency of the CPU code. We
have completely rewritten the code taking advantage of the many cores and SIMD
instructions of the CPU; paradoxically it took more effort than implementing the
GPU version.

We believe, however, that our contribution is relevant to a wider audience.
Monte-Carlo simulations of this type play an important role in statistical physics,
solid state physics and field theory. Those simulations are usually very time con-
suming, so the speed of the algorithm is of a paramount importance. Our imple-
mentation can be easily adapted to many variants of the model as we describe in
more detail later. The GPU implementation is targeted for small desktop machines
with CUDA enabled commodity graphics cards and is up to 20 times faster than
CPU program running on the same machine2. Such “small-scale” computing plays
a very important role in science as it provides fast feedback right at the workplace,
without resorting to more laborious and/or expensive bigger machines.

Apart from providing ready to use code, which is available online [1], we hope
to contribute also to general methodology of adapting Monte-Carlo to SIMD archi-
tectures. This clearly is a trend in modern hardware but much of the knowledge
remains tacit in nature. We have found several published GPU implementations of
similar model; however, they are discrete spin models with nearest neighbor inter-
actions [5, 6, 7]. We use a continuous field model with extended neighborhood that
to our knowledge was not yet ported to the GPU. The literature on the SSE/AVX
implementation of such models is also scarce. Actually, filling this particular gap
is even more important as we often did find that scientists in our surrounding are
more knowledgeable in GPU computing than in vectorizing computations on the
CPU. This is to some extent due to the publicity that the GPUs are getting re-
cently; but we also believe that NVIDIA CUDA programming environment, and
likewise OpenCL, provide a cleaner interface to the parallel/vector features of the
processor; this comes of course at the price of greater specialization. The GPUs
are inherently parallel machines and provide only parallel mode of programming.
The CPUs, on the other hand, have a long history as (super)scalar machines with
parallel and vector capabilities put in later on, so it is usual to mix the scalar and
vector code in a single CPU program. Additionally, accessing the vector instruc-
tion of the CPU in a way that is portable across many compilers is still essentially
possible only by using the so called intrinsics or inline assembly, that is chang-
ing fast with new architectures (Haswell and Xeon Phi) and new compilers; but it
also requires the paradigm shift on the part of the users that are used to view the
CPU as consisting of many scalar cores and exploiting only the part of the paral-
lelism present in the processor. We hope with this contribution to address some of
this issues and increase the explicit knowledge about vectorization of Monte-Carlo
simulations.

2 The speedup is of course highly dependent on the machine configuration used.
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2 GINZBURG-LANDAU MODEL

Ginzburg-Landau model in k dimensions that we use is in its discretized form defined
by the Hamiltonian [8]:

H[ϕ] =
∑
~i

(
1

2

k∑
µ=1

(ϕ(x~i + ~aµ)− ϕ(x~i))
2

+
µ2

2
|ϕ(x~i)|

2 +
g

24
(|ϕ(x~i)|

2)2

+
1

2Λ

(
k∑

µ=1

(ϕ(x~i + ~aµ)− 2ϕ(x~i) + ϕ(x~i − ~aµ))

)2)

where ϕ is a scalar3 field defined on the sites of a k dimensional lattice (we only
consider k = 2 and 3). xi denotes a site of the lattice where i is a multidimensional
index and ~aµ denotes the unit vector in the direction µ. We use periodic boundary
conditions, i.e.

ϕ(x+ Lµ~aµ) = ϕ(x) (1)

where Lµ is the number of lattice sites in direction µ.
The Monte-Carlo simulations consist of generating the field configurations with

probability proportional to exp(−H[ϕ]). The generation is done by the mean of the
Metropolis algorithm (the original idea is presented in [9], but since then it has been
explained in many textbooks, see e.g. [4]). This amounts to sequentially updating
all the points of the lattice. During each update we change the value of the field ϕ
in a single lattice xi (ϕi is a shorthand for ϕ(x~i)):

ϕi → ϕ̃i = ϕi + ηi. (2)

The ηi is a pseudo-random number. In principle the only restriction on η distribution
is that it has to be symmetric: the probability of generating η and −η must be the
same – P (η) = P (−η). In practice we draw η from the uniform distribution on the
interval (−ε, ε).

Then we calculate the difference of the Hamiltonian of the new and the old field:

∆H = H[ϕ|ϕi → ϕ̃i]−H[ϕ]. (3)

If ∆H < 0 we accept the change and substitute ϕ̃i for ϕi, otherwise we accept the
change with the probability exp(−∆H). In other words if we denote by P (φi →
φi + ηi) the probability of updating the field at lattice site xi, then it is given by

P (ϕi → ϕi + ηi) = min (1, exp(−∆H)) . (4)

3 In general this can be a vector, but in this contribution we restrict ourselves to scalar
case only.
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The probability that an update will be accepted depends implicitly on ε. Large ε
leads to large values of η and hence large values ∆H leading to small acceptance
rates. Conversely, a small ε will produce high acceptance rates but each update will
introduce only a small change in configuration, and so more updates are needed to
obtain the same effect. In practice one aims at maintaining the acceptance rate of
the order of 50 %.

The crucial feature of this algorithm is that the update is local, i.e. ∆H depends
only on the values of fields in the immediate neighborhood of the updated point

∆H = −(ϕ̃i − ϕi) ci

+ (ϕ̃2
i − ϕ2

i )

(
k +

µ2

2
+ k(1 + 2k)

1

Λ

)
(5)

+
g

4!

(
ϕ̃4
i − ϕ4

i

)
where

ci =

(
c01i −

1

Λ

(
c02i − 4kc01i + 2c11i

))
(6)

and

c01i =
k∑

µ=1

(ϕ(x~i + ~aµ) + ϕ(x~i − ~aµ))

c02i =
k∑

µ=1

(ϕ(x~i + 2~aµ) + ϕ(x~i − 2~aµ))

c11i =
k∑
µ=

µ−1∑
ν=1

(
ϕ(x~i + ~aµ + ~aν) + ϕ(x~i − ~aµ − ~aν) (7)

+ ϕ(x~i + ~aµ − ~aν) + ϕ(x~i − ~aµ + ~aν)
)
.

The term ci is referred to as corona of the site xi. The corona is a weighted
sum of the values of the field ϕ on the sites in the neighborhood of the site xi.
Figure 1 provides a geometrical interpretation of corona in two dimensions. In our
case, because of the last term in (1), the corona is extended as compared to more
commonly used nearest neighbors neighborhood (squares in Figure 1). As we will
show in the next section this considerably complicates the parallelization of the
algorithm.

3 GPU IMPLEMENTATION

The Metropolis algorithm lends itself naturally to parallelization, however some
caution must be taken. Notably, grid points that lie in the same neighborhood
cannot be updated together; that is if we update the red (dark in print) central point
in Figure 1 we cannot update any of the gray points in the same time. Basically this
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Figure 1. The neighborhood used to calculate the ∆H. The values of the field φ on the
gray marked lattice sites contribute to the corona ci with geometrical symbols
marking the contribution to different terms: c01 – squares, c11 – circles and c02 –
diamonds.

stems from the requirement that in order to process two sites xa and xb in parallel
those two operations must be independent. That means that the joint probability
P (φa, φb → φa + ηa, φb + ηb) must factorize:

P (φa, φb → φa + ηa, φb + ηb) = P (φa → φa + ηa)P (φb → φb + ηb). (8)

This can be only achieved if P (φa → φa + ηa) does not depend on the value of φb
and vice versa. To ensure that this condition is satisfied we decompose the lattice
into several sub-lattices such that points belonging to each sub-lattice are far enough
from each other and can safely be updated in parallel.

In case of the more commonly encountered nearest-neighbor interaction (squares
in Figure 1) it is enough to divide the lattice in two sub-lattices by labeling each
side “black” or “white” as on the checkerboard (sometimes this is also referred
to as “even-odd” decomposition) [7]. It is easy to see that in that case no site has
a nearest neighbor of the same color, so all the sites of the same color can be updated
in parallel. This would be the case of the Ginzburg-Landau model without the last
term in (1).

As we consider in here a model with much bigger corona this simple decom-
position is not sufficient any more. We have been unable to find a decomposition
requiring less than eight sub-lattices in two dimensions, and 16 in three dimensions.
The two-dimensional decomposition is depicted in Figure 2 where we have marked
each site (square) with the index of the sub-lattice it belongs to.

Given this decomposition it would be relatively easy to implement the described
algorithm in a “naive” way by assigning one sub-lattice point to one thread. Then
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Figure 2. Partition of the lattice into eight independent sub-lattices. Squares with same
number on them belong to the same sub-lattice and can be updated in parallel.

each thread would perform the Metropolis update step on that site. However, the
GPU is no exception as to the speed of the memory access. While being very fast,
the throughput from global memory is still almost two orders of magnitude slower
than needed to sustain the maximal instruction throughput. The NVIDIA cards we
use contain so called Scalar Multiprocessors (SM). On Fermi architecture each SM is
equipped with up to 48 kB shared memory and 32 kB of 32 bit registers which act as
user managed cache [10]. While starting from the compute capability 2.0 NVIDIA
cards are also equipped with L1 and L2 caches, the use of automatic cache is, as we
will show later, not advantageous in terms of performance4. The naive algorithm
would heavily use the global memory resulting in quite poor performance.

To efficiently use the shared memory we adopt the hierarchical scheme from [6]
suitably modified to account for bigger neighborhood. We first divide the whole
lattice into chunks of Bx × By points (see Figure 3) or Bx × By × Bz in three
dimensions.

To process each point inside a block we also need the neighboring points – the so
called hallo. In our case the hallo is two points wide. We divide the grid of chunks
into sub-grids in such a way that chunks together with the hallo in each sub-grid do
not overlap (see gray points in Figure 3). In 2D we need four of such sub-grids and
eight in 3D case.

We then start a kernel that processes all chunks in one sub-grid. Each chunk
in this sub-grid is assigned to a block of N th threads (CTA – Cooperative Threads
Array). First we fetch the values of the fields from global to shared memory. In
3D we use Bx = By = Bz = 16 which, including the hallo, gives altogether 203

4 Actually the NVIDIA has renounced the use of the L1 cache for global reads in the
Kepler architecture.
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Figure 3. Partition of the lattice into chunks. Each gray chunk is processed by one thread
block (Cooperative Thread Array – CTA). The red (dark in print) points belong
to one sub-lattice as defined in Figure 2 and each of them is processed in parallel
by one thread. The value of the ϕ field for all points marked in gray is loaded into
shared memory. That includes the necessary border points, the so called hallo.

field values to be loaded. This gives 32 kB which fits nicely into 48 kB shared mem-
ory.

The points in each chunk are decomposed into sub-lattices as described at the
beginning of this section (see Figure 2). After that each thread updates one site
from the first sub-lattice. This is done Nhit times resulting in what is know as multi-
hit metropolis algorithm. The advantage is that the corona ci does not need to be
recalculated again and most of the needed variables resides already in registers. Then
after synchronization, next sub-lattice is updated and so on. This whole procedure
is repeated Nloc times, again taking advantage of the fact that the field values are
already in the shared memory. After that the kernel writes the shared memory back
into global one and new kernel is started processing next sub-grid of chunks (see
Algorithm 1).
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1: for every global sweep do
2: for every block sub-grid do
3: for every block in sub-grid do
4: load block into shared memory
5: for every local sub-lattice do
6: for every site i in local sub-lattice do
7: calculate corona ci
8: for k = 1 . . . Nhit do
9: ϕ̃i ← ϕi + η

10: ∆H ← H[ϕ̃i]−H[ϕi]
11: if exp(−∆H) > r then
12: ϕi ← ϕ̃i
13: end if
14: end for
15: end for
16: __syncthreads()

17: end for
18: end for
19: end for
20: end for

Algorithm 1: The GPU algorithm. The CPU algorithm differs by the absence of
the loops over the blocks (lines 2–4).

This whole procedure is called a global sweep and is repeated Nglob. times.

Monte-Carlo calculations require a good source of random numbers. We use the
Tausworthe pseudo-random number generator [11] with one copy of the generator
per thread. The performance could be increased by the use of simpler generator,
but we have not attempted this in this work.

One of the problems in lattice simulations is the treatment of the boundary
conditions. The algorithm requires access to the site neighbors during each update.
Index of neighbors can be calculated using simple arithmetics, except at the boun-
daries. Indexing of neighbors requires checking for the boundary at each update or
an expensive modulo operation5. Another technique is to use the precalculated and
stored indices: for every site we store the index of four or six nearest neighbors.
This is also very flexible but requires a large amount of memory. This can have
a negative impact on the performance and is not well suitable for the GPUs which
usually have less RAM than CPUs. In our algorithm the checking for boundary
is needed only when loading to shared memory. Then we can use simple index
arithmetic.

5 An exception are the powers of two, where modulo can be calculated cheaply.



1200 P. Bia las, J. Kowal, A. Strzelecki

4 CPU IMPLEMENTATION

As already mentioned in the beginning, to make a fair comparison of the GPU imple-
mentation with the CPU we have to use both multicore and vector (SSE/AVX) pro-
gramming. The parallelization on many cores is relatively easy using the OpenMP.
The same restriction applies on GPU, so we partition the lattice in the same way,
but we use only one level, i.e. we do not partition the lattice into chunks. Then
the SIMD instructions are used to process four (SSE) or eight (AVX), as we use the
single precision updates in parallel (similarly to threads on GPU). At present the
only truly portable way to use vector instructions is to use compiler intrinsic [12].
In order to avoid obscurity caused by direct use of intrinsics and to facilitate de-
velopment, we have implemented a ”drop-in” scalar type replacement class that
wraps vector type declared with __attribute__((vector_size(N))) directive and
implements missing operations using intrinsics.

Unfortunately, not all scalar x86 instructions in modern CPUs have vector coun-
terparts, which is a crucial requirement for vectorizing scalar code. In particular,
AVX instruction set misses direct vector XMM/YMM gather and scatter instruc-
tions (load/save vector register data from/to memory indexed by other vector re-
gister), unlike GPU where gather and scatter is the key feature. This is partially
addressed by AVX2, providing masked gather instruction. Another drawback in
lack of 256-bit wide integer operations in AVX, which makes random number ge-
nerator utilize 128-bit SSE only, even on 256-bit AVX capable CPUs. Again, this
has changed in AVX2, which is unfortunately available only in Haswell desktop
processors.

In our CPU implementation we use a small enhancement exploiting the out
of order instruction execution capabilities of the CPU. The innermost loop of the
algorithm looks as follows:

1: for n = 1 . . . Nhit do
2: calculate ∆H
3: if exp(−∆H) > rand() then
4: accept the move
5: end if
6: end for

The exponent is an expensive, high latency operation. The processor has to wait
for the ∆H calculations to finish before it can start the exponent and then it has to
wait for exponent to finish.

We have rewritten this part as

1: for n = 1 . . . Nhit do
2: lr ← log(rand())
3: calculate ∆H
4: if −∆H > lr then
5: accept the move
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6: end if
7: end for

The advantage is now that the argument of log is independent of ∆H and the
processor is free to reorder the instructions allowing to hide some of the latency.
This implementation is safe even in case when rand() returns a zero as log then
returns -Inf. Actually the code above is vectorized and calculations of the four or
eight logs is done in parallel using the Intel ’s SVML library [14].

As already mentioned in the previous section, indexing the neighbors can be
quite costly operation requiring expensive modulo operations or large amount of
memory. However if we restrict ourselves to the lattice dimensions that are powers
of two the nearest neighbor calculations can be made using addition and bitwise
operations. This is quite a restrictive approach, not suitable for real applications;
but we have decided to use it for comparison with the GPU version. This is in some
respect the “upper bound” of the CPU performance.

Porting conditional (branching) instructions to SIMD also deserves some atten-
tion. We use the same technique as NVIDIA does implicitly in their SIMT program-
ming model. All branching (conditional jump) instructions and instructions within
condition blocks are replaced by masked vector instructions. Fortunately, AVX and
AVX2 provide masked instructions for this purpose.

This makes the following sample conditional assignment code working on x, y
and z scalar variables

1: if x > y then
2: z ← value
3: end if

become the code working on ~x, ~y, ~z and ~mask vector variables

1: ~mask ← (~x > ~y)

2: ~z ← ( ~mask AND ~value) OR (NOT ~mask AND ~z).6

5 PERFORMANCE

We have tested our implementations on the following hardware using single precison
floating point arthmetics:

GPU NVIDIA GTX 470, 14 Scalar Multiprocessors (448 CUDA cores), 1.2 GHz,
CUDA 5.0 Ubuntu Linux 12.04 -O3 -use_fast_math -arch=sm_20, 1 088 Gflops
(single precision) 7.

6 This step is performed by a single blend instruction.
7 The peak performance it taken from http://en.wikipedia.org/wiki/Comparison_

of_Nvidia_graphics_processing_units
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CPU Intel i5-2400S Sandy Bridge, 4 core, 2.5 GHz, 12 GB RAM, OSX 10.8.3, GCC
4.8.0 -O3 OpenMP, 160 Gflops (single precision)8.

The overall performance of the algorithm expressed in Gflops or updates per sec.
will depend strongly on the values of the Nloc. and Nhit . The optimal values of those
parameters will depend on the physics of the model, in particular on the values of
parameters µ2, g and Λ. In here we use Nloc = 50 and Nhit = 8, which would be
a resonable choice near to a phase transition.

To compare the performance to that of our implementations to the peak proces-
sor performance we have counted the number of the operations needed in each step
of the algorithm; this is presented in Table 1. This was done by inspection of the
source code and does not take into account any optimization done by the compiler
and assembler. We have counted not only floating points operations but also the
integer arithmetic and bitwise logical operators.

float int bit

Coronas 26

∆H 13

Random Number Generator 1 2 21

ϕ̃i ← ϕi + η 3

Table 1. The number of instructions in different steps of the algorithm. float – floating
point, int – integer arithmetic, bit – shifts and bitwise logical. We do not include
the instruction needed for indexing.

To describe the performance in a general way we have decided to fit the execution
time T to the following model:

T = a+ V · b+Nglob.V (c+Nloc. (d+Nhit · e)) (9)

where V is the volume of the lattice. The interpretation of the parameters of the
model together with an estimate of the number of operations performed in the
correspondig part of the program is given in Table 2.

The total number of updates is given by

Nup = V ·Nglob. ·Nloc. ·Nhit (10)

so the time per update can be estimated as

T

Nup

=
a+ V · b+Nglob.V (c+Nloc. (d+Nhit · e))

V ·Nglob. ·Nloc. ·Nhit

. (11)

8 Estimated according to [13], synthetic benchmark available at https://github.com/
ujhpc/flops
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Parameter Meaning of the parameter n. ops 3D

a+ b · V time for setup and closing down

c time per spin needed to load it to shared mem-
ory and back

d time per spin needed to calculate the corona nd 26 ops

e time per spin needed to for update including cal-
culation of two random numbers and exponen-
tial

ne 64 ops
+ 1 exp

Table 2. Interpretation of the parameters in the model (9). The last column gives the
number of numerical operations performed by the 3D versions of the GPU algorithm
described in this paper. In case of the CPU the exp is changed to log.

Because we are interested in long simulations with very large value of the Nglob

parameter the term a+ V · b can be neglected in this limit:

T

Nup

≈ (c+Nloc. (d+Nhit · e))
Nloc. ·Nhit

. (12)

Using the data from Table 2 we obtain that the number of the operations performed
is

Nop = V ·Nglob. ·Nloc.(nd +Nhit · ne) (13)

so the performance expressed in operations per second is estimated as

ops =
Nop

T
≈ Nloc.(nd +Nhit · ne)

(c+Nloc. (d+Nhit · e))
. (14)

We have gathered the data on the execution times of the 3D program for four
different lattice sizes. The first thing we noticed is that it is not possible to fit all
the data simultaneously the model (9). However, when fitting data for each lattice
size separately we obtain a very good fit accuracy, better than 1 % on the average.
This is understandable: the execution time can depend non-linearly on the lattice
volume. One reason is that for small lattice sizes not all SMs on the GPU are used.
For the 643 lattice we need 643/128 = 2 048 threads. With 256 threads per CTA we
use only 8 thread blocks, which is much less than 14 available SMs. Even for 1283

lattice the 64 needed blocks will not use the SM evenly. Also, the L2 cache may
introduce some non-linear dependence on the lattice size. The results of the fits are
included in Table 3.

In case of CPU we do not loop over the blocks and the model is:

T = a+ V · b+Nglob.V (d+Nhit · e) . (15)
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V a+ V b [s] c [ns] d [ns] e [ns]

GPU

643 0.56 1.64 0.28 0.18
1283 0.49 1.06 0.21 0.14
2563 0.41 0.90 0.19 0.12
5123 0.86 0.66 0.20 0.11

CPU

643 0.12 12.7 1.51
1283 1.17 13.4 1.45
2563 0.93 12.6 1.43
5123 3.72 13.5 1.44

Table 3. Results of the fit of Equations (9) GPU and (15) CPU

The time per update in this case is given by:

T

Nup

=
a+ V · b+Nglob.V (d+Nhit · e)

V ·Nglob. ·Nhit

≈ d+Nhit · e
Nhit

(16)

and

ops ≈ nd +Nhit · ne
(d+Nhit · e)

. (17)

Again we have found a strong nonlinear dependence on the lattice volume and
we had to fit data for each lattice volume separately. The results are presented in
Table 3.

GPU CPU GPU/CPU

Size Time Gops Gexp/s Time Gops Glog/s Speedup

1283 0.16 412 6.1 3.1 21.4 0.32 19

2563 0.15 456 6.8 3.1 21.8 0.32 20

5123 0.14 490 7.3 3.1 21.6 0.32 22

Table 4. Performance of the algorithm. Time denotes the time of one spin update (in
nanoseconds). Nloc. = 50, Nhit = 8.

The overall performance of the both implementations is presented in Table 4. We
have decided to list the number of exponential and logarithm calculations separately
because we use the hardware exponent implementation on the GPU and software
library on CPU, so the two are hard to compare.

5.1 GPU Cache

The good performance of the presented GPU algorithm comes from the effective use
of the shared memory. We have also checked to which extent this could be achieved
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by just using the automatic cache capabilities of modern GPUs. To this end we
have implemented a version of the algorithm which did not use the shared memory,
however the access pattern was the same. The idea was that the first iteration of
the local sweep loop would fill the L1 cache and consecutive iterations would not
need to access the global memory and the performance should be comparable to our
original implementation.

This turned out not to be the case. The algorithm using the L1 cache was
approximately six times slower than the one using shared memory. This dete-
riorated performance could be traced back to large number of cache misses. No-
minally the 203 block should fit in L1 cache as it did fit into the shared me-
mory. However, the cache line is 32 words long (128 B) and the blocks are not
aligned on the cache lines boundaries (see gray points in Figure 3). On top of
that the cache is probably not fully associative. All that together implies that
the cache size should be up to four or five times larger to accommodate the whole
block.

6 EXTENSIONS AND LIMITATIONS

The above implementation can be easily adapted to other variants of the model.
The ∆H can be arbitrary within the constraints that its calculation cannot access
points outside of the neighborhood considered in this contribution (see Figure 1).
Of course, when the ∆H calculation requires smaller number of lattice points the
above procedure can be overly complicated and thus not optimal. In that case it
may be advantageous to use e.g. the checkerboard decomposition.

The implementation can be also easily extended to the case when the field ϕ is
a vector, not scalar. In this case the amount of shared memory required to hold the
chunk and its hallo grows linearly with the vector dimension. Thus the chunk size
has to be reduced accordingly to fit into available 48 kB.

However, one cannot reduce the chunk arbitrarily. In our implementation the
smallest chunk size in 3D is 83. Cosidering that only one of the 16 sub-lattices is
processed simultaneously such a small block requires only 32 threads, rather on the
low side leading to degrade performance. So in 3D our algorithm is suitable for
scalar or two-dimensional vector model, called also the XY model which is also very
interesting (see again [4]).

The size of the lattice that we can simulate is limited by the available RAM on
the graphic card. On 1 GB we can fit lattice up to 5123 which is enough for our
application. So far we have not considered a multi-GPU implementation.

7 DISCUSSION

The results presented in Table 4 show clear advantage of the GPU over CPU. This
is hardly surprising, but the 20× difference is significantly higher than comparison
of theoretical performance ratio of tested i5 CPU to GTX 470 equal ≈ 7×. The



1206 P. Bia las, J. Kowal, A. Strzelecki

GTX is thus more efficient in the sense that it is capable of achieving performance
much closer to the peak. This can be attributed to several reasons:

• The shared memory that acts as an managed cache allows to use the small cache
size much more effectively. In particular, it is possible on the GPU to fit the
whole 203 grid block into the shared memory. This is not possible using the
conventional cache both on GPU and CPU leading to large number of cache
misses and decrease of performance.

• Modern CPUs are not fully vector processors. Not every scalar instruction has
a vector counterpart. In particular, the eight words wide integer instructions
are present in AVX2 instruction set, not available to Xeon server CPUs, which
has impact on pseudo-random number generator using only 128-bit wide AVX
instructions.

• Efficient load and store vector (gather/scatter) instructions are also missing in
AVX. When not loading/storing from the consecutive memory location they
are effectively serialized into scalar loads/stores. On top of this GPUs provide
enormous memory bandwidth comparing to CPU. These, however, are not being
accounted in raw Gops and Glogs calculations above.

• GPUs provide hardware exponent, i.e. our GTX 470 can execute 4 exponent
operations in single cycle of Scalar Multiprocessor and recent GPUs can execute
8 exponents in single cycle. CPUs do not provide efficient hardware exponent
implementation. Fastest AVX implementations [14] need minimum 20 CPU
cycles, however there is no single implementation that works best for all x86
CPUs [15].

• CPUs have less general purpose registers than GPUs, making CPU code more
prone to latency problems caused by tight register dependencies. Peak perfor-
mance can be reached only by synthetic benchmarks, while real computation
algorithms seldom reach half of it.

Undeniably the trend of vectorization of CPUs is continuing and the software
that wants to stay competitive must adapt to it. However, the current CPUs make
this more difficult than the GPU, due to the lack of some crucial vector features
present on GPU, incomplete vectorization support provided by compilers and com-
plicated programming model.

The CPU manufacturers are trying to address these issues. Intel Xeon Phi has
an extended 512-bit wide vector instruction set with hardware gather/scatter, and
recently released Haswell CPU architecture with AVX2 instruction set containing
256-bit wide integer operations and gather instructions. However, AVX2 gather is
still internally mapped to several µ-ops, yet it provides clear benefits in terms of
instruction number reduction having notable impact on performance.

We already have some preliminary results that show 1.5× performance boost
making or CPU implementation utilizing some of new AVX2 instructions. We are
also working to port our code to recent NVIDIA Kepler architecture and Xeon Phi
accelerator.
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