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Śniadeckich 2
75-453 Koszalin, Poland
e-mail: mluczak@wilsig.tu.koszalin.pl

Abstract. Linear Discriminant Analysis (LDA) and the related Fisher’s linear dis-
criminant are very important techniques used for classification and for dimensional-
ity reduction. A certain complication occurs in applying these methods to real data.
We have to estimate the class means and common covariance matrix, which are not
known. A problem arises if the number of features exceeds the number of observa-
tions. In this case the estimate of the covariance matrix does not have full rank,
and so cannot be inverted. There are a number of ways to deal with this problem.
In our previous paper, we proposed improving LDA in this area, and we presented
a new approach which uses a generalization of the Moore–Penrose (MP) pseudo-
inverse to remove this weakness. However, for data sets with a larger number of
features, our method was computationally too slow to achieve good results. Now we
propose a model selection method with a genetic algorithm to solve this problem.
Experimental results on different data sets demonstrate that the improvement is
efficient.
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1 INTRODUCTION

Linear Discrimination Analysis is still being intensively developed by many re-
searchers and has recently been extended to various generalized LDA methods that
can be applied [13, 34, 37, 33, 36]. This method is also widely used in practice,
e.g. in face/image recognition [27, 35, 10], medicine [17, 24], genetics [15], biome-
try [4, 26, 23, 28], and many other areas. LDA is also often used as a component of
a (much) more complex classifier [19, 16, 11, 2]. Additionally, LDA is a very popular
and effective technique for feature extraction (dimensionality reduction), which is
important in data mining and machine learning [3, 25, 21].

Although relying on strong assumptions (multivariate normal distributions,
equal covariance matrices in groups) which do not hold in many real problems,
LDA has been proved to be effective [18]. This is mainly because LDA is a simple,
linear model that is quite robust against noise, and most likely will not overfit. The
linear discriminant function is a linear combination of the measured variables, being
easy to interpret. Classical LDA involves a sample covariance matrix, required to
be nonsingular. However, in many real-world applications, such as text mining, mi-
croarray data classification or image recognition, the number of training examples
is too small relative to the number of dimensions. Under such circumstances, the
covariance matrix is singular and cannot be accurately estimated, and so cannot be
inverted. This is known as the singularity (undersampled) problem or small sample
size (SSS) problem. One method to deal with this problem is to use a pseudo-inverse
instead of the usual matrix inverse [29, 7].

In a previous article [12] we proposed an extension of this approach.
Classically the MP inverse is used to find the inverse of a covariance matrix.

We decided to use a specific variant of the generalized MP inverse. We constructed
a parametrical family of generalized MP inverses and used it in LDA. Using the cross-
validation (leave-one-out) error rates, we chose the best models and combined them
by a mean rule. In this way we obtained, in addition to the possibility of working
with any data sets (not only of SSS), a substantial decrease in the classification error
rate compared with basic LDA.

We showed that this method works well when the number of features is less
than 15. In this situation we can check all models and choose the best one. However,
for data sets with more than 15 features, our method was computationally too slow
(too many models to check) to achieve good results. The problem is too complex to
find an exact solution (or it takes too long to calculate the solution exactly). The
most feasible approach, then, is to use a heuristic method [20]. A genetic algorithm
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(GA) is heuristic, which means that it estimates a solution. Therefore we propose the
use of GA to solve our problem. Genetic algorithm is a popular technique commonly
used in classification (e.g. [5, 31]). GA has a number of advantages. It can quickly
scan a vast solution set. Bad proposals do not negatively affect the end solution, as
they are simply discarded. It can solve every optimization problem which can be
described with the chromosome encoding. It solves problems with multiple solutions.
Since the execution technique of the genetic algorithm is not dependent on the error
surface, we can solve multi-dimensional, non-differential, non-continuous, and even
non-parametrical problems. It is a method which is very easy to understand, and it
requires practically no mathematical knowledge. GAs have drawbacks too, of course.
Certain optimization problems (called variant problems) cannot be solved by means
of GAs. There is no absolute assurance that a GA will find a global optimum. Like
other artificial intelligence techniques, GA cannot guarantee constant optimization
response times.

In this paper, we first present the main ideas of LDA (Section 2). In the same
section we describe generalized inverses of matrices. At the end of that section we
explain our previous idea of extended LDA and present our new genetic approach.
In this paper the performances of the described methods are compared and the
error of classification is analyzed. The methods and data sets used are described
in Section 3. The results of the research are explained using graphs showing the
differences between the classifiers. Section 4 contains the results of our experiments
on the described data sets, as well as statistical analysis of the results. We conclude
with discussion in Section 5.

2 METHODS

Let P be a data set (population) consisting of K classes (subpopulations, groups)
denoted by G1, . . . , GK . The classes are disjoint subsets and cover the whole data
set P . This means that every element x of P belongs to exactly one of the classes.
From the data set P we sample a subset called the training data set. The training
data consist of pairs (xi, yi), where xi is a feature vector in a d-dimensional space
and yi is a label corresponding to one of the classes G1, . . . , GK . Suppose we have
a new item x from the population P . The goal of (supervised) classification is to
find a label y for the vector x using only information from the training data. If
a predicted label is incorrect, we say that an error occurs. A classifier is a method
for predicting the membership of an unclassified feature vector x ∈ P in one of the
classes G1, . . . , GK . A classifier can be viewed as a rule for estimating the posterior
probability of membership in a class Gk. A reasonable classification strategy is to
assign x to the class with the highest posterior probability. This strategy is called
the Bayes’ rule classifier. We denote the posterior probability of membership in Gk

by

pk(x) = P (y = k|x). (1)
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The probability that a randomly selected observation belongs to classGk is called
a prior probability, and denoted by πk. Let fk(x) be the conditional multivariate
probability density for the kth class. There is no requirement that the densities have
to be continuous; they may be discrete or be finite mixture distributions, or even
have singular covariance matrices. The posterior probability pk(x) that the observed
vector x belongs to the class Gk follows from Bayes’ theorem, and can be written as

pk(x) =
fk(x)πk∑K
i=1 fi(x)πi

. (2)

If two (or more) classes have the same posterior probabilities for a vector x, then
a random assignment is used.

2.1 Linear Discriminant Analysis

Using Bayes’ rule directly is impractical. To obtain the densities fk(x) we would
need very much data to obtain the relative frequencies of all groups for each mea-
surement. It is more convenient to assume that we know the distribution and obtain
the probability theoretically. So we now make the Bayes’ rule classifier more specific.
Let all probability densities be multivariate Gaussian (normal) with mean vectors
µk and a common covariance matrix Σ. Thus fk is an N(µk,Σ) density with the
equation

fk(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µk)TΣ−1(x− µk)

}
. (3)

Under the above assumptions we can write a linear Bayesian classifier as

dB(x) = arg max
k
δk(x), (4)

where

δk(x) = xTΣ−1µk −
1

2
µT

k Σ−1µk + ln πk (5)

is a linear discriminant function (details in [32]). We assign a vector x to the class
Gk for which the value of δk(x) is maximal.

In practice, the class means µk and the covariance matrix Σ are not known. We
can estimate them from the training data. Usually the maximum likelihood (plug-in)
estimate may be used in place of the exact value in the above equations. Although
the estimates of the covariance may be considered optimal in some sense, this does
not mean that the resulting discriminant obtained by substituting these values is
optimal in any sense, even if the assumption of normally distributed classes is correct
[1]. Also, any sensible Bayesian rule will not lead to this approach, except either
asymptotically or under very restrictive conditions [8]. Additionally, we have to
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estimate a priori probabilities. These are usually estimated simply by the empirical
frequencies of observations in the training set.

2.2 Algorithm

The regular matrix inverse A−1 or the Moore–Penrose inverse A† is a standard
method used to compute an inverse of the covariance matrix (see Equation (3)). In
[12] another generalized pseudo-inverse was introduced and used in Linear Discrim-
inant Analysis. For the convenience of readers we recall the definitions below.

We consider a general (real) matrix A of order m × n with a rank which may
be less than min(m,n). If M,N are positive definite matrices, and there exist

factorizations N̂
T
N̂ = N , M̂

T
M̂ = M , then

A†MN = N̂
−1 (

M̂AN̂
−1)+

M̂ (6)

satisfies the condition

‖A†MNy‖N ≤ ‖x‖N
∀x ∈ {x : ‖Ax− y‖M ≤ ‖Az − y‖M ∀ z ∈ Rn} ,

where ‖x‖N =
√
xTNx and ‖y‖M =

√
yTMy are norms in Rn and Rm, respec-

tively. A†MN is referred to as the minimum N -norm M -least-squares g-inverse
of A. When M,N are identity matrices, we use the notation A† and call it the
Moore–Penrose inverse (pseudo-inverse). For a larger survey and more details we
refer readers to [22].

If M is positive semi-definite, then ‖y‖M is a seminorm (i.e. ‖y‖M can be zero
for nonzero y) and the right side of Equation (6) does not need to be a g-inverse.
We denote this by A∗MN , and by A∗M if N = I.

We use A∗M with a special form of matrix M . More precisely, we use Equa-
tion (6) with the assumptions

N̂ = N = I, M̂ = M =


a1 0 . . . 0
0 a2 . . . 0
. . . . . . . . . . . .
0 0 . . . am

 (7)

where ai = 0 or 1 for i = 1, . . . ,m. This leads to the seminorm

‖x‖ =
√
xTMx =

√
x2j1 + x2j2 + · · ·+ x2jk , 1 ≤ k ≤ m

for x = (x1, x2, . . . , xm) ∈ Rm (aix
2
i = 0 for ai = 0, js = i for ai = 1). Then

Equation (6) assumes the form

A∗M = (MA)†M . (8)
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Thus we can use Σ∗M instead of Σ−1 to compute the inverse of the covariance
matrix Σ (see Equation (3)). Note that we do not have to compute the determinant
of the covariance matrix Σ to obtain posterior probabilities (see Equation (2)).

We take only ones and zeros in the diagonal of the matrix M , because it has
been proved [12] that the value of A∗M depends only on whether the coefficients ai
are zero or nonzero. We study two algorithms for choosing ones and zeros in the
diagonal of the matrix M . In the first one (ALG1) we pass through all combina-
tions of ones and zeros in the diagonal of matrix M . In the second one (ALG2)
we take only diagonals with at most one zero. Then, in both cases, we choose
the linear discriminant models with the lowest cross-validation (leave-one-out) error
rates.

In [12], for data sets with more than 15 features we used only ALG2, because
of the computational complexity of ALG1. In this paper we use a genetic algorithm
to find the best (or almost the best) diagonal of matrix M (among all possible
diagonals). Thanks to this genetic approach we can handle data sets with a large
number of features (many more than 15).

2.3 Genetic Algorithm

The main scheme of the genetic algorithm is shown in Figure 1. The population
consists of individuals (genotypes) which are diagonals of the matrix M . Each
individual is a vector of positions (genes) that correspond to numbers (ones or zeros)
in the diagonal of M . All populations in the algorithm have a constant number n
of individuals.

Figure 1. The main scheme of the genetic algorithm
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Initial population: This is generated randomly. We construct n individuals such
that each position in the vector (diagonal) can be 0 or 1 with probabilities of 0.5.

Fitness evaluation: The fitness function value is computed by the leave-one-out
crossvalidation (CV) method. The CV error rate is the fitness value of any
individual. The smaller the value, the better fitness an individual has.

Selection: We use tournament selection. Two individuals are chosen from the
population at random. The one with higher fitness is selected for mutation and
crossover. This is repeated n times to make a new population.

Mutation: We use standard one-point mutation. For each individual, each po-
sition in the vector has the same probability of mutation pm. The mutation
involves changing (0 or 1) in the relevant position (Figure 2). This is repeated
an appropriate number of times to make a new population of size n.

Crossover: We use a standard one-point crossover operation. Each individual can
be chosen for crossover with constant probability pc. For every pair of chosen
individuals, the point of crossing is fixed at random. Then the positions to the
right of that point are exchanged with one another (Figure 2). The operation is
repeated an appropriate number of times to make a new population of size n.

Figure 2. Reproduction of individuals in a population in the genetic algorithm. Mutation
(top) of one individual, and crossover (bottom) of two individuals.

Stop condition: We do not use a fixed number of generations in the genetic algo-
rithm. For so many different data sets, the algorithm needs different numbers of
steps to reach a satisfactory result. The process is repeated until a stop condi-
tion is satisfied. The stop condition depends on the behavior of the mean fitness
value in the populations over k steps of the algorithm. If in k steps the mean is
not smaller than the smallest value of the mean up to the current generation, the
algorithm is terminated. We shall call the number k the stop condition number.
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3 COMPUTATIONAL EXPERIMENTS

3.1 Data Sets

We performed experiments on 5 data sets with fewer than 15 features and 10 data
sets with more than 15 features. The data sets were chosen in such a way that
they had different numbers of features of particular types and different numbers of
examples; also there were some data sets with two-class distribution and some with
more than two classes. In Table 1 the characteristics of the data sets are given,
showing the variety of training set sizes, numbers of classes, and dimensionalities.
All data sets come from the UCI Machine Learning Repository [9].

Name Number Number Number
of data set of features of classes of instances

german 24 2 1 000
hepatitis 16 2 137
ionosphere 33 2 351
libras 91 15 360
lungcancer 55 3 32
musk 166 2 476
sonar 60 2 208
spectf 44 2 267
vote 16 2 300
wave 21 3 125

breast w 9 2 683
glass 9 6 214
hartC 13 5 297
heartS 10 5 105
vowel 10 11 990

Table 1. Information about the data sets used

3.2 Experimental Setup

The classification errors were estimated by the cross-validation (leave-one-out) and
bootstrap methods. Leave-one-out was used to train the model, i.e. to find the “best”
diagonals (those with the smallest error rates) of the matrix M . This method was
used to compute the value of the fitness function in the genetic algorithm. The
number of individuals per population was fixed at a constant value of n = 20. We
chose probabilities of mutation pm = 0.01 and crossover pc = 0.8. As a selection
method we used tournament selection. Different stop condition numbers were tried,
k = 0, . . . , 10. For the final result of our method we took the best case k = 10. In
the next step, we tested the model. The mean classifier was performed for models
with each of these “best” diagonals. We calculated the bootstrap classification error
rate (1 000 repetitions).
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For each data set we repeated the algorithm 10 times. We finally fixed as the
error rate of our method the mean of these bootstrap error rates. For all methods
being compared, the same bootstrap samples were used.

The algorithms ALG1 and ALG2 used in the experiments are the versions ALG1-
3 and ALG2-3 from [12].

In the computational process we used the PRTools 4.2.4 program (http://
www.prtools.org). This is a Matlab (version R2011a) based toolbox for pattern
recognition [30]. In each procedure we used the default parameters.

4 RESULTS

4.1 Classification Error Rates

The results of the process are given in Table 2. For our method, ALGG, the CV error
rate among all (10) runs of the genetic algorithm is presented. This is compared
with the CV error rates of the LDA and ALG2 methods. The next columns contain
the bootstrap error rates of the methods. The last columns show the relative errors
of our method calculated by ALGG−Alg

Alg
, where ALGG is the bootstrap error of our

method, and Alg can be the bootstrap error of LDA or ALG2.
We can see that in the training phase, the genetic algorithm finds the best diag-

onal (the smallest CV error) on almost all data sets (excluding glass). Comparing
the algorithms in the testing phase (bootstrap errors), ALGG is the best out of all
the methods 10 times out of 15. In terms of means of relative error rates for all data
sets, ALGG is 6.68 % better than LDA and 5.19 % better than ALG2.

The computation time of the compared algorithms is directly proportional to
the number of computations of pseudo-inverses A∗M . This means that computation
time depends on the number of diagonals of the matrix M used by the algorithms
in the learning phase (cross-validation). The number of diagonals is c+ 1 for ALG2,
2c for ALG1, where c is the number of features of the data set, and 20 · g for ALGG,
where 20 is the number of individuals in the population of the genetic algorithm and
g is the average number of generations. A comparison of the numbers of diagonals
for algorithms ALG1 and ALGG is given in Table 3. We can see that the number of
potential pseudo-inverse computations is extremely large in the case of ALG1. For
this reason, we are not able to compute ALG1 for the “large” data sets (more than
15 features) listed in Table 1.

For “small” data sets (fewer than 15 features) we can also compare our method
with ALG1, which is a method covering all possible models (diagonals). A detailed
comparison of CV error rates is contained in Table 4. The genetic algorithm ALGG,
as a random method, does not always find the best solution. The mean of relative
errors compared with ALG1 is slightly higher than zero. However, considering min-
imal errors, we see that for every data set there are runs of the genetic algorithm
that equal the optimal error (ALG1). In fact, for the vowel data set, all runs find
the best optimal error. Comparing with ALG2 we can clearly see that the genetic
algorithm is better. The only exception, for the glass data set, is because in this



624 T. Górecki, M.  Luczak

Name CV Error Rate Bootstrap Error Rate Relative Bootstrap Error Rate

of Data Set LDA ALG2 ALGG LDA ALG2 ALGG ALGG−LDA
LDA

ALGG−ALG2
ALG2

german 23.20 22.60 22.20 24.16 23.78 24.25 0.35 1.97
hepatitis 13.14 12.41 10.00 15.41 14.89 18.77 21.79 26.05
ionosphere 13.68 11.68 9.86 14.17 13.68 12.56 −11.36 −8.22
libras 33.89 32.50 25.67 41.11 40.74 33.83 −17.71 −16.96
lungcancer 53.13 46.88 17.19 49.94 52.57 52.85 5.81 0.52
musk 18.70 17.23 14.14 26.40 23.95 20.80 −21.22 −13.18
sonar 24.52 22.60 16.06 28.59 27.83 25.99 −9.10 −6.62
spectf 25.09 23.22 17.19 26.95 26.67 20.94 −22.29 −21.47
vote 6.33 5.33 4.77 6.04 5.83 5.81 −3.80 −0.28
wave 24.80 23.20 13.76 31.80 30.96 20.78 −34.66 −32.88

glass 35.05 34.11 34.63 38.47 39.46 38.81 0.87 −1.67
breast w 3.95 3.81 3.50 4.03 3.96 3.86 −4.32 −2.68
hart c 40.07 39.06 38.82 42.04 41.58 41.68 −0.85 0.24
heart s 57.14 56.19 54.67 62.41 61.45 60.12 −3.67 −2.17
vowel 45.25 45.25 45.25 46.52 46.77 46.52 0.00 −0.53

MEAN −6.68 −5.19

Table 2. Cross-validation and bootstrap error rates on all data sets. The best results in
each group of error rates are bolded.

Name #features #generations #diagonals to compute
of Data Set (mean) ALG1 ALGG

german 24 45.3 16 777 216 906
hepatitis 16 34.9 65 536 698
ionosphere 33 52.1 8 589 934 592 1 042
libras 91 37.0 2.47 · 1027 740
lungcancer 55 36.1 3.60 · 1016 722
musk 166 39.5 9.35 · 1049 790
sonar 60 46.9 1.15 · 1018 938
spectf 44 45.8 1.75 · 1013 916
vote 16 30.4 65 536 608
wave 21 38.4 2 097 152 768

glass 9 28.9 512 578
breast w 9 29.6 512 592
hart c 13 32.4 8 192 648
heart s 10 31.7 1 024 634
vowel 10 34.6 1 024 692

Table 3. Performance of algorithms ALG1 and ALGG. Computation time is directly pro-
portional to the number of diagonals.
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CV Error Rate Relative CV Error Rate
Name ALGG #generations
of Data Set LDAALG2 ALG1 max mean min max mean min ALGG−LDA

LDA
ALGG−ALG2

ALG2
ALGG−ALG1

ALG1
glass 35.05 34.11 34.11 35.51 34.63 34.11 46 29 19 −1.20 1.51 1.51
breast w 3.95 3.81 3.22 3.81 3.50 3.22 47 30 19 −11.48 −8.08 8.64
hart c 40.07 39.06 38.05 40.07 38.82 38.05 65 32 21 −3.11 −0.61 2.03
heart s 57.14 56.19 54.29 56.19 54.67 54.29 47 32 19 −4.33 −2.71 0.69
vowel 45.25 45.25 45.25 45.25 45.25 45.25 53 35 19 0.00 0.00 0.00
MEAN 31 −4.02 −1.98 2.57

Table 4. Cross-validation error rates on “small” data sets (fewer than 15 features). The
best results are bolded.
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Figure 3. Runs of the genetic algorithm for the “large” (more than 15 features) example
data sets. Fitness function value (mean (· · · ) and minimum (–) of CV error rate)
depending on the number of generations. From left: german, sonar, wave.
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case even ALG2 reaches the optimal error; similarly for the vowel data set, where
all algorithms find the optimal error. We can say that the behavior of the genetic
algorithm is typical. It finds results that are close to the best one, and sometimes
even the optimal one (ALG1). When possible, the genetic algorithm is distinctly
better than the ALG2 method.

er
ro

r

glass

#generations

er
ro

r

heartC

#generations

er
ro

r

vowel

#generations

Figure 4. Runs of the genetic algorithm for the “small” (fewer than 15 features) example
data sets. Fitness function value (mean (· · · ) and minimum (–) of CV error rate)
depending on the number of generations. From left: glass, heartC, vowel.

Graphs of example runs of our algorithm are shown in Figure 3 and Figure 4.
We can observe the rather normal behavior of the genetic algorithm. The tourna-
ment selection used is not an elitist selection method, so we can observe that the
minimum of the fitness function does not decrease monotonically. The mean tends
to a minimum, and the algorithm is terminated if the stop condition is reached, i.e.
if the mean does not decrease for some number of generations.
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4.2 Stop Condition Analysis

#
ge

n
er

at
io

n
s

er
ro

r

german

2 4 6 8 10
0.215

0.22

0.225

0.23

0.235

0.24

2 4 6 8 10
0

20

40

60

80

k

sonar

2 4 6 8 10

0.14

0.16

0.18

0.2

0.22

2 4 6 8 10
0

10

20

30

40

50

60

70

k

The results in Tables 2 and 4 are shown for the stop condition number k = 10,
i.e. for the best case, where the algorithm runs for the longest time. It is interesting
how the error rate and the number of generations change if we take a lower value
of k. We performed experiments for k = 0, . . . , 10. Example graphs are shown in
Figure 5 (“large” data sets) and Figure 6 (“small” data sets). The upper graph
shows error rates (max, mean, min) depending on the stop condition number k.
The lower one shows the number of generations (max, mean, min) depending on k.
For the wave data set we see that from k = 4 the mean error stops decreasing, while
for the minimum error this is true even for k = 2. On the other hand the number
of generations increases practically linearly from k = 4. The error of the data set
german stabilizes from k = 7. For the sonar data set we see that we could obtain
even lower errors with k > 10. We have only considered an approximately linear
increase in iterations of the genetic algorithm. The graphs for “small” data sets are
similar. The errors stabilize faster, sometimes even with min = mean = max, as for
the data set vowel.
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Figure 5. Error rates (max, mean, min) depending on the stop condition number k (top),
and the number of generations (max, mean, min) depending on the stop condition
number k (bottom), for “large” data sets (more than 15 features). From left:
german, sonar, wave.

In Figure 7 a summary of the relationship is given. It shows the mean of relative
errors (top) and the mean of the number of generations (bottom), depending on the
stop condition number k, for all data sets (left-hand side – “small”, right-hand
side – “large”). It is clearly seen that the error rate curve becomes saturated for
higher values of k, but the number of iterations (generations) increases practically
linearly. For example, for “large” data sets, we can observe that a decrease in k
to about 7 or 8 results in a very small decrease in the error rate (from −18 % to
about −19 %). On the other hand the number of iterations increases significantly
(from 30 to about 40), and this influences the computation time of the algorithm.
For “small” data sets this effect is even more clearly visible.
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4.3 Statistical Comparison of Classifiers

Finally, to confirm that the new ALGG method is superior to ALG2, we present
a statistical comparison of their bootstrap error rates on all 15 data sets.

To statistically compare two classifiers over multiple data sets, [6] recommends
the Wilcoxon signed-ranks test. The Wilcoxon signed-ranks test is a non-parametric
alternative to the paired t-test, which ranks the differences in performances of two
classifiers for each data set, ignoring the signs, and compares the ranks for the
positive and the negative differences.

Let di be the difference between the performance scores of the two classifiers
on the ith out of N data sets (15 in our comparison). The differences are ranked
according to their absolute values (average ranks are assigned in case of ties). Let R+

be the sum of ranks for the data sets on which the second algorithm outperformed
the first, and R− the sum of ranks for the opposite case. Ranks of di = 0 are split
evenly among the sums (if there are an odd number of them, one is ignored):
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Figure 6. Error rates (max, mean, min) depending on the stop condition number k (top),
and the number of generations (max, mean, min) depending on the stop condition
number k (bottom), for “small” data sets (fewer than 15 features). From left: glass,
heartC, vowel.

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di),

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di).

Let T be the smaller of the sums:

T = min(R+, R−).

As the number of data sets N increases, the distribution of T tends towards a normal
distribution. We reject the hypothesis that classifiers do not differ if T = 25 is less



Evolutionarily Tuned Generalized Pseudo-Inverse in Linear Discriminant Analysis 631
#

ge
n
er

at
io

n
s

er
ro

r

“large”

2 4 6 8 10
−0.20

−0.18

−0.16

−0.14

−0.12

−0.10

−0.08

2 4 6 8 10
5

10

15

20

25

30

35

40

k

“small”

2 4 6 8 10
−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

2 4 6 8 10
5

10

15

20

25

30

35

k

Figure 7. Mean of relative errors (top) and mean of the number of generations (bottom),
depending on the stop condition number k, for all data sets (left-hand side – “large”,
right-hand side – “small”).

than or equal to the critical value (25). In our case we obtain a p-value equal to
0.0479. We see that ALGG is significantly better than ALG2 at a significance level
of α = 0.05.

5 CONCLUSIONS

In this paper we have introduced and studied a new approach (a genetic approach)
to the use of a generalization of the Moore–Penrose pseudo-inverse of a matrix in
the LDA method of object classification. Our study showed that this method leads
to very good results on “large” data sets (having from 15 to over 100 features). Our
technique outperforms LDA, as well as our previous, classical, approach. The major
disadvantage of our previous method was high computational complexity for “large”
data sets. The new method removes this inconvenience.
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Due to the high nonlinearity and complicated dynamics in genetic algorithms,
the method does not easily lead to a rigorous theoretical analysis. However, the
experiments that we have conducted provide evidence of the potential and usefulness
of our method.

Of course, the classification performance of the new algorithm needs to be further
evaluated, considering additional real and artificial data. In our technique we can
use methods of combining classifier ensembles other than the mean method. This
will be a topic of our future research.
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