Computing and Informatics, Vol. 33, 2014, 518-552

DISTRIBUTED AGENT-BASED ONLINE
AUCTION SYSTEM

Costin BADICA, Sorin ILIE, Alex MUSCAR
University of Craiova, Software Engineering Department
Buvd. Decebal, 107, Craiova, Romania

e-mail: {cbadica, silie, amuscar}@software.ucv.ro

Amelia BADICA

University of Craiova, Statistics and Business Information Systems Department
Str. A. 1. Cuza, 13, Craiova, Romania
e-mail: ameliabd@yahoo.com

Liviu SANDU, Raluca SBORA

University of Craiova, Software Engineering Department, Bvd. Decebal, 107
Craiova, Romania
e-mail: {ssanduliviu, ralus08}@yahoo.com

Maria GANZHA

Polish Academy of Sciences, Systems Research Institute, ul. Newelska 6
01-447 Warszawa, Poland

&

University of Gdansk, Institute of Informatics, ul. Wita Stwosza 57
Gdansk, Poland

e-mail: Maria.Ganzha@ibspan.waw.pl

Marcin PAPRZYCKI

Polish Academy of Sciences, Systems Research Institute, ul. Newelska 6
01-447 Warszawa, Poland

&

Warsaw Management Academy, ul. Kaweczynska 36

Warsaw, Poland

e-mail: Marcin.Paprzycki@ibspan.waw.pl

Distributed Agent-Based Online Auction System 519

Abstract. This paper concerns the design and development of a distributed agent-
based online system for English auctions. The proposed system is composed of
two parts: an Agent-based Auction Server and a Web-based Graphical User Inter-
face. The first part of our work brought about the advantages introduced by the
multi-agent systems technology to the high-level of abstraction, modularity and
performance of the server architecture and its implementation. On the server side,
bids submitted by auction participants are handled by a hierarchical organization
of agents that can be efficiently distributed on a computer network. This approach
avoids the bottlenecks of bid processing that might occur during periods of heavy
bidding, like for example snipping. We present experimental results that show
a significant improvement of the server throughput compared with the architecture
where a single auction manager agent is used for coordinating the participants for
each active auction that is registered with the server. The second part of our work
involved analysis of external functionalities, implementation and usability of a pro-
totype online auction system that incorporates the Agent-based Auction Server. Our
solution is outlined in terms of information flow management and its relation to the
functionalities of the system. The main outcome of this part of the work is a clean
specification of the information exchanges between the agent and non-agent software
components of the system. Special attention is also given to the interoperability,
understood here as successful integration of the different data communication pro-
tocols and software technologies that we employed for the implementation of the
system.

Keywords: Distributed system, multi-agent middleware, online auction

1 INTRODUCTION

The vision of e-commerce automation proposes the development of global e-com-
merce environments populated by software agents, thus enabling the dynamic de-
velopment of trading relationships between business partners. In particular, increas-
ing the level of automation of negotiations is needed, to allow the engagement of
stakeholders, either individuals or business organizations, into nontrivial dynamic
business relationships.

As argued in [8, 16], auctions provide a general solution to the problem of dis-
crete resource allocation among selfish agents in a multi-agent system. There are
many types of auctions including single-good, multi-unit, combinatorial auctions,
and double auctions. Auctions represent a special class of negotiations with many
applications in conducting e-business transactions [17, 36]. In particular, auctions
are useful for trading in the following areas: spectrum licenses, electricity markets,
emission rights, airports takeoff and landing slots, exploitation rights of natural re-
sources (e.g. oil-drilling), selling of collectibles, antiques, luxury and second-hand
products, government procurement contracts, foreign exchange, a.o. [7].

520 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

As online auctions spread with the advent of the web, many types of online
applications for auctions were proposed, including auction directories, auction tops,
meta-auctions, and auction servers [2]. Recently, the research focus was set on the
development of more process-generic, flexible and reusable auction solutions, with
an increased potential for applicability both to the B2C and B2B sectors. In this
context, application of agent-based systems was proposed as a new approach that
takes the idea of an auction service from the human-driven web to the software
agents’ world [13, 18].

In this paper we consider specific example of English auctions. In this case, the
seller (or the auctioneer that represents the seller) announces an initial price for
the goods (assuming an e-commerce application setting) and auction participants
bid increasing amounts of money during a predefined time frame, usually by some
minimum increment set by the seller. At the end of the bidding process, the agent
with the highest bid is declared the winner of the English auction. Note that we
consider here the deadline-driven model of the English auction, rather than the time
of inactivity model.

Our current work in this area is focused on the analysis, design and implemen-
tation of an open, flexible infrastructure for agent-based automated negotiations.
The two objectives of this paper are:

1. To underline the advantages of using multi-agent systems and state-of-the-art
agent frameworks and middleware [29, 19] when developing a realistic auction
server. Here, the focus is on employing clean software engineering principles
(abstraction and modularity), as well as on evaluating and improving the per-
formance and scalability of the implementation. Initial discussion of software
engineering principles that underline this work, as well as preliminary perfor-
mance assessment were presented in [2]. The scalability and performance aspects
were further expanded by realization of a cluster-based implementation that was
outlined and initially evaluated in [11]. Here, we combine and further extend
the results presented in these two conference papers.

2. To develop a tool that can be used for online auctions in B2C systems. This goal
is addressed by focusing on the details of incorporating the Agent-based Auction
Server into a Web-based application for online auctions.

The proposed agent-based solution for the auction server combines the best
features of:
1. generic software framework for automated negotiations [3];
2. market architecture for auction development [6];
3. rule-based declarative representation of auction mechanisms [1, 4];
4

. special computing nodes available in active networks and realized by means of
proxy agents [9];

5. agent-based service-oriented architecture [2].

Distributed Agent-Based Online Auction System 521

Consequently, it provides certain features including openness, generality, and scal-
ability. For example, with this approach, an auction is seen as a separate service,
rather than being entirely incorporated into an e-shop infrastructure. This can be
seen as a gain in openness, as the service is now open for rental and configuration by
the e-shop that would like to sell its products through an auction, for example for
clearing its shelves during the “sales” time. Generality comes from the fact that the
e-shop can now choose the most appropriate auction server depending on factors
like performance, reliability or trustworthiness of the service. Finally, scalability
comes from our new approach that combines the use of Prozy agents with two level
balanced tree structures for handling participants’ bids.

The second part of our work was focused on the analysis of the external func-
tionalities, implementation and usability of a prototype online auction system that
incorporates the Agent-based Auction Server. We present the details of our solution
in terms of the information flow management and its relation to the functionalities
of a system for online auctions.

In summary, our work brings several contributions to the research on agent-based
e-commerce.

When an auction (in particular an English auction) is modeled as a multi-agent
system, the agents’ interaction through message exchanges is required for the bid-
ding and price update activities. In our previous approach [2], the central agent
for auction management was responsible with handling all the communication with,
and between, the auction participants. So, if a large number of participants joined
the auction, this agent became highly stressed. Second, although the approach in-
troduced in [2] was described as distributed, understood as possibility for agents to
be arbitrarily located on networked computers, it was still biased towards central-
ization, because the central agent was a system bottleneck, and thus hindered the
scalability.

In this paper we propose a solution aiming at improving the architecture of our
Agent-based Auction Server by relaxing the central agent from part of the stress
caused by its heavy load of message handling. Based on the idea that was initially
proposed by [9], for improving the performance of on-line auction systems using
special computing nodes available in active networks, we enhanced our system with
the introduction of third party agents called proxies. Each Prozy agent will handle
a part of the communication with the auction participants.

So, while in our prior approach the Auction Manager would receive all the bids
from the Participants, with this new approach the Participants are split into disjoint
groups, and each group is managed by a single Proxy agent. The Participants com-
municate heavily with their proxies, while proxies pass on to the Auction Manager
agent only the relevant bids, while the other bids are filtered out and processed
locally, thus reducing the amount of messages handled by the Auction Manager.

Note that the communication between two agents is faster when the agents
are located on the same machine, rather than when they are located on separate
machines. When our auction server is distributed on several computers, some agents
will have to exchange messages over the network, thus increasing the communication

522 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

time, as well as the overall server response time. So, with our solution we also aimed
to improve the communication time between agents, when the server is distributed
on several computers, by keeping, whenever possible, Proxy agents on the same
machine with their “participant agents”.

Finally, our work contributes also to research concerning usability of agent-
based e-commerce solutions. While very attractive, the complete automation of
e-commerce processes is probably impossible to achieve, and therefore the human
user involvement, through an appropriate online system, will be always necessary.
Therefore, we found it important to experiment with the integration of the proposed
Agent-based Auction Server into a usable online auction system that allows the direct
human user involvement in auctions, via a Web-based GUIs.

Furthermore, we provide a clean specification of the information exchanges be-
tween the agent and non-agent software components of the system, which is particu-
larly interesting from the software engineering point of view. In this context, special
attention is also given to the heterogeneity of the different data communication pro-
tocols (for example: HTTP, FIPA, parameter passing via method invocation, a.o.)
and software technologies (Web technologies vs software agent technologies) that we
utilized for implementing the system.

The paper is structured as follows. We start in Section 2 with a brief overview
of related works in the field. In Section 3 we present the architecture of our Agent-
based Auction Server covering agent types, interaction protocols and mechanisms
for efficient bid processing. Next (in Section 4), we propose the design of a Web
system for online auctions that incorporates the auction server. Here, the discussion
is focused on three aspects:

1. system architecture,

2. design details of the Web layer as well as of the interfacing of the agent and
non-agent software, and

3. interaction protocols.

In Section 5 we present results of experiments carried out with the auction server,
including recorded values of latency and throughput parameters. Here we also dis-
cuss the usability of the online auction system. In the last Section 6, we present our
conclusions and we point to future works.

2 RELATED WORKS

The interest in development of online software systems for online negotiations, with
a special focus on online auctions, increased significantly during the last 15 years.
Traditionally, auctions were utilized for trading support in economic markets in
offline as well as in online environments. Recently auctions started to be applied
in market environments for trading resources for utility computing, including grids
and clouds [14].

Distributed Agent-Based Online Auction System 523

One of the first and most influential works in the area of auction servers for
online applications is the Michigan Internet AuctionBot introduced in [26]. This is
a versatile and robust server for online auctions supporting both agent-oriented and
human-oriented auction execution. The Michigan Internet AuctionBot introduced
the principles of software design for supporting flexible auction mechanisms, includ-
ing: separation of the user interface from the core auction engine, the capability
of running multiple auctions concurrently, as well as the abstraction of the auction
process. Most of these principles are currently employed by state-of-the-art auction
servers including our own.

In [21], the authors proposed an Internet-based negotiation server for e-com-
merce applications. Although this work does not explicitly address auction mecha-
nisms (rather, the focus is on bargaining) and the use of software agent technologies,
it is interesting for our approach for at least the following reasons: i) the system is
conceptualized as a replicable service that can be multiply instantiated by comple-
menting standard Web server software, i.e. quite similarly to our proposal; ii) the
system incorporates methods of event-based rule processing and constraint satisfac-
tion for checking negotiation proposals and implementation of negotiation strategies
which, although they are not the focus of this paper, were also employed in our pre-
vious work ([1, 2]).

The authors of [20] propose an agent-based modeling of the New York Stock
Exchange specialist system. Although this work clearly differentiates from our own
work, as the focus is not on the development of an online system incorporating an
auction server, but rather on the agent-based modeling of the complex interactions
occurring in the New York Stock Exchange specialist system, there are also simi-
larities. First, their modeling addresses a non-trivial class of auctions — continuous
double auctions and, second, the modeling could be further expanded to cover the
development of an e-service system as part of the New York Stock Exchange.

The e-Game tool that supports the design and implementation of electronic
market simulation games inspired by the real life problems was proposed by the
authors of [15]. These simulations can also incorporate various types of auctions,
and they were used for teaching purposes. The e-Game tool provides both Web
and agent interfaces, similarly to our system. Nevertheless, unlike our work, the
aspects related to software engineering principles, performance and scalability were
not addressed.

In [23], the authors present the principles of constructing online auction systems
that were employed for building the Research Auction Server for performing both
simulated and real auctions. However, many details are missing in their description,
especially those related to the interaction protocols. Therefore we could not compare
our approach with [23] because of the missing information. Moreover, although the
“agent” metaphor is used we noticed that the development of the Research Auction
Server did not actually use software agent technologies.

A generic online auction server was discussed in [27]. The server supports a fle-
xible bidding language based on the OR/XOR formulae. Although apparently there
are many similarities with our own work, the details of the design and implemen-

524 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

tation of the system are actually missing; only a listing of available technologies is
provided. In particular, the interaction protocols and the details of the interfacing
of agent and non-agent software are not described.

A configurable auction server was also proposed by the authors of [24]. This
server targets resource allocation in the grid and therefore its design addresses the
heterogeneity of the grid environment by allowing the dynamic configuration of the
auction mechanism to meet the application requirements.

The authors of [30, 31] propose an agent-based infrastructure for autonomous
services for management of the contracting of Cloud resources that covers also ne-
gotiation. Their system generates a service-level agreement — SLA representing the
result of the resource negotiation and booking with available providers. The use of
SLA has the advantage that it can be re-negotiated and monitored — a feature, which
is missing in our approach. Moreover, while our work is more suitable for auctions,
papers [30, 31] are focused on other negotiation mechanisms, like e.g. Contract-
Net [32]. Thus, they are closer to our proposed negotiation framework introduced
separately in [33].

3 DISTRIBUTED AGENT-BASED AUCTION SERVER

There are many definitions of the agent concept [34]. For the purpose of this work,
by software agent (agent in what follows) we understand a software entity that:

1. has its own thread of control and can decide autonomously if and when to
perform a given action;

2. communicates with other agents by asynchronous message passing;

3. can be referenced using its name, also known as agent identifier;

4. can be located on an arbitrary machine in a computer network, providing that

a certain runtime environment is locally available.

This runtime is usually known as agent platform (see [29] for a recent overview of
agent programming languages and platforms). In our current work, we use the Java
Agent DEvelopment Framework — JADE [10] agent platform.

In this section we outline the architecture of our Agent-based Auction Server,
highlighting agent types and relationships between them and users. Furthermore,
we describe agent interactions:

1. inside the auction server and

2. with external agent and non-agent software.

3.1 Agent Types and Their Functions

Let us now summarize the types of agents included in our auction server, focusing
on their functionalities. The initial architecture and the agent interaction protocols

Distributed Agent-Based Online Auction System 525

of the server were introduced in [2]. In [11] we proposed an improved architecture
that enables the deployment of the server on a computer cluster.

The auction server was designed to support the innovative concept of generic
agent-based auction service. It is represented by a collection of cooperating agents
that interact inside the server, as well as with its external environment, using agent
interaction protocols.

The software infrastructure of the server contains the types of agents depicted
in the class diagram in Figure 1. The auction server is actually composed of three
main parts or layers: core, resource manager, and interface.

=<|yser== <<agent>=
User 1 , PersonalAgent | ¢
<<agent>=> <<agent>>
Computer Manager . - Participant
1 *
““w 1 * 0 b
0+
1 <<agent== 1
<<agent>> Proxy 1 =<agent=>
Resource Manager 2 Initiator Participant
il
1
<<agent=> !]
Auction Service [——_ |
1 <<agent>>
1 [Auction Manager
: /._‘
<<agent=> 1

Auction Directory

Figure 1. Relationships between users, agent types and auctions on the auction server

3.1.1 Interface Layer

The Personal Agent, Participant, and Initiator Participant agents compose the layer
that realizes the interface of the server with its external environment.

The Personal Agent is residing on the server side and it connects the user with
the auction server. For each user registered with the server there is exactly one
Personal Agent created on the server. This agent gets input from the user, through
an external user interface. This can be achieved directly, i.e. the Personal Agent can
incorporate a user interface, or via a binding software that connects the Personal
Agent with an external Web-based GUI. There is a one-to-one mapping between the
user name and the identifier of the corresponding Personal Agent.

526 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

Whenever a human user connects to the server, usually using an external pro-
gram (for example a GUI or a Web browser), a new Personal Agent is eventually
created and assigned to the user (if no such agent is already active on the server).
We set our server up to be used in a Web environment using the servlet technology
on the server side (see Section 4 for details). In this case, it is the responsibility of
the servlet to talk to the Personal Agent, when the user logged into the system, via
an appropriate binding software.

The Personal Agent allows the user to perform the following operations:

e to create a new auction
e to subscribe to an existing auction

e to submit bids to one of his or her subscribed auctions, via his or her Participant
agent

e to receive notifications about status updates of his or her subscribed auctions

e to receive accepts and rejects for his or her submitted bids.

Personal Agents can be importantly enhanced with complex behaviors (like for
example behaviors specific to Belief-Desire-Intention (BDI) architecture and agent-
programming languages [39]) that would allow their truly autonomous operation
for better serving the interests and goals of the human user. However, this path of
investigation is outside the scope of this paper and it was left as future work.

Participant agent represents a Personal Agent that serves a user (usually with
the buyer or seller role, although an auctioneer role can also be used, for example,
in double auctions), registered and engaged into a particular auction. For each user
registered to participate in an auction there is an associated Participant agent on
the server. The Participant agents associated to a given user directly report to, and
eventually get orders from, his or her Personal Agent.

Initiator Participant is a special Participant agent that represents the user, with
the role to create and initiate the auction. For example, in an English auction the
Initiator Participant represents the user that has the role of a seller, while the
remaining Participants represent users that have the role of buyers. Usually, when
a user initiates an auction he or she can specify also a condition that triggers the start
of the auction (if this condition is missing then it is assumed to be true by default,
which means that the auction will start immediately after creation). Examples
of starting conditions are: predefined starting time or registration of a minimum
number of participants (this second condition is particularly useful for setting up
experimental scenarios, see Section 5).

3.1.2 Core Layer

The core of the server is represented by Auction Service, Auction Manager, Auction
Directory, and Proxy agents. This layer is responsible for the auctions’ management
and for the coordination of the auction participants by implementing the rules that
govern the auction.

Distributed Agent-Based Online Auction System 527

The Auction Service is the agent that manages all the active auctions registered
with the server. This agent is the entry point of the auction service and it is respon-
sible for creation of new auctions, as well as with registering of new participants to
an active auction.

Auction Manager manages a single active auction on the server (also known
as auction instance in [2]). The Auction Manager coordinates the participants
registered to that active auction. There is a separate Auction Manager agent for
each active auction in the system. It implements a specific type of auction — English
auction in this case — but in principle an Auction Manager can be configured to
support an arbitrary auction type. The management of active auctions includes the
activities that usually occur in an auction, i.e.: auction creation, bidding, agreement
formation and auction termination. The Auction Manager is created by the Auction
Service when a user wants to sell a product through an English auction. The Auction
Manager has the following responsibilities:

e to request the creation and destruction of Prozy agents

e to request the creation of Participant agents and to assign them to the right
Proxy agent

e to notify all the Prozy agents when the value of the highest bid was updated

e to accept or reject the bids from Participant agents that are forwarded by Proxy
agents

e to manage the parameters of the auction, including: auction name, starting
price, product name, starting and ending dates, as well as the status of the
auction (for example, the currently highest bid)

e to trigger the auction termination when the time has expired by informing all
the Proxy agents that the auction has finished

e to record the winner and the final price of the auction.

Auction Directory agent manages the registry of active auctions, as well as the
identifiers of their associated Auction Manager agents. Potential auction partici-
pants can search through this registry to find an active auction that meets their
requirements.

Each Prozy agent handles the bids received from a subset of Participant agents.
The Participant agents are split into disjoint groups, and each group is managed
by a single Proxy agent. Prory and Participant agents are linked into a balanced
two-level hierarchical structure rooted at the Auction Manager such that the total
number of Proxy agents is at most equal to the number of Participant agents that
are linked to each Prozy agent. Using this balancing criterion we can reduce the
time for processing incoming bids. During bidding, Participant agents communicate
heavily with their Prozy agents, while Proxzy agents pass on to the Auction Manager
agent only the relevant bids and the other bids are filtered out and processed locally,
thus reducing the amount of messages handled by the Auction Manager that results
in enhancing the server response time. Note that this is particularly important in

528 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

the assumed model of an English auction (deadline-driven), where a large number
of bids can materialize near the auction-deadline (due to the snipping).

Proxy agents form an intermediate layer between the Auction Manager and the
Participant agents. Their main responsibility is to take over a part of the load that is
necessary for bid processing that was initially the sole responsibility of the Auction
Manager [2]. Each Proxy agent records a local currently highest bid (that can
be different from the currently highest bid of the auction recorded by the Auction
Manager) and updates it regularly based on the notifications received from the
Auction Manager and bids received from Participant agents. The responsibilities of
the Proxy agent are:

e to filter out the bids received from the Participant agents passing up to the
Auction Manager only those bids that meet the improvement rule, i.e. are higher
than the local currently highest bid known by the Proxy

e to notify Participant agents about the acceptance or rejection of their bid

e to receive notifications about the update of the currently highest bid from the
Auction Manager

e to notify Participant agents after receiving such an update from the Auction
Manager; the local currently highest bid of the Proxy is also updated.

Let us suppose that, on average, a Proxy agent is managing k Participant agents
and that the total number of Prozy agents is p. This means that the total number
of participants is n = p x k. According to our coordination model of an English
auction, whenever a new bid is accepted by the Auction Manager, all the participants
must be notified accordingly, and this process will obviously require a time O(n).
However, with the new Prozy-based hierarchical approach the time will be O(p+ k).

This value can be optimized to O(y/n) for n Participant agents if we set the
constraint that the number of participants managed by each Prozy agent will never
outnumber the total number of Proxy agents connected to the Auction Manager,
while the number of Prozy agents is increased whenever this is really necessary to
manage all the registered Participant agents. Basically this means that p ~ k from
which we can derive the O(y/n) average time needed to process a bid.

Proxy and Participant agents are linked into a balanced two-level hierarchical
structure rooted at the Auction Manager such that the maximum number of Par-
ticipant agents that are linked to each Proxy agent is at most equal to the total
number of Proxy agents. The dynamic creation and destruction of Prozry agents
will take into account the preservation of this balancing requirement.

An example showing the details of the relationship between the Auction Ma-
nager, the Proxy agents, and the Participant agents is presented in Figure 2. This
figure shows 5 Participant agents pl, ..., pb registered to the same auction. Let
us assume that the participants registered to the auction in this order. When par-
ticipant pb registered, only 2 Proxy agents x1 and 22 were present on the server.
According to the balancing criterion, the registration of the new Participant agent
p5 triggered the creation of a new Prozy agent x3, as well as the link of p5 to z3.

Distributed Agent-Based Online Auction System 529

<<agent==
am : Auction Manager

<<agent=> <<agent=> <<agent=>

x1: Proxy X2 : Proxy %3 Proxy

<<agent>> <<agent>> <<agent>> <<agent>> <<agent>=
p1: Participant p2 : Participant p3 : Participant p4 : Participant p3 : Participant

Figure 2. Relationships between Participant, Proxy, and Auction Manager agents involved
in an auction on the auction server

The new pb Participant agent cannot be assigned to one of the existing Prozy agents
because that would mean that at least one of them would have 3 Participant agents,
while the number of Prory agents is 2. So a new Proxy agent x3 must be cre-
ated.

Requests for creating and destroying Prozies are issued by the Auction Manager.
A Prozy agent is created when a new Participant is created and n > p? where n is the
total number of Participants including the newly created one, and p is the number
of Proxies.

When a Participant quits an auction, if n < (p — 1)? then the Prozy with the
smallest number of participants is deleted, where n is the total number of partici-
pants (after the removal of the current Participant from the server) and p is the
current number of Prozies. The Participant agents that were linked to the Prozy
that will be deleted will be evenly reallocated to the remaining Proxy agents with
the smallest number of Participants.

Finally, there is an issue concerning what happens with the Proxy agents when
the auction terminates. An English auction is running for a certain time duration,
which is set when the auction is created. Optionally, this duration can be extended
by the Auction Manager with a short period — timeout, in order to avoid problems
created by “late bidding”, by allowing all interested bidders to submit their bids.
This is a solution used by auction servers to increase their “fairness” [5].

The timing of the auction is controlled by the Auction Manager agent. When
this agent detects and declares the auction terminated, it will inform the Prozy
agents about the auction termination and the auction result. Consequently, Prozy
agents will reject forthcoming bids submitted by non-acceptably late bidders. More-
over, Proxy agents will notify their Participant agents accordingly, while Participant
agents notify in turn their Personal Agent. Finally, Participant agents self-destroy.
This process can optionally trigger up in the tree the self-destroy of Prozy agents,
to maintain the tree balanced.

530 C. Badica, S. Ilie, A. Muscar, A. Bddica, L. Sandu et al.

Note that the process for managing the creation and destruction of Partici-
pant and Proxy agents can be improved using the technique of managing resource
pools — in this particular case we would have agents pools on each computer of the
network [40].

3.1.3 Resource Layer

The agents Computer Manager and Resource Manager constitute the part of the
server that is responsible for the management of the computational resources, which
run the server software.

When the server is installed on a computer network, the Computer Manager
agents are responsible for the basic management (i.e. creation/destruction) of agents
on each available machine. There is one Computer Manager agent for each computer
that is part of the auction server infrastructure. This agent keeps track of all the
Participant and Prozry agents that were created and are active on that computer.
A Computer Manager agent gets requests from the Resource Manager agent that
contain the agent name and type and then creates the agent on that computer
accordingly.

Resource Manager contains a registry of all the agents of type Computer Ma-
nager from the system. More exactly, when the Auction Manager decides to create
a new Participant or Proxy agent, it will ask the Resource Manager to perform this
operation. Currently, the Resource Manager agent keeps track of the number of
agents already created on each available machine. On the basis of this information,
it decides where should the new required agent be created and orders the creation
accordingly to the corresponding Computer Manager agent. However, in a more
general setting we can expand the functionality of the Computer Manager agents to
monitor the resources and the network load of each single computer of the server.
Then, the Resource Manager would be able to query Computer Manager agents
before deciding where (on what computer) to order the creation of new agents. This
extension was left as future work.

3.2 Agent Interactions

Let us now summarize the protocols for interacting with the core of the auction
server. Basically, they follow the same rules as the initial proposal of [3] that we
also considered in [2]. According to these protocols, a user represented by his or
her Personal Agent can create auctions, subscribe to active auctions, submit bids,
receive replies about bid acceptance or rejection, receive notifications about the
update of an auction status, and receive notifications about auction termination
and auction winner.

Note that the interaction protocols presented and discussed in this section are
focused on what is happening “inside” the auction server. However, the management
of the link between a user and his or her Personal Agent is realized “outside” the
auction server — see Section 4.

=

Distributed Agent-Based Online Auction System 531

T

<<request>> | |
‘1 createAuction(auctionData) i <<create>>
2 createhuctionManager()] Auction Manager I
|
I <<request>> |
3: createProxy() |
<<reply>>

4: return{proxy)

<<request>> B

5: createParticipant()

<<reply>>
<<inform=>> 6: returniiParticipant)

7. return(iParticipant this)

<<reply>>
8: returniiParticipant)

N

9: register{auctionManager auctionData)

i

Figure 3. Agent interactions for initiating an auction

A new auction is created when a Personal Agent sends to the Auction Service
a createAuction request (see Figure 3). Then the Auction Service creates an Auction
Manager that represents the new auction. The Auction Manager orders creation
of a new Initiator Participant agent linked to the Personal Agent of the user seller,
as well as of a new Proxy for this participant, to the Resource Manager. The
Auction Service then confirms to the Personal Agent the creation of the Initiator
Participant agent. The auction description is also added to the Auction Directory.
The Initiator Participant and Auction Manager agents will further interact during
the auction process.

A Personal Agent can query the Auction Directory about active auctions (see
Figure 4). The Personal Agent then chooses an auction and contacts the Auction
Manager of that auction which should create a Participant for it.

The Auction Manager decides to create a new Participant agent and, optionally,
a new Proxy agent. Their creation is handled by the Resource Manager agent, while
the actual creation is performed by the Computer Management agent. The Auction
Manager requests the Resource Manager agent to choose an appropriate computer
where these agents will be created. The Resource Manager determines this computer
and instructs the corresponding Computer Manager agent, to perform the creation
action. When a computer reached the maximum acceptable load another computer
should be used. If all computers are fully loaded then the computer with the smallest
number of proxies or participants (in that order) is chosen; however, it is expected
that the performance of the server will degrade in such situations. All Participant
agents are created on the same computer as their Prozy agent.

The message exchanges that are needed for creating Participant and Prozy
agents are shown in Figure 5.

532 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.
| Auction Directory | | Auction Manager |
<<query>>
1 getAuctionListicriteria)() T T

u <<reply>> : }

¥ 2 auctionList({auctions) | |

LF <<requests> | |
3: register() 3 |

U U |

| i I I

| al | <<request>> |

4 createPro

| [noProxyAvailabe] () :

| <<reply=>

| \ S retumn(proxy)

| [|

| | I

: e ;

| (I

: \T <<request>> }

| ; T: createParticipant() .

| D <<reply>>

i T 8. return(participant)

| I

| 9. informMaxBid(proxy, participant) |

| I

| <<reply>> |

| 10: return(participant) |

Figure 4. Searching for and joining an auction

| Auction Manager | Resource Manager | Computer Manager
1 I

| <<reguest=>
1: createProxy/Participant(k_

I <=decision>>
- 2: decideOnWhichComputer(computer)

I

M _——

| I
|
|
|
|

<<request=>
3: createProxy/Participant() <<create>>

4: createProxy/Participant

| 5: return(proxy/participant)

Proxy/Participant

8: return(proxy/participant) |

Figure 5. Interaction protocol for automated creation of Prozy and Participant agents

Each Participant agent sends his or her bids to their designated Prozy according
to the protocol shown in Figure 6. This bid is then compared by the Prozy to the
currently best bid. Higher bids are reported to the Auction Manager while lower
bids are rejected with a refuseBid message. Then the Auction Manager saves the
highest bid (bestBid state variable) and refuses submitted bids that are lower than
the bestBid. The refusal message is then returned by the Proxy agent back to each
originating Participant that did not submit the current bestBid. If a bid higher
than bestBid is received then the Auction Manager responds to the Proxy with
a bidAccepted message, which is propagated to the originating Participant. If the
bestBid value has changed then the Auction Manager informs all the Prozy agents.
Then each Proxy will propagate the value of the new bestBid to its Participant

Distributed Agent-Based Online Auction System

agents. This forwarding is represented in Figure 6 as a multicast message that is

displayed as a little circle at the end of the message arrow.

Auction Manager | Proxy | | Participant | Personal Agent |
| : } <<propose>> }
| | <<propose>> 1: sendBid() .
| L 2: sendBid()

! I I
alt | [receivedBid <= bestBid] . S— |) ‘
| Jewbn o S
| ’I_H‘ ;

| il

,,,,,, 1 O I DU LU UPU I |

| felse] | I
| <<propose>> | |
i 5: sendBid() | |
& | I
Il | |
1 f f
e [receivedBid <= bestBid] | | |
<<inform== | [I
6. refuseBid() | <<inform>> | |
] 7 refuseBid() | <<inform=» |
| 8 refuseBid() |

| jT[

i s M e e s s B B [s s s s s) | s e s s g s
| I I
<<informs>> | | |
9: bidAccepted() | <<inform=> | . |
| 10; bidAccepted() | =<inform>> |
I 11: bidAccepted()
12<:el:/ziﬂr::l;d() | SInfarE /I'H <<inform>> /U
~a ? &

% 13newhaxbidl) | 14 newMaBid() \

T] I Ul
| | | |
| | | |
I [[

Figure 6. The bid submission protocol

4 INTEGRATION INTO AN ONLINE AUCTION SYSTEM

In this section we outline the design of an online auction system that incorporates the
Agent-based Auction Server. The system design is composed of three parts: system
architecture, interaction protocols, and design details of the system components.

4.1 System Architecture

The auction server was implemented using the JADE agent platform [10]. For
experimenting with the usability of this auction server we have developed an online
system equipped with a Web-based GUI that allows human users to create, search
for and participate in English auctions. Therefore, the architecture will contain
a special subsystem dedicated to the interface of JADE agent middleware with the
Web-server.

=

534 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

The architecture of the application follows the classical separation between the
client side, comprising the human user equipped with a Web browser, and the server
side comprising a Web server that interacts with the auction server. Therefore we
designed and developed a software for binding the Web server part that is non-

agent software with the auction server that consists solely of JADE-based agent
software.

User

[Web Browser + HTML + JavaScript + Ajax]

[Weh Server }

:

Search Auction Servlet

Create Auction Servlet Jon Auction Servlet Logout Servlet

‘ Agent Serviet
Dl talal” Alatatatate L e N

‘ ‘ Login Servlet

Binding software

e o Al 'i\
O ©

Personal Agent Personal Agent

Participant Participant Participant

Agent-Based Auction Server /

Figure 7. System architecture

The system has a multi-layer architecture composed of the following layers, as
shown in Figure 7:

User layer. This layer represents the client part of the system that consists of
a Web browser combined with HTML content including JavaScript code that is
downloaded from the Web server.

Web layer. This layer supports the user interaction functionalities. It consists
of a Web server enhanced with a set of Java servlets that implement the user
functionalities of the online application.

Binding layer. This layer is represented by the software that enables the interfac-
ing of the non-agent Web server software with the Agent-based Auction Server.
This software is encapsulated into a special servlet called Agent servlet that is
able to communicate with the JADE platform.

Distributed Agent-Based Online Auction System 535

Agent layer. This layer represents the Agent-based Auction Server that was built
on top of JADE platform.

4.2 Design Details

4.2.1 User and Web Layers

The Web layer is responsible for management of users and their accounts, while the
auction server (i.e. the Agent layer) is responsible for auction management. With
this separation of functionalities, the Web layer will support the interaction of the
application with the human user, via a Web-based GUI that is based on HTML,
Asynchronous JavaScript, and XML (i.e. Ajax [35]).

As we did not create a functionality for user authentication in the Agent-based
Auction Server, we had to provide a solution for this problem at the level of the
Web layer. So, in our prototype system, the Web layer is responsible for user
authentication (login and logout functionalities) and management of user accounts.
The addition of this functionality requires the Web layer to maintain a separate
database for the management of user account information.

At the User layer, the servlets must provide HTML responses with informa-
tion extracted from the Agent layer using software from the Binding layer. This
operation can be time consuming and thus it can slow down the load time of the
Web page. This issue was addressed by inserting JavaScript code into the HTML
responses. This code allows the Web page to update itself quickly and efficiently us-
ing asynchronous requests. The JavaScript code issues automatic or user generated
HTTP requests to the Agent servlet which was configured to reply with the XML
responses. Note that the Agent servlet is the only servlet of the Web layer that can
communicate with the agents on the Agent layer (via the Binding layer).

4.2.2 Binding Layer

The Binding layer communicates with the Agent layer using a specialized software.
This software benefits from the JADE facilities for interfacing agent and non-agent
software materialized as the JadeGateway class ([22]). The interface is achieved
using agents (also known as Gateway agents) that are created locally by the Agent
servlet. One Gateway agent is created for each user logged into the system. These
local agents are created in a local container that is connected to the agent platform
that hosts the auction server. This container is created and started together with
the Web layer.

Whenever a new user logs into the system, the Agent servlet automatically
creates a local Gateway agent with the role of relaying messages from the Web
layer to the agents on the auction server. Then the Agent serviet locally creates
and passes a serializable object (called “blackboard object” in [22]) to the Gateway
agent assigned to the current user. The Gateway agent then sends the message
using the JADE messaging functionality to an agent located on the auction server,

=

536 C. Badica, S. Ilie, A. Muscar, A. Bddica, L. Sandu et al.

% Broswer + | Login Servet | |U5erDataBase ” AgentSenviet |
Html+ Javascript

“5‘9’ <<UserRequest>> <<HttpRequest>> T T T

|
|
|
|
|
L
I'L
|
|
|
|
|
|
|
|
|
|
|
|
L

<<HitpReply>>
7. Javascript+HTML (user)

I
<thtpRequest>>

;3 login(user) [noPersonalAgent]

1: login(user passwd) | 2: login(user, passwd) | <<DB query>> | |

/m /D 3: check(user, passwd) .| }

J | f t

user & passwd ot ok] | <<HipReply> I <<DB resut>> I

| 5 user-passwd-not-Ok() | 4: user-passwa-not-Ok() }

[‘
,,,,,,,,,,,,,,,,,,,,, e e

[user & passwd ok] } | <<DB result>> |

| | _ 6 user-passwd-Ok() |

|

! |

I

|

t

|

I

<<create>>

9 createPersonalAgent) ' Personal Agent
|
f

Figure 8. User login

according to one of the interaction protocols presented in Section 4.3. This type of
interaction is marked with the < object2agent> stereotype in Figures 8, 9, 10, 11,
and 12. Conversely, whenever an agent of the auction server must send information
to the Web layer it will use the JADE messaging to send this information to the
corresponding Gateway agent located in the Agent serviet. Then the Gateway agent
will invoke a method to update the “blackboard object” thus achieving the correct
transfer of the information to the Agent servlet. This type of interaction is marked
with the <agent2object>> stereotype in Figures 10 and 11.

|
<<UserRequest>> | X
1

4 createAuction(user auctionData)

<<HttpRequest>>
5. createAuction{user auctionData)

<<gobject2agent>>
&: createAuction(auctionData),

% Browser+ | AddAuction Servlet | | AgentServlet | | Personal Agent |
usler Html+Javascript T T T
==lJserRequest>> | [[
l 1: createAuction() ! <sHipRequest>> | I |
Ij L 2: createAuction() | | |
/U <<HtppReply>> I [
| | 3: Javascript+HTIVL()
| I I
| i | |
| I I
| I I
| ! !
I I
| I
I
I

Figure 9. Initiation of an auction

Note that whenever the JavaScript code of the Web page asynchronously re-
quests an information update from the Agent serviet the servlet will respond with
a message containing the relevant data extracted from the “blackboard” object and

Distributed Agent-Based Online Auction System 537

represented in the XML format. This type of interaction is represented with the
<K XML responsez> stereotype in Figures 10 and 11.

% Browser+Html+ | SearchServlet ” AgentServiet | | Personal Agent |
Us‘erﬂ Javascript T T

| <<UserRequest>> |
1: search()

!

|
<<HitpRequest>> |
2: search() |

<<HitpReply>>

|

|

|

|

|

| 3 Htmi+Javascript() |

<<UserQuery>> h | }
|

|

4: getAuctions(user criteria)

<<HttpRequest>>
5. getAuctions(user criteria) <<object2agent>>

6: getAuctions(criteria)

| <<XMLResponse>> 7: returnAuctions(auctions)
<<UserResponse>> | 8: returnAuctions(auctions)

I
I
[I | <<agent2object>>
I
I
|

9. returnAuctions(auctions)

<<UserRequest=>
10: join{Auctionianager, <<HttpRequest>>

I

s
\» 11 jein{AuctionManager)

|

|

I

<<object2agent>> |
12: join{AuctionManager)

I
g

I

I

| <<agent2object=>
returnParticipant(participant)

Figure 10. Searching and joining an auction

4.3 Interaction Protocols

In this section we formally describe the interactions that happen between the soft-
ware components of our auction system, “outside” the auction server, as opposed
to the agent interaction protocols described in Section 3 that are focused on the
“inside” of the auction server. Please note that although some of these interactions
are related to the same activity — for example the bidding activity has a part inside
the server, as well as a part outside the server, they are presented separately (in
Section 3 and Section 4) for at least two reasons:

1. their common part is minimal (it is reduced to the Personal Agent) and they
can be well-understood separately;

2. the auction server is a separate subsystem that can be integrated in other types
of applications, for example using a Web-service interface.

The user login operation is detailed in Figure 8. The first part (interactions
numbered from 1 to 7) achieves the authentication function. If the authentication
is successful (i.e. the interactions proceed according to the branch consisting of
messages 6 and 7) the Agent-based Auction Server is notified accordingly, via the
interaction consisting of messages 8 and 9. Message 8 is a notification sent to the
AgentServlet that the user logs into the system. Consequently, the link between the

=

538 C. Badica, S. Ilie, A. Muscar, A. Bddica, L. Sandu et al.

user name and the identifier of his or her Personal Agent is retrieved. Eventually,
the Personal Agent of the user must be created and started (message 9), either if
the user logs into the system for the first time or if his or her Personal Agent was
offline.

The operation of initiating an auction is detailed in Figure 9. The first 3 inter-
actions activate the user menu for setting the auction data. The next 3 interactions
support the function of creating a new auction. The actual creation is achieved after
interaction 6. Note that we assume that when a new auction is created the user is
already logged in and its Personal Agent is active.

The operation of searching and registering at an active auction is detailed in
Figure 10. The first 3 interactions activate the user menu for setting the search
criteria for the desired auction. The next 6 interactions (numbered from 4 to 9)
support the function of searching auctions available in the auction directory. This
is achieved with the help of the Auction Directory agent, residing on the auction
server. Then the user chooses the desired auction (this is achieved by interaction 10).
Note that after this action the name of the corresponding Auction Manager agent
becomes known. Finally, the last 3 interactions (numbered from 11 to 13) allow the
user to join the desired auction.

Browser+Html+ Auction Servlet | | AgentServiet | | Persaonal Agent |

e Javascript

| <<UJserRequest=> <HttpRequest=> I
2 sendBid() |

Ij 1: sendBid() |
/u <<HttpReply=>

3: Http+Javascript{)

<<UserPropose>>
4. sendBid{user,bid auction) _|

|
|
|
|
|
‘ <<HttpPropose>=
5: sendBid(user bid auction)
|
|
|
|
|
|
|
[

[

\

[

I

\

[

[

[

|

loop |[Guard] |
O <<HttpRequest>> |
Il

T

[

[

I

[

|

T

[

<<object2agent=>

\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
[\
| __6: sendBid(bid auction) |
<<agentZobject>> U

| T returnQuotes(quotes) |

U

9: returnQuotes(quotes)

8 getQuotes(user)
<<XMLResponse>=
|
|
|

!
J

Figure 11. Participating in an auction

The operation of bidding in an auction is detailed in Figure 11. The first 3 in-
teractions activate the user menu for setting the bid data. The next 3 interactions
(numbered from 4 to 6) support the function of submitting the bid to the auction
server. Note that we assume that at this point the user knows the identifier of the

Distributed Agent-Based Online Auction System 539

auction where he or she wishes to submit the bid (parameter auction). Interaction 7
is happening whenever the Personal Agent is notified by the Agent Layer that at
at least one of the auctions where the user is registered has updated its status. The
last 2 interactions (8 and 9) allow the user to visualize the quotes of the auctions
where he or she is subscribed. In particular, for an English auction, the user can
check if a given bid was accepted or not, by the auction server. The updates are
periodically triggered by a timer incorporated into the JavaScript code that runs in
the user’s browser.

The user logout operation is detailed in Figure 12. Similarly to the login oper-
ation, the auction server is notified that the user is leaving the system. However,
note that in this case the notification is sent directly to the Personal Agent that
represents the user.

Finally, it is important to observe that there is an interesting relationship (not
shown in Figures 8 and 12) between the Auction Service and the Personal Agent
that represents a specific human user on the auction server. This is the result of
the fact that the Personal Agent has a very important role, by controlling the user
participation in auctions, even when the user is disconnected from the online system.
This fact has two important consequences:

e During the login operation the system must check if the user already has an ac-
tive Personal Agent at the auction server, and if not it must create one. We
assume that this operation is achieved by the Auction Service agent. So, the
Auction Service agent has the responsibility of creating and setting up of a new
Personal Agent according to user requirements. An example of such require-
ments could be: what to buy, the maximum price and the acceptable auction
duration. Note that such requirements will become goals of the Personal Agent.

e During the logout operation the system must inform the Personal Agent that
the user has left the system. However, the Personal Agent can behave more or
less autonomously (according to the user requirements) in representing the user
preferences and interests. So, the Personal Agent can autonomously decide to
go offline in situations when, for example, there are no more active auctions in
which the user is participating or, more generally, when a certain user goal was
either achieved or is considered not achievable given the current state-of-affairs.
Alternatively the Personal Agent can decide to continue its execution on the
server.

Nevertheless, we set the requirement that the Personal Agent must always notify
the Auction Service that it will go offline before doing so, such that if the user logs
onto the system again then the Auction Service will be able to create and setup
a new Personal Agent accordingly. The Personal Agent will autonomously decide
to go offline whenever there is nothing left to do for the user. In particular, this
could happen when the user logouts and he/she is not currently involved in any
auctions, as well as if there are no active goals of the Personal Agent agenda to be
pursued. This can happen for example either when all the auctions where the user

540 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

was involved are finished or when the user just logged in for the first time, did not
create any auctions and did not set any requirements for the Personal Agent but it
just decided to leave the system, i.e. to log out.

% BrosweH LogOutAuctionSenvlet || AgentServiet | | Personal Agent |
user Htm\+Javascr\pt T T T
=<UserRequest>> <=<HttpRequest>> |

1: leave(user) 2 leave(user)

i L J i

3 Javascript+HTML (user)

<<HttpRequest>>
4 leave(user)

<<object2agent>>

7 5: leave() > |
[

Figure 12. User logout

5 EXPERIMENTS AND USABILITY
5.1 Experiments with the Distributed Agent-Based Auction Service

We experimentally evaluated the current architecture by comparing it with our
initially proposal from [2], where no Prozies were used. Then we conducted initial
scalability experiments by running our system on 2 and 3 computers.

For the experiments we used a network of dual core processors at 2.5 GHz and
1 GB of RAM memory. These workstations were interconnected using a high-speed
Myrinet interconnection network at 2Gb/s. According to [37], “Myrinet is a [...]
high-performance, packet-communication and switching technology that is widely
used to interconnect clusters of workstations”. As multi-agent middleware platform
we have used JADE 4.0 [38].

In this experiment the participants are allowed to bid automatically, so they
were equipped with a bidding strategy to tell them if, when, and how (much) to
bid. The bidding follows a snipping scenario, i.e. as soon as a participant receives
a notification that s/he was outbid by another participant, s/he immediately submits
a higher bid by adding a predefined increment to the value of the currently highest
bid. During the snipping scenario the auction server is heavily loaded with bid
processing activities.

The starting price of the auction was set to 0. The auction duration was set
to 1.5 minutes in all the experiments. The increment value for the participants’
strategy was set to 10. The agents were allowed to bid up to a very high reserve
price (100000). The auction terminates when its allocated time expires. In our
cases, to assure that we actually study the performance of the server, as the reserve
prices were set to very high values, the auctions end before any of the agents reaches
their reserve price.

Distributed Agent-Based Online Auction System 541

Note that whenever a Participant Agent bids according to this strategy, it must
receive an answer confirming if the bid was successful (or that it was rejected).
This is very important, as we are in a distributed environment with multiple agents
bidding concurrently, and it might happen that even if an agent is choosing a high
enough value to bid, it might be outbid by another agent that submits its bid
almost simultaneously. The following performance measures were recorded in our
experiments:

e Latency = the average time it takes the system to answer a bid.

e Throughput = the number of bids handled per unit of time; this value is cal-
culated by dividing the total number of answered bids by the duration of the
auction.

The setup of the experiment assumes running a script that starts the JADE
multi-agent platform and automatically creates the Auction Service and Auction
Directory agents. Then the Personal Agents are created for each user that partici-
pates in the auction.

The Personal Agent that initiates the auction was configured to set the condi-
tion for starting the bidding when a specific number of participants has joined the
auction. This condition is configured into the Auction Manager that governs the
auction.

When a certain given number of participants is reached, this Auction Manager
will enable the starting of the bidding process. Basically, with this approach we
were only looking for a simple method to set up our experiment consisting of many
agents bidding aggressively in an auction, while keeping the consistency with the
design philosophy of the auction server.

We ran our experiments using an increasing number of Personal Agents and we
calculated the performance measures by running the framework on one, two and
three computers. In order to also compare with our prior approach we also ran
a version of the program without proxies, forcing the Auction Manager to handle
all bids. In each test we ran only one auction. The case when multiple auctions are
run in parallel was left as future work.

The results of our experiments are shown in Figures 13 and 14, as well as in
Tables 1 and 2.

Agents | No Prozy | 1 Comp. | 2 Comp. | 3 Comp.
500 5087.53 | 2172.14 148.55 104.39

1000 20038.9 | 8114.66 266.85 217.01

1500 39752.5 | 8781.39 426.50 277.88

2000 66 852.3 11691.2 575.06 452.73

Table 1. Latency [ms]

Note that when we ran our system with 2000 bidding agents without proxies
only 1273 agents actually got to bid at least once during the allocated time of
1.5 minutes.

542 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

80000

70000

60000 \
50000 \

\ ——500ag
40000 \ \ s
30000 == 1500ag
20000 \\ = 2000ag

0 T T

NoProxy 1comp 2comp 3 comp

Time[ms]

Figure 13. Latency [ms]

Agents | No Proxzy | 1 Comp. | 2 Comp. | 3 Comp.
500 0.141 1.115 1.527 1.801
1000 0.065 0.949 1.714 1.744
1500 0.035 0.851 1.43 1.86
2000 0.025 0.779 1.502 1.672

Table 2. Throughput [no. of bids/ms]

5.2 Usability of the Online Auction System

We now consider a sample use case involving four users Uy, Us, Us, U, participating
in auctions with the help of our system. On this use case we highlight the usability
aspects of the system, as well as some of the details regarding the information ex-
changed by the various components. In particular, we are interested in checking the
information flow that is triggered into the system by user initiated actions. Please
note that in this description we will make references to the diagrams introduced in

Section 4.
%}E e
.j’/

1.2 = 500ag

150038

1 ’/’F/ ——1000
0.8 /%// N
y//4

0.6 =——2000ag

A

£/

NoProxy 1Comp 2Comp 3 Comp

Figure 14. Throughput [no. of bids/ms]

Distributed Agent-Based Online Auction System 543

Username: userl
Password: eeeee

Login

Register

Figure 15. Login GUI

The users log into the system at the User Layer using the Login GUI in the
Web browser shown in Figure 15. This operation, shown as message 1 in Figure 8,
is needed to communicate the username and password to the Web Layer. The login
request reaches the Login Servlet (message 2 in Figure 8 — an Http Request message).
The user credentials are then verified and an HTML page is returned to the user
presenting one of the following two possible outcomes:

e If the credentials are incorrect then an HT'ML page reports an error to the user’s
browser (message 5 in Figure 8).

e Otherwise the HTML page contains JavaScript code for interacting with the
AgentServlet (message 7 in Figure 8). After the interaction with the servlet
(message 8 in Figure 8), a Personal Agent is created for each user.

In our sample use case, four PersonalAgents (PA;, PAy, PAs, PA,) will be
created in the Agent Layer.

Category technology ~
Subcategory computers

Product Name: Desktop Computer
Product Description: 4 GB RAM, 500 GB HDD
Starting Price: 1500

Auction Period: 30

(Addauction |

Figure 16. Create Auction GUI

We assume that user U; creates two auctions labeled A; and Ay (their details
are shown in Table 3). For each auction, participant (initiators in this case) IPart1,
1Part2 agents, as well as AuctionManager! and AuctionManager? agents are cre-
ated.

Interaction 1 in Figure 9 represents the initial request sent by U for creating
an auction. Interaction 2 in Figure 9 represents the HTTP Request message sent
to the AddAuction Servlet. This servlet responds with an HTML file containing

544 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

also JavaScript code for creating the form Create Auction GUI shown in Figure 16.
The form enables the user to input the product descriptions as shown in Table 3
(message 4 in Figure 9). These are then passed to the AgentServlet using message 5
in Figure 9. Finally, AgentServlet requests PA; agent (using message 6 in Figure 9)
to create the auction in the Agent Layer.

auction Al A2

product name Desktop TV
description 13, 4GB RAM, 500 GB HDD | LCD, 81 cm
starting price 1500 RON 800 EUR
increment 10 RON 5RON
auction duration | 3h 5h

Table 3. Auction details

We now assume that users Uy, Us and U, are searching for a desktop computer
which is provided by auction A;, while user Us is also looking for a TV which
is provided by auction A,. Searching for a GUI starts when a user issues a re-
quest that triggers messages 1 and 2 in Figure 10. The SearchServlet responds
with an HTML form that represents the Join Auction GUI (see Figure 17). Then
the user communicates his or her search parameters to the system (message 4 in
Figure 10). The search parameters are passed to the Auction Directory using mes-
sages 5, 6 in Figure 10. The Auction Directory replies by triggering the sequence
of messages 7, 8 and 9. The result contains the description of a list of auctions
as an XML file (more precisely message 8 in Figure 10). The user can choose the
auctions they want to join by triggering interactions 10, 11 and 12. Whenever a user
joins an auction, a new Participant agent is created to represent the user bidding
in that auction (this is achieved via message 13 in Figure 10). In our scenario
Part2, Part3, and Part agents are created to represent users Uy, Us and U, act-
ing in auction A;, as well as Part5 agent is created to represent user Us acting in
auction As.

Category technology ~
Subcategory computers -
ProductName:

ProductPrice:

AuctionType:

ProductName Description StartingPrice AunctionType Join

Desktop \I3-350M Processor. 4 GB RAM, 500

| 5 EN joir
|6 crmtes GE HDD .1_00 ENGLISH ‘]0“1

el

Figure 17. Search and Join Auction GUI

Distributed Agent-Based Online Auction System 545

In what follows we shall focus only on what happens in auction A;. Let us
assume that user U; bids 1510 RON and his/her bid is accepted. Message 5 in
Figure 11 contains the bid information that user Us; sends to the AgentServlet: the
bid value 1510 RON and the participant id Part2. The bid value is input by the user
via the GUI shown in Figure 18. The AgentServlet determines the identifier of the
PersonalAgent attached to user Us, i.e. PA; and then forwards the bid information
to PAy (message 6 in Figure 11). Whenever a PersonalAgent receives a notification
about the update of the currently highest bid, it notifies the AgentServiet (message 7
in Figure 11). The GUIs of all the users participating in auction A; (i.e. Uy, as well
as Us and U, via their PA3 and PA4 agents) are automatically updated about
the currently highest bid by the JavaScript code that periodically retrieves from
the AgentServlet the updated information encoded an XML message (message 9 in
Figure 11). In this example the XML message contains the information shown in
Table 4.

‘ ProductlName ‘ Description |LﬂStBil1 ‘\V]..l].lll':‘.l‘| Bid | TimeLeft
Destiiop 13-350M Processor, 4 GB e s 1510 | joDO.27
Computer RAM, 500 GB HDD 43

Figure 18. Participating in an Auction GUI

DTD Content
<IDOCTYPE Auctions [<Auctions>
<!ELEMENT Auction (Participant, <Auction>
BestPrice, Bidder)*> <Participant>Part2</Participant>
<!ELEMENT Participant (#PCDATA)> <BestPrice>1510</BestPrice>
<!ELEMENT BestPrice (#PCDATA)> <Bidder>U2</Bidder>
<!ELEMENT Bidder (#PCDATA)> /Auction>
1> </Auctions>

Table 4. Currently highest bid update

In what follows let us assume that user Us logs out. However, his or her Person-
alAgent, i.e. PAs is kept alive on the Agent-based Auction Server and continuously
receives updates as auction A; is proceeding. Now, assuming that Us and Uy both
bid 1520 RON, with U; being slightly faster than Uy, the bid of Us; is accepted, while
the bid of Uy is refused. Now, as Uy is not happy that his or her bid was rejected,
U, will submit a new higher bid of 1530 RON. At this point Us resigns the auction.
Let us now assume that U, logs in again. It will be automatically informed by P A,
agent that the currently nighest bid is 1530 RON and it was submitted by Uy, as
shown in Figure 19.

Now, let us assume that U, decides to place a new bid of 1540 RON, but mean-
while the auction time expired. The bid submitted by Us; will be ignored by the

546 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.
|

‘ ProductName ‘ Description ‘LnstBitl |V\fi.1mc=1“ Bid | TimeLeft
Desktep 13-350M Processor, 4 GB b a | | [oDo:22:
Clomputer RAM, 500 GE HDD A 36

Figure 19. New updated highest bid

server. The server notifies all the users, including Us, about the outcome of auc-
tion A;. Assuming that auction Ay is also finalized without any winner (more
exactly, no bids were submitted in this auction), U, will receive the notification
shown in Figure 20.

ProductName Description LastBid (Winner| Bid TimeLeft
Desktop [3-350M Processor, 4 GB 5 [|Auction
Computer RAM, 500 GB HDD LR et S e Ended

.] lAuction
LCD Tv 81 cm . HD-Ready 800.0 Ended

Figure 20. Final notification

6 CONCLUSIONS

In this paper we described in detail an improved agent-based architecture for an En-
glish auction server. The initial experimental results show that our hierarchical
scheme of structuring the server using Proxy agents and a simple balancing scheme
is effective and has good scalability, when the server is distributed on multiple ma-
chines. As future work we plan to:

1. strengthen the results by performing more experiments on larger networks; in
particular we will target experiments on high-performance computer clusters;

2. extend the architecture to other types of auctions.

This paper also introduced our design and implementation of an online auc-
tion system that incorporates the Agent-based Auction Server. The system provides
a Web-based GUI for the Agent-based Auction Server. We outlined the main func-
tionalities of the system, as well as their design and implementation, in terms of
system architecture, design details and interaction protocols. The main outcome of
our work is a clean specification of the Web-based and agent-based software layers
of our system, as well as of their software interfaces. As future work we plan to:

1. expand our design by providing a Web services interface to our Agent-based
Auction Server;

Distributed Agent-Based Online Auction System 547

2. investigate the relation between the human user and his or her Personal Agent,

in particular on how human requirements in the area of auctioning and e-commerce
can be mapped onto elements of the Personal Agent architecture, like for example
those related to the BDI model.

REFERENCES

1]

2]

3]

[4]

[5]

(6]

(7]

8]

[9]

[10]

[11]

[12]

BApIicA, C.—GANZHA, M.—PAPRzZYCKI, M.: Implementing Rule-Based Auto-
mated Price Negotiation in an Agent System. Journal of Universal Computer Science,
Vol. 13, 2007, No. 2, pp. 244—266.

DOBRICEANU, A.—Biscu, L.—BADICA, A.—BADICA, C.: The Design and Im-
plementation of an Agent-Based Auction Service. International Journal of Agent-
Oriented Software Engineering, Vol. 3, Interscience, 2009, No. 2/3, pp. 116-134.
BaArTOLINI, C.—PREIST, C.—JENNINGS, N. R.: The Design and Implementation
of an Agent-Based Auction Service. Lecture Notes in Computer Science, Vol. 3390,
Springer 2005, pp. 213-235.

BADICA, C.—GIURCA, A.—WAGNER, G.: Using Rules and R2ML for Modeling
Negotiation Mechanisms in E-commerce Agent Systems. Lecture Notes in Computer
Science, Vol. 4473, Springer 2007, pp. 84-99.

STUBBLEBINE, S.—SYVERSON, P.: Fair On-Line Auctions Without Special Trusted
Parties. In: Lecture Notes in Computer Science, Vol. 1648, Springer 1999,
pp- 230-240.

RorL1l, D.—LUCKNER, S.—GIMPEL, H.—WEINHARDT, C.: A Descriptive Auction
Language. Electronic Markets, Vol. 16, 2006, No. 1, pp. 51-62.

OCKENFELS, A.—REILEY, D.—SADRIEH, A.: Online Auctions. In: Hendershott,
T. (Ed.): Economics and Information Systems, Emerald Group Publishing, 2006,
pp- 571-628.

SHOHAM, Y.—LEYTON-BROWN, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. MIT Press 2009.

HivLsToN, J.—KvrouL, L.: Performance Investigation of an On-Line Auction Sys-
tem. Concurrency and Computation: Practice and Experience, Vol. 13, 2001, No. 1,
pp- 23-41.

BELLIFEMINE, F. L.—CAIRE, G.—GREENWOOD, D.: Developing Multi-Agent Sys-
tems with JADE. John Wiley & Sons, 2007.

SANDU, L.—SBORA, R.—ILIE, S.—BADICA, C.: Scalable Distributed Agent-Based
English Auction Server. In: Proceedings of the 15" International Conference on
System Theory, Control, and Computing (ICSTCC 2011), pp. 1-6.

ILIE, S.—BADICA, C.—BADICA, A.—SANDU, L.—SBORA, R.—GANzZHA, M.—
Paprzycki, M.: Information Flow in a Distributed Agent-Based Online Auction

System. In: Proceedings of the 2°d International Conference on Web Intelligence,
Mining and Semantics (WIMS '12), pp. 42.

=

548

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

BENYOUCEF, M.—RINDERLE, S.: Modeling e-Negotiation Processes for a Ser-
vice Oriented Architecture. Group Decision and Negotiation, Vol. 15, 2006, No. 5,
pp- 449-467.

BROBERG, J.—VENUGOPAL, S.—BUYYA. R.: Market-Oriented Grids and Utility
Computing: The State-of-the-art and Future Directions. Journal of Grid Computing,
Vol. 6, 2008, No. 3, pp. 255-276.

FAsLI, M.—MICHALAKOPOULOS, M.: e-Game: A Platform for Developing Auction-
Based Market Simulations. Decision Support Systems, Vol. 44, 2008, No. 2,
pp- 469-481.

Jung, J.J.: Ontology Mapping Composition for Query Transformation on Dis-
tributed Environments. Expert Systems with Applications, Vol. 37, 2010, No. 12,
pp- 8401-8405.

Jung, J.J.: Exploiting Multi-Agent Platform for Indirect Alignment between Mul-
tilingual Ontologies: A Case Study on Tourism Business. Expert Systems with Ap-
plications, Vol. 38, 2011, No. 5, pp. 5774-5780.

Jung, J. J.: Semantic Optimization of Query Transformation in a Large-Scale Peer-
to-Peer Network. Neurocomputing, Vol. 88, 2012, pp. 36-41.

Junag, J.J.: Evolutionary Approach for Semantic-Based Query Sampling in Large-
Scale Information Sources. Information Sciences, Vol. 182, 2012, No. 1, pp. 30-39.
Gricas, K.—WILD. R.: Intelligent Support for Sophisticated e-Commerce Services:
An Agent-Based Auction Framework Modeled After the New York Stock Exchange
Specialist System. e-Service Journal, Vol. 2, 2003, No. 2, pp. 87-104.

Su, Y.W.S.—Huang, C.—HAMMER, J.—Huancg, Y.—Li, H.—Wang, L.—
Liu, Y.—PLUEMPITIWIRIYAWEJ, C.—LEE, M.—LAM. H.: An Internet-Based Ne-
gotiation Server for e-Commerce. The VLDB Journal, Vol. 10, 2001, No. 1, pp. 72-90.
KELEMEN, V.: Jade Tutorial: Simple Example for Using the JadeGateway Class.
Available on: http://jade.cselt.it/doc/tutorials/JadeGateway.pdf, 2006.
TREVATHAN, J.—READ, W.—BALINGIT. R.: Online Auction Software Fundamen-
tals. International Proceedings of Computer Science and Information Technology,
Vol. 2, 2009, pp. 254-259.

VILAJOSANA, X.—KRISHNASWAMY, R.—MARQUES. J.M.: Design of a Config-
urable Auction Server for Resource Allocation in Grid. In: Proceedings of Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems (CISIS ’09),
2009, pp.396—401.

WASIELEWSKA, K.—GAWINECKI, M.—PAPRZYCKI, M.—GANZHA, M.—
KoBzDpEJ. P.: Optimizing Blackboard Implementation of Agent-Conducted
Auctions. TADIS International Journal on WWW /Internet, Vol. 6, 2008, No. 1,
pp- 50-60.

WURMAN, P. R.—WELLMAN, M. P.—WaLsH, W. E.: The Michigan Internet Auc-
tionbot: A Configurable Auction Server for Human and Software Agents. In: Second
International Conference on Autonomous Agents, Agents-98, 1998, pp. 301-308.
Yao, D. Q.—Qra0, H.—Q1a0, H.: A Generic Internet Trading Framework for On-
line Auctions. In: A. Becker (Ed.): Electronic Commerce: Concepts, Methodologies,
Tools, and Applications, IGI Global 2008, pp. 163-177.

Distributed Agent-Based Online Auction System 549

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

[38]
[39]

[40]

MusCAR, A.—BADICA, C.: Exploring the Design Space of a Declarative Framework
for Automated Negotiation: Initial Considerations. IFIP Advances in Information
and Communication Technology, Vol. 381, Springer 2012, pp. 264-273.

BADICA, C.—BUDIMAC, Z.—BURKHARD, H.-D.—IvANOVIC, M.: Software Agents:
Languages, Tools, Platforms. Computer Science and Information Systems, Vol. 8,
2011, No. 2, p. 255-298.

VENTICINQUE, S.—AVERSA, R.—D1 MARTINO, B.—PETCU, D.: Agent Based
Cloud Provisioning and Management: Design and Prototypal Implementation. In:
Proceedings of the 15 International Conference on Cloud Computing and Services
Science: CLOSER 2011, pp. 184-191.

AMATO, A.—LI1CCARDO, L.—RAK, M.—VENTICINQUE, S.: SLA Negotiation and
Brokering for Sky Computing. In: Proceedings of the 2"d International Conference
on Cloud Computing and Services Science: CLOSER 2012, pp. 611-620.

SMmITH, R. G.: The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver. IEEE Transactions on Computers, Vol. 29, 1980,
No. 12, pp. 1104-1113.

SCAFES, M.—BADICA, C.—PAVLIN, G.—KAMERMANS, M.: Design and Implemen-
tation of a Service Negotiation Framework for Collaborative Disaster Management
Applications. In: Proceedings of the 2°d International Conference on Intelligent Net-
working and Collaborative Systems, INCoS 2010, pp. 519-524.

WOOLDRIDGE, M.: An Introduction to MultiAgent Systems — Second Edition. John
Wiley & Sons 2009.

ZAKAS, N. C.—MCcPEAK, J.—FAWCETT, J.: Professional Ajax. 2" Edition. Wrox
2007.

Fasri, M.: Agent Technology for E-Commerce. John Wiley & Sons 2007.

Myrinet Overview. http://www.myricom. com/scs/myrinet/overview/, Accessed in
November 2012.

JADE: Java Agent Development Framework. http://jade.cselt.it, Accessed in
November 2012.

BorbINI, R. H.—HUBNER, J. F.—WOOLDRIDGE, M.: Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons 2007.

Lu, J.—GOKHALE, S.S.: Performance Analysis of a Web Server With Dynamic
Thread Pool Architecture. In: Proceedings of the 2274 International Conference on
Software Engineering and Knowledge Engineering: SEKE 2010, pp. 99-105.

550

C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

Costin BADICA is Professor at the Department of Computers
and Information Technology, University of Craiova from 2006.
In 2001 and 2002 he was Postdoctoral Researcher at the De-
partment of Computer Science, King’s College, London, United
Kingdom. His research interests are at the intersection of arti-
ficial intelligence, distributed systems and software engineering.
He was involved in many national and international research
projects. He is coordinating the “Intelligent Distributed Sys-
tems” research group (http://ids.software.ucv.ro). He co-
authored more than 100 research publications, coedited books,

book chapters, editorials of journal special issues. He is member of the editorial board of
several international journals and served as member of the program or organizing com-
mittee of many international conferences.

Sorin ILIE is research assistant at the Department of Com-
puters and Information Technology, University of Craiova from
2009. He defended his Ph.D. thesis in December 2012 on Dis-
tributed Ant Colony Optimization. His research interests include
artificial intelligence, distributed systems and software engineer-
ing. He was involved in four national and international research
projects. He is a member of the “Intelligent Distributed Sys-
tems” research group (http://ids.software.ucv.ro). He co-
authored 28 research publications. He served as member of the
program or organizing committee of two international confer-
ences.

Alex MUSCAR is a Ph. D. student at Department of Computers
and Information Technology, University of Craiova from 2010.
Before starting his Ph. D. studies, he developed large scale ap-
plications in Python on Google’s AppEngine cloud platform and
high performance recommender systems in C++. His research
interests are mainly in the areas of programming languages and
concurrent and distributed systems. He is also a member of the
“Intelligent Distributed Systems” research group.

Distributed Agent-Based Online Auction System 551

Amelia BADICA holds a Ph.D. in Economics and she currently
works as Senior Lecturer at the Business Information Systems
Department, University of Craiova, Romania. She has a spe-
cialization in management information systems at Binghamton
University, USA. Her research interests cover the application of
expert systems, software engineering and Web technologies in
business and management. She authored many papers in jour-
nals and conference proceedings on these subjects. She was in-
volved as principal investigator in a research project concerning
data extraction from the Web. She also served as member of the
program or organizing committee of many international conferences.

Liviu SANDU has a Bachelor degree in Computer Science from
the Faculty of Automatics, Computers and Electronics, Univer-
sity of Craiova, Romania. Now he is studying for the Master’s
degree at Faculty of Automatics, Computers and Electronics,
University of Craiova, Romania. From 2011 he also works as
a software developer at RT-SOFT SRL, Romania.

Raluca SBORA has a Bachelor degree in Computer Science from
the Faculty of Automatics, Computers and Electronics, Univer-
sity of Craiova, Romania. Now she is studying for the Master’s
degree at Faculty of Automatics, Computers and Electronics,
University of Craiova, Romania. From 2012 she also works as a
Software Tester at Hella, Romania.

Maria GANZHA is Assistant Professor, obtained her M. Sc. and
Ph.D. in Applied Mathematics from the Moscow State Univer-
sity, Moscow, Russia in 1987 and 1991, respectively. Her ini-
tial research interests were in the area of differential equations,
solving mixed wave equations in space with disappearing obsta-
cles in particular. Currently she works in software engineering,
HPC, distributed computing and agent systems in particular.
She has published more than 130 research papers and is on edi-
torial boards of 10 journals and a book series and was invited to
Program Committees of over 150 conferences.

552 C. Badica, S. Ilie, A. Muscar, A. Badica, L. Sandu et al.

Marcin PAPRZYCKI has received his M.Sc. Degree in 1986
from Adam Mickiewicz University in Poznan, Poland, his Ph. D.
in 1990 from Southern Methodist University in Dallas, Texas
and his Doctor of Science Degree from Bulgarian Academy of
Sciences in 2008. His initial research interests were in high per-
formance computing and parallel computing, high performance
linear algebra in particular. Over time they evolved and started
to include also distributed systems and Internet-based comput-
ing; in particular, agent systems. He has published more than
300 research papers and was invited to Program Committees of
over 400 international conferences. He is on editorial boards of 16 journals.

