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Abstract. We present an agent-based model of a simple endogenous-money econ-
omy. The model simulates agents representing individual persons who can work,
consume, invent new products and related production technologies, apply for a loan
from the bank and start up a business. Through the interaction of persons with the
firms, we simulate the production of goods, consumption and labour market. In or-
der to achieve a significant level of realism of the simulations, the firms are modelled
as adaptive agents using an effective reinforcement learning approach in continuous
space. This setting allows us to explore how an endogenous-money economy can be
built up from scratch, as an emergent property of actions and interactions among
heterogeneous agents once money is injected into a non-monetary self-production
(or barter) economy. In the paper, we first empirically investigate the learning ca-
pability of the firm agents. Then, we discuss the results of some computational
experiments under different significant scenarios.
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1 INTRODUCTION

The endogenous-money approach to modelling of an economic system assumes that
banks create money by providing loans to firms, thus simultaneously creating equiv-
alent deposits [1, 2]. There may, of course, be restrictions on how much money the
banks are allowed to create in this way, for example by way of some reserve con-
straints. But this approach, in the spirit of Moore [3] and Holmes [4], allows banks
to look for the reserves later after they have extended the credit.
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Such endogenously created credit money is the point of ignition of all economic
activities as it allows firms to hire workers, start the production, pay wages, divi-
dends and interests, and subsequently have workers, capitalists and bankers consume
the goods produced.

The idea of such a closed monetary economy has raised two puzzles: how are
profits possible if firms need to repay loans with interests? [5]; and more in general,
is an ever-increasing supply of money the only way to earn profits in a steady-state
economy? Keen [1, 2] has proposed a model with a set of differential equations
which shows on the aggregate level that indeed no such increasing supply of money
is necessary.

Based on this approach, we have developed an agent-based model of endogenous-
money economy to study its evolution on disaggregated level of individual firms,
banks, workers and consumers and to account for possible heterogeneities of prod-
ucts, production technologies, workers’ skills and consumption preferences which are
all common features of any real-world economy.

Agent-based computational economics (ACE) is a growing field of economic
modelling [6], and several large scale models have been developed addressing macroe-
conomic policy issues (see [7, 8] for a review). In the ACE literature, there is
an increasing use of learning techniques which make agents adaptive to their en-
vironment and capable to pursue their goals (such as, for example, to maximize
long-run profits) [9]. A broad range of algorithms to represent the learning pro-
cesses of computational agents has been reported in literature, including genetic
algorithms [10, 11], genetic programming [12], reinforcement learning (RL) [13],
classifier systems [14] and many others [15, 16]. A frequent approach is based on RL
which, in the context of ACE applications, represents a form of bounded rationality
in decision making [17, 13, 18, 19]. In models based on RL, agents learn through
interaction with each other and with the environment. Over time, on the basis of
positive reinforcement of profitable actions and negative reinforcement of unprof-
itable actions, they discover which actions under which conditions provide the best
rewards.

In order to maximize the expected profits in the long run in our model of en-
dogenous-money economy, firms need to make decisions on both the price of the
product and the quantity to be produced. Therefore, to provide a degree of realism
in firms’ behaviour, we endow them with a learning capability. To this end, we use
the RL approach called SARSA [20], which is a variant of the classic Q-learning
method [21, 22]. To cope with the size of the state space, which is assumed as
continuous, we adopt an approximation of the state-value function based on a feed
forward neural network trained on-line by the agents. In the model, besides firms
as adaptive agents, we also have a population of consumers which behave reactively,
playing the role of defining the environment in which the former operate [23].

The purpose of our model is not so much to support policy design starting from
an initial scenario populated with persons, firms and banks calibrated on a real-world
economy. We rather wanted to explore if and how an endogenous-money economy
may build up from scratch, as an emergent property [24] of actions and interactions
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among heterogeneous agents, once the money is being injected into a non-monetary
self-production (or barter) economy.

This is how the remainder of the paper is organised. In the following section
we specify the model. Then, in Section 3 we investigate the implemented learning
mechanism and discuss the results of several computational experiments under dif-
ferent scenarios. Finally, in the concluding Section 4 we examine some advantages
of the agent-based modelling approach and present plans for future developments.

2 THE MODEL

There are three types of agents in our model: persons, firms and a bank. At the
beginning of the simulation, the world is populated only by a set of persons. Person
represents an individual who can consume, work for firms and start a business by
creating a new firm. Firm employs workers, runs the production and sells the pro-
duced goods. Then, at every time step, it pays the wages to workers, the dividends
to the person who owns the firm, and the interests on the loan to the bank. The
Bank ’s role in the model is to evaluate the business plans for new firms proposed
by persons, and to provide loans to the most promising ones.

In what follows we describe the behaviour, the decision-making procedures and
the interactions among the three types of agents.

2.1 Production

For simplicity, we assume that no physical capital is used in the production, so
the only production factor is labour. The workforce is differentiated, since each
person is initialised with n skills whose values are randomly generated from a normal
distribution. Firms produce differentiated consumption goods using technologies
each represented by a Cobb-Douglas production function. In particular, given a set
of workers each endowed with n skills sw,i (i = 1, . . . , n), the quantity produced with
a specific technology is given by:

q = k
∏

i∈{skills}

 ∑
w∈{workers}

sw,i

αi

, (1)

where k and α’s are specific parameters of the production technology.

2.2 Consumption

We assume a person’s utility from the consumption of xi quantities of n goods is
given by the following constant elasticity of substitution (CES) utility function:

U (x1, . . . , xn) =

 ∑
j∈{goods}

ujx
ρ
j

 1
ρ

, (2)
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where the share parameters u for the different products and the ρ are variable among
persons. This specification of the consumption utility function is grounded on the
assumption that firms may produce different products, what is an important feature
of our model.

We assume the consumers are rational utility-maximising agents. Therefore,
given a set of available goods, their prices pi and the available budget B the person
decides to spend on consumption during each time step, the utility-maximising
consumption bundle is determined by:

xi = B

(
pi
ui

) 1
ρ−1

∑
j∈{goods} u

1
1−ρ
j p

ρ
ρ−1

j

, (3)

2.3 Invention of New Products and Production Technologies

At each time step, there is a probability each person invents a new product and the
related production technology. A newly invented product is defined by a randomly
generated value which represents the average consumers’ utility parameter for that
product (i.e. the average value of the share parameter u for that product in the
utility function defined by Equation (2)). In other words, if the product is put into
production, this value is used as the mean of a probability density function through
which we randomly assign a unique u for that product to each person. In a similar
manner, the invented technology is defined by randomly generated parameters k and
α’s of the production function in Equation (2). Once the product and its production
technology have been invented, the person applies for a loan from the bank.

2.4 Ranking of the Applications for Loan

We assume, unrealistically but for the sake of simplicity, that there is just one bank
in the system, creating credit money through loans to persons and firms. The bank
evaluates the applications for loan by persons and decides which to finance. This
evaluation is based on the start-up business plan which provides the quantity pro-
duced by one adequately (technology-wise) skilled worker and the product’s average
utility parameter. The bank finances the most promising business plan by providing
the loan to the person who then creates the firm.

2.5 Labour Market

Given that each production technology is defined in terms of workers’ skills (see
Equation (1) above), the firms express different demand for workers with different
skills. Each firm pays the same wage to all its workers, so in order to decide which
persons to hire and at what wage, the firm uses a heuristics to select the most
productive workers, technology-wise, with respect to their reservation wages. For
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already employed persons, the reservation wage is the wage they are currently work-
ing for, while for an unemployed we establish a baseline minimum wage for which
the person is willing to accept a job instead of staying unemployed.

This approach was devised to model the competition for workers among firms.
The competition grows as the number of unemployed drops, which is then reflected
in the upward wage pressures.

2.6 Firm’s Production and Pricing Decision-Making

As illustrated in Figure 1, depending on its current workforce, at each time step
t a firm produces the quantity q of the product, according to Equation (1). The
production replenishes the warehouse, and the current stock of product therein is
denoted by w. Products are sold at a price p, and a portion of the stock is purchased
by persons. The quantity purchased by each person is determined by Equation (3).
Also, each firm has an amount of cash at hand, indicated by m.

Figure 1. Scheme of the relationship between the entities involved in the model

At each step, the available cash increases with the sales revenues, and decreases
with the wage payments to workers, interests on the loan to the banker, and profits
to the entrepreneur. The latter is calculated as a fraction of the current value of m.

Given the general turbulence in the system (new firms get created or go bank-
rupt, there is a competition among firms for consumers’ money and for skilled labour,
wages and consumption rates may change, and so on), a price established in the
past does not necessarily clears the market, nor a production plan stays optimal for
a long time. Therefore, in our model the firms are adaptive agents using an on-line
RL approach [13] to develop and continuously adapt a suitable policy of business
decisions, which consist of setting the price p and the production quantity q, to
achieve a satisfactory level of profits accumulated during the simulation.
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RL is a typical approach to have software agents find optimal strategies of be-
haviour when there are only reinforcement (i.e. reward) signals which do not imme-
diately point at the ‘right’ actions to perform, but only indicate how well the agent
is performing. That is to say, the learning consists of a process in which the agent
converges to the optimal policy through trials and errors. Usually, in a first phase of
the learning, the agent has a higher tendency to explore the available actions, while
in a subsequent phase it better exploits the learned policy while still being able
to adapt it according to the received rewards. Besides ACE, RL algorithms have
been successfully used in many applications, including games [25], price settings [26],
robotics [27] and control tasks [28].

We use agents with adaptive abilities mainly for greater realism of the simulation.
Such an improvement in the quality of model outcomes was previously reported in
the literature for similar applications [26, 29]. For example, in [26] it was shown
that sellers capable of learning, and thus of anticipating the longer-term effects of
their actions, are less prone to engage in a recursive price war, which used to be
observed in a population of simple reactive agents [30]. A further reason comes from
one peculiarity of our model. In fact, we admit firms to go bankrupt. Liquidity kills
them quickly, as soon as their cash reserves are not enough to make payments due:
wages to workers and interests on loan to the bank. In other words, to stay in
business each firm must adopt a strategy that tends to maintain a safety level of
cash, in spite of the turbulence of the system.

As specified below, we use a variation of the Q-learning algorithm [21, 22], which
is a technique for learning an action-value function which can estimate the long-term
expected reward of taking an action for each state. Having such an action-value
function, the optimal policy consists of selecting the action with the highest expected
reward, given the state. However, to promote a better exploration capability of the
agents, a certain level of randomness of choice of action is usually maintained.

According to a well established literature [22], for a single agent operating in
a Markovian environment (i.e. in a system which evolves according to a Markovian
transition probability matrix) there are theoretical results assuring, under certain
conditions, the convergence of the Q-learning process to the optimal policy. How-
ever, given the description above, in the proposed model firms operate in a non-
stationary and history-dependent environment for which the convergence results
concerning learning procedures in Markov decision processes do not hold. Neverthe-
less, for the purposes of the present study it is not required that each firm constantly
apply an optimal policy (e.g. the one which maximizes firm’s profits). The purpose
of agents’ learning capability should be rather to discover and implement a good,
realistic and adaptive policy.

In our model the firm perceives a set S of states in its environment which include
indicators relevant for the firm’s decision making. Among the candidate indicators,
the agent may consider its own cash and warehouse levels, their past trends, the
current price pt and the production quantity qt, as well as several indicators of
other agents’ behaviour. However, in the present version of the model we assume
that firms cannot obtain direct information about the characteristics of competitors
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and that the set S only contains the current trends of the firm’s cash amount and
warehouse S = {∆mt,∆wt}. The value of ∆mt is significant since it can highlight
a possible imbalance between revenues and costs (i.e. wages and interest payments).
Also, the value of ∆wt may indicate if, given the state of the market and the current
level of prices and production quantity of the firm, there is an ongoing accumulation
of unsold product or if, instead, the sales are greater than the production.

At each step of the simulation, the firm can apply one of the actions ai in the
set A, as specified in Table 1. That is to say, there are five available actions, which
correspond to separate increment or decrement of p and q plus a null action, which
consists of maintaining the current level of both price and production quantity. In
the present version of the model, both the price variation ∆p and the quantity
variation ∆q are fixed. Future work may consider to include also the size of such
variations in the policy. It is worth noting that to increase its production the firm
needs to hire more workers, and vice versa, to reduce the production it needs to lay
off workers. Thus, the ±∆q actually applied in practice depends on the productivity
of the involved workers.

Action Specification

a(0) {pt+1, qt+1} = {pt, qt}
a(1) {pt+1, qt+1} = {pt −∆p, qt}
a(2) {pt+1, qt+1} = {pt + ∆p, qt}
a(3) {pt+1, qt+1} = {pt, qt −∆q}
a(4) {pt+1, qt+1} = {pt, qt + ∆q}

Table 1. The five actions in the set A for the Firm agent. The variables pt and qt represent
the current price and quantity, respectively, while ∆p and ∆q are suitable fixed
increments

More in detail, at each time step, given the state xt of the environment the
agent: 1. perceives the elements of S, 2. select an action at from A and 3. executes
it.

After the implementation of an action at, the state of the environment becomes
xt+1 and the firm obtains a reward r(xt, at). The latter is the result of the de-
terministic behaviour of consumers as described above, as well as of the different
actions undertaken by other firms in the past. As for the dynamics of price-quantity
adjustments, following [26] it is assumed that firms do not apply all their actions
simultaneously. Rather, at each step only one agent undertakes its decision. This is
implemented adopting a fixed interval ∆ta of time steps between every two consec-
utive actions. Clearly, the size of such interval depends on the maximum number of
allowed firms. While the actions are applied every ∆ta steps, the evaluation of the
reward r(xt, at) related to at, as well as the selection of the next action to under-
take, are always performed at the subsequent time step t+ 1. The reasons for such
an alternating mechanism lie in 1. a more realistic representation of the reality and
2. its ability to allow a clearer evaluation of the effects of each action on the actual
reward, so favouring a more effective learning process.
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2.6.1 The Implemented Learning Strategy

In the standard Q-learning approach [21] the agents learn Q-functions, which esti-
mate the return associated with each action a ∈ A. At each visited state xt, the
agent undertakes the action at and updates the Q-functions as follows:

Q(xt, at) = r(xt, at) + γmax
a∈A

Q(xt+1, a) (4)

where γ ∈ [0, 1] is a discount factor and maxa∈AQ(xt+1,a) is the estimation of
the sum of payoffs received from time t onwards, assuming that a greedy policy is
followed. The latter consists of always taking the action with the highest predicted
return.

Typically, at the beginning of the learning the Q-values are unknown (e.g. they
are set to some default value). Subsequently the stored Q-values are updated on the
basis of the experienced state-action pairs using the received rewards. This is done
gradually, using a learning rate η ∈ [0, 1] as follows:

Q(new)(xt, at) = (1− η)Q(old)(xt, at) + η

[
r(xt, at) + γmax

a∈A
Q(old)(xt+1,a)

]
(5)

The idea is not to completely discard the previous estimate of a Q-value when a new
reward is obtained. Instead, the update is carried out as a weighted combination of
the old Q-value for that state-action pair and the new information obtained from
the environment.

According to Equation (5), the learning process requires some data structure to
store the current Q values for each state and each possible action. In general, this
can be done using a lookup table when the state space is discrete and composed
of few elements. However, as illustrated above, the Firm agent of our model has
a multidimensional continuous state space and its discretization [21, 31, 13, 32] would
imply the use of a large data structure and a significant component of arbitrariness
in choosing the size of the discrete sub-spaces. To avoid the discretization and
to cope with continuous state spaces, in RL applications it is common the use of
function approximation [32, 13]. The approach consists of expressing the Q-values
as a function of some relevant state variables in order to obtain, through some
generalization capabilities, reliable predictions even for states which the agent has
not yet experienced during the simulation. In this study we use a typical approach
for approximating Q-values in RL [13, 33, 34, 20], namely Artificial Neural Networks,
and in particular multi-layer perceptrons.

In general, in order to operate with an approximate Q-function, a learning al-
gorithm may store a state-action value function Q : S × A → R, or a state value
function V : S → R [20, 35]. In terms of ANNs, the first approach would imply
the use of a single network with |A| + |S| inputs and one output, while the second
approach could be implemented using |A| networks with |S| input and one output.

As in [34, 20], we choose to approximate the Q-function using one ANN for
each action (i.e. five ANNs in total). Each ANN has two inputs (the current values
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of ∆mt and ∆wt) plus a bias input and one output (the Q-value estimate). We
use a single hidden layer with 3 nodes and a tanh activation function. The input
and output layers use the identity function. Therefore, since we use fully connected
networks, for each action we have 12 weights to learn. As for the ANN architecture,
we have tested more and less hidden nodes and different activation functions and
found no improvements in the results.

Instead of using Equation (5), which refers to the use of a lookup table, in
our implementation learning is done with a gradient descent update using standard
backpropagation [36] with a fixed learning rate η. In addition, following the State-
Action-Reward-State-Action(SARSA) approach proposed in [20], the target of the
ANN learning is defined as:

Q(xt, at) = r(xt, at) + γQ(xt+1, at+1) (6)

where, in practice, Q(xt+1, at+1) is used instead of maxa∈AQ(xt+1, a). The method is
justified by the fact that in the early stage of learning the ANNs are not sufficiently
trained to provide reliable predictions of the total return associated with the state
xt+1. Also, there are evidences [37] that the maxa∈AQ(xt+1, a) obtained by the
Q-function is likely to be overestimated. Another consideration is that Equation (4)
refers to the case in which greedy actions are taken at each step. However, this is
not the case of the present application since we maintain a certain level of random
exploration of the state space.

To apply the SARSA algorithm, first the new action at+1 is selected through the
approach explained in the next subsection, then the weights of the ANN associated
to the action at are updated using the target computed by Equation (6).

It is worth noting that in the SARSA approach adopted in this study, only the
Q-value Q(xt, at) of the previous state with respect of the new one xt+1 is updated.
However, there are more sophisticated learning strategies, (such as SARSA(λ))
where the reward obtained at the time t + 1 can be propagated backwards to
many states. Although it has been reported that such methods may learn more
efficiently [13], the simple one-step SARSA proved to be quite effective for this
application, and more sophisticated methods will be subject to further studies.

2.6.2 Action Selection

Given the Q-function, at each time step the agent can choose between two options: it
can select from the set A the action with the highest Q-value, i.e. the so-called greedy
strategy, or it can take a random action. In the first case the agent exploits what it
has already learned in order to achieve the maximum estimated reward according
to its current Q-function. In the second case, the agent explores new directions and
has the chance to learn more.

As reported in the literature, the greedy method can get trapped in local min-
ima during the convergence process, performing suboptimal actions in the long run
of the simulation [13]. However, different approaches are reported in literature for
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balancing the two objectives of exploration and exploitation. For example, an alter-
native called ε-greedy consists of applying the greedy behaviour most of the time,
but with a small uniform probability ε selecting an action at random.

Another typical approach, called softmax, consists of a random selection of the
action in which the probabilities depend on a graded function of the corresponding
estimated Q-value. In this case, the best action has still the highest selection proba-
bility, but all the actions are ranked according to their Q-value estimates. Typically,
the softmax method is based on a Boltzmann distribution of probability [13].

In the model illustrated in this paper, after some preliminary comparison be-
tween the performance of the softmax and the ε-greedy methods, we have chosen
the latter which showed a better performance. Furthermore, the ε starts with an
high value εi, which is gradually and linearly lowered up to a steady state value
εf after a specified number TL of time steps. In this way, the Firm agents try to
explore as much as possible of the state space at the beginning of the simulation,
taking more greedy actions later to exploit what they have learned.

3 COMPUTATIONAL EXPERIMENTS

In this section, we first empirically investigate the learning capability provided by
the SARSA RL approach described in Section 2.6. Then we present and discuss the
results of some significant run of the model, under different scenarios.

3.1 Investigation of the Learning Process

In order to quantify the effectiveness of the learning process, we first performed
a number of runs in which two firms with the same product and the same technology
competed for customers in the market. One of the firm was endowed with the
learning procedure described above, while the other maintained a constant price
and production quantity. Both firms started with the same level of production and
the same price.

In the numerical investigation, we carried out five experiments composed of
50 runs with the length of 10 000 steps. Each run was initialized with a different
random seed. The value of TL was set to 1 000 steps, while εi was initialized with
0.5 and εf with 0.1. The value of the discount factor γ was set to 0.3. The first ex-
periment was performed using a random choice of the action from the set A at each
step. In the remaining four experiments, we used different values of the learning
rate η for the backpropagation update of ANNs, namely 0.05, 0.1, 0.2 and 0.3. At
the end of each run, the average value m̄ of the variable m (i.e. the cash amount)
in the last 5 000 steps was recorded. Then, for each experiment we computed the
means and standard deviations of m̄ over the 50 runs. The numerical results are
shown in Table 2, while in Figure 2 a) we show an example of the obtained conver-
gence plots for ε = 0.1. Each experiment with ε 6= 0 was compared with the random
one using a two-tailed t-test, rejecting the null hypothesis (i.e. equivalence between
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a)

b)

Figure 2. a) Comparison between the cash of a firm that uses the SARSA learning algo-
rithm and a firm with the same characteristics which randomly varies the price
and quantity. b) Comparison between the prices set by two firms with different
products.
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the algorithms under comparison) if the p-value was smaller than the significance
level 0.05. As shown in Table 2, the implemented SARSA algorithm had the ca-
pability of achieving a quite stable level of cash. According to the t-test, the firm
endowed with the SARSA mechanism was always better than that with the simple
random variation of the price and quantity. This indicates that our adaptive firm
can learn a good direction in the decision space.

We carried out many other tests to investigate the quality of the learning process
in order to obtain realistic simulations. For example, in Figure 2 b) we show the
convergence towards a quite stationary price for two firms with products having
different average share parameters u (see Equation (2)), namely ū = 0.8 and ū = 0.4.
According to Equation (3), it is reasonable to expect that a firm with the largest
value of ū can increase more its price while maintaining approximately the same
market share. Obviously, the exact dynamics is influenced by the fact that the
value of ū is only an average of those of the consumers and that various random
processes affect the system. However, it is satisfactory to show in Figure 2 b) that
the two agents are able to reasonably set their prices without knowing Equation (3),
but only by observing the trend of their sales and cash.

ε Mean Std. Dev Mean Std. Dev p

0.05 645.2 79.3 497.2 84.3 0.000
0.10 766.5 56.2 497.2 84.3 0.000
0.20 732.2 71.2 497.2 84.3 0.000
0.30 683.7 86.9 497.2 84.3 0.000

Table 2. Results of the comparison between a firm agent endowed with the SARSA learning
mechanism (second and third columns) and a firm with the same characteristics
which operate randomly (fourth and fifth columns).

3.2 Model Results

We carried out three computational experiments each ran under a different scenario
in relation to the structure of competition among firms and to the relative ‘abun-
dance’ of workforce. All scenarios were initialised with 200 persons and ran for
500 time steps. The learning rate η used in backpropagation was set to 0.1, and the
value of the discount factor γ was set to 0.3. As before, the greedy parameter ε was
initialized with 0.5 and decreased up to 0.1 in 1 000 steps.

The first scenario is a monopolistic setting with a single firm (i.e. we set the
limit of only one firm financed by the bank during the simulation). The second
scenario is a more competitive setting with five firms, each with its product and
production technology. As we shall see, this setting does not hit the upper bound
of absorbing all the available workforce, due to the interplay of the demand and the
structure of production costs related to production technologies. Finally, the third
scenario allows unlimited number of firms. In this case, we will see that there is
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a high demand of workforce, which toughens the competition among firms for the
skilled labour.

Figure 3 shows the evolution of several macroeconomic aggregates. As it was
to be expected, the economy in the third scenario, with no limits on the number
of firms, produced the greatest overall output (Figure 3 a)). It is important to
remember that firms in principle may be created and die at any time step of the
simulation. Multiple Monte Carlo runs of the simulation under the third scenario
yielded on average a maximum of around 55 firms operating simultaneously at some
point in time, but on average only about 40 ended up active at the end of the
simulation, while the others were outcompeted and went bankrupt. These numbers
are of course sensitive to the model parameters as well as to the learning parameters
used by firms, but they in principle show that given the nature of the production
technology and a limited population there is an upper bound of firms that may
operate in a steady-state.

The differences among the three scenarios in the overall output are reflected by
the unemployment rates (Figure 3 b)). In the case of the monopoly, only a small
portion – around 10% – of the available workforce was absorbed by the firm, while
in the second scenario 20% was employed at the end of the simulation. In the
third scenario the economy was able to employ around 80% of its production poten-
tial.

What is relevant here to see in a combination with the unemployment rates is
the wages dynamics (Figure 3 c)). In the first and the second scenario the wages paid
to workers remained at the level of the unemployment reservation wage. In the case
of the second scenario, this of course is partly due to the fact that, given the internal
randomness, in this specific simulation run the five operating firms happened to use
sufficiently different production technologies (putting different ‘weights’ on worker
skills) in relation to the available pool of skills so as not to bring about a competition
among firms for ‘rare’ skills. Had it been otherwise, there would have been some
upward wage pressure. In any case, nothing of the magnitude observed in the
third scenario where the final average wage was more than twice the unemployment
reservation wage.

We do not model rigidities and transaction costs for hiring, lay-offs and job
switching. So, during the simulation under the third scenario we frequently observed
highly turbulent intervals of time where workers change jobs from step to step, often
back-and-forth among firms trying to outbid the competitors by offering higher
wages.

Possibly the most interesting macroeconomic result is told by the Figure 3 d).
It shows how the income is distributed among the firm owners and workers (and
the banker). Here we represent the dividends paid to firm owners as a share of all
the incomes of the economy (which is the sum of dividends, wages paid to workers,
and interest payments to the banker). We see that in the case of monopoly the
firm owner manages to capture the greatest share of the overall income, followed by
the second and then the third scenario. Again, the numbers themselves are not as
important as the general story they tell.
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a)

b)
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c)

d)

Figure 3. The evolution of macroeconomic variables of the system under three scenarios:
a) Nominal GDP; b) Unemployment rate; c) Average wage; d) Dividends as a share
of GDP
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Let us turn to some micro analysis. In Table 1. we summarise few descriptive
statistics of the firm population at the end of the simulation ran under the three
scenarios.

Scenario 1 Scenario 2 Scenario 3

Number of firms 1 5 42
Average number of workers 24 8 4
Min. number of workers 24 5 1
Max. number of workers 24 39 18
Median wage 5 5 10

Table 3. Firms at the end of the simulation

An interesting demonstration of a firm’s behaviour is the phase diagram of the
prices it sets and the corresponding quantities of the product it manages to sell
at those prices. In Figure 4 we present such phase diagrams for the firm in the
Scenario 1 and for one of the five firms in the Scenario 2. They both start from low
production levels and settle for high prices. Then, as they expand the production
the trajectory gravitates towards lower price levels.

Richer interplays among firms occur when they enter into a stronger mutual
competition, as in the Scenario 3. In Figure 5 we show the evolution of the wages
and the number of workers hired by two firms under Scenario 3. The firm repre-
sented in the Figure 5 a) is the first created in the simulation. During an initial
phase, it hires the workers at the unemployment reservation wage of 5, and then
increases its workforce up to a maximum of 10 workers. Then, when an attempt to
further increase the workforce occurs, the wage level rises. Thus, the firm finds more
convenient to go back to the number of 10 workers. This phenomenon may be due
to two distinct effects. One is the rise of wages (due to the competition for work-
ers from other firms) which increases the production costs. The other effect is the
product competition from other firms which may negatively influence the demand
for the firm’s products.

A similar phenomenon can be recognized in the change in workforce occurred in
the firms represented in Figure 5 b). As shown, the firm increased its workforce up
to the number of 18. However, in the meantime, the cost of labour increased due
to the competition between firms. Also because of this, the firm chose to reduce
production in order to balance revenues and costs.

Finally, we want to make a few more general remarks in relation to the results.
On the macro level, our agent-based model produces the same central result of
the Keen’s aggregate model: in principle it is possible to have a steady-state with
a constant flow of monetary profits and wages, while still paying interests on loan
to the bank. This of course shouldn’t come as a surprise if one understands the
difference between a stock and a flow. Our model neatly illustrates the difference:
loans are a stock (the total amount of money present in the economy), while profits,
wages and interest payments are in a flow, the firms, the banker and the workers
juggle back and forth among themselves month by month. Things would break
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a)

b)

Figure 4. Firm’s behaviour in the price-warehouse phase space: prices set by the firm and
the quantity of product sold during the simulation. The diagram to the left shows
the case of the only firm present in Scenario 1, to the right the case of one of the
five firms in Scenario 2.
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a)

b)

Figure 5. The number of workers and wages through time steps for two of the firms in
Scenario 3
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apart if the firms on aggregate start to repay the principal. All is good as long as
the firms on aggregate pay the interests, but as so soon as the principal repayment
is greater than the loans issued, this basically amounts to withdrawing money from
circulation which may bring the system to a halt.

Having said that, the sustainability and the possibility of a sustainable steady
state of positive profits and wages depend on how the consumption rates, wages and
profits are set relative to each other. Of course, total profits, wages and interests
are just monetary aggregates, and what is important here are their relative values
which tell us the thing that really matters: how the produced goods are distributed
among the firms owners, the workers and the banker.

Higher consumption rates (and hence less saving), especially from the workers
who make the bulk of it, bring in more cash to the firms, and thus higher profits to
their owners. Actually, that may be slightly misleading, for the cash brought into
the firms can be used both for higher profits or for higher wages (or for a higher
interest rate for the banker).

Now, all these conclusions can already be drawn from the Keen’s model, so what
is our model adding to the story? Instead of just modelling the interaction on the
aggregate among three sectors (firms, workers, bank), we provide a microfoundation
with having many firms (each producing a different goods) and many workers (with
different skills and consumption utility functions, that is to say, different tastes).
Here the firms compete for workers’ skills, for their money, and for loans. Workers
compete to get better jobs. From such a microfoundation the crucial deus ex machina
element of Keen’s model emerges – the question of how the surplus is shared be-
tween the firm owners and the workers (and the banker). While in his model Keen
cannot but postulate that some fraction of the surplus goes to the workers (here
Keen references Marx), in our model this fraction emerges endogenously, from the
interplay of the competition in the consumption and labour market resulting from
the numerosity of firms and workers, the diversification of goods, production tech-
nologies, and workers’ skills, and the role of the bank as a gatekeeper. In other
words, what emerges from these interplays in our model is the relative market power
of agents, which is then reflected in how the economy’s surplus is shared among
them.

Such endogenous emergence of the market power of agents, we hold, is the
primary advantage and advancement of our agent-based modelling approach over
the aggregate modelling (like Keen’s).

4 CONCLUSIONS

The results we obtained on the macroeconomic level confirm those of Keen’s mo-
del [1, 2], namely that a constant flow of profits is, in principle, possible in a steady-
state economy without an ever-increasing supply of money. But our agent-based
approach to modelling endogenous-money economy has, so it seems to us, a few
advantages over the aggregate modelling with differential equations and systems
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dynamics, as it allows several features to arise as emergent properties of the inter-
action among agents. One notable example is the distribution of the income (and
thus of the production surplus) between workers and the firm owners. While this
is something that needs to be postulated in the modelling on the aggregate level, it
appears instead as an emergent property in our model.

An important distinctive feature of our model is the possibility of products dif-
ferentiation among firms. This, for instance, is not contemplated in one of the most
complete ACE models [38] where no difference in the quality of goods is assumed.
Besides the fact this is a notable characteristics of any real economy; some properties
exhibited by our model relevant for the economic analysis emerge precisely because
of the assumption of product differentiation among firms.

The model we presented is still quite rudimentary and there are plenty of things
we plan to develop in the future. One limiting assumption we make in our model is
that the production takes place without a physical capital. This greatly simplified
our task, for we did not need to model the production of capital and intermediate
goods, or the procurement of natural resources. This though comes at a cost, because
then we are not able to simulate some features which, we hold, are probably relevant
in this context, such as the impact of fixed costs and the related economies of scale.

The financial sector is another area which needs to be entirely developed. Instead
of a single bank, we plan to implement multiple banks competing among each other.
Finally, in order to make it potentially useful for policy analysis, we would need
to model the government sector and to allow for a more realistic representation of
different institutional settings.
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