
Computing and Informatics, Vol. 34, 2015, 1418–1434

GPGPU COMPUTING FOR MICROSCOPIC
SIMULATIONS OF CROWD DYNAMICS

Jarosław WĄs, Hubert MrÓz

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics
Computer Science and Biomedical Engineering
al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: jarek@agh.edu.pl

Paweł Topa

AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
al. Mickiewicza 30, 30-059 Kraków, Poland
&
Institute of Geological Sciences, Biogeosystem Modelling Laboratory
Polish Academy of Sciences, Cracow Research Centre
Senacka 1, 31-002 Kraków, Poland
e-mail: topa@agh.edu.pl

Abstract. We compare GPGPU implementations of two popular models of crowd
dynamics. Specifically, we consider a continuous social force model, based on differ-
ential equations (molecular dynamics) and a discrete social distances model based on
non-homogeneous cellular automata. For comparative purposes both models have
been implemented in two versions: on the one hand using GPGPU technology, on
the other hand using CPU only. We compare some significant characteristics of each
model, for example: performance, memory consumption and issues of visualization.
We also propose and test some possibilities for tuning the proposed algorithms for
efficient GPU computations.

Keywords: Crowd simulation, social force, social distances, cellular automata, us-
ing GPU in simulation

GPGPU Computing for Microscopic Simulations of Crowd 1419

1 INTRODUCTION

Effective and reliable modeling of crowd dynamics is currently an important issue.
The results of such simulations are used by safety managers, fire engineers and
security forces. More and more frequently the results of crowd simulation are used
in order to test different scenarios (for instance dangerous situations [1]) during
public gatherings. To improve the quality of simulations the concept of data-driven
simulation is used, where actual data/attributes of pedestrians gained from video
recordings or different electronic devices are continuously transferred to an on-line
simulation.

It should be stressed, that currently in the vast majority of crowd simulators
algorithms dedicated for engineering purposes that apply only the central processing
unit (CPU) in computations are preferred, due to the fact that applying graphics
processing units (GPUs) requires completely different algorithms and entire archi-
tectures, and such applications require rigorous tests. On the one hand, performing
general purpose computing on graphics processor units (GPGPU) allows obtaining
performance gains of several orders of magnitude compared with traditional CPU
implementations in some cases. On the other hand, it is often impossible to repro-
duce complex rules/algorithms using GPU. This is because processing in GPU is
realized by hundreds of processing units (e.g. CUDA Cores). The cores are grouped
into streaming multiprocessors. Cores within a single streaming multiprocessor are
commonly managed by a scheduler. The scheduler assigns to parallel execution
threads grouped into a warp. Full performance of computation is achieved when
all threads within the warp execute the same instructions, at the same time. This
optimal situation from a computational point of view can be destroyed by branch
instructions that might force some threads to process different instruction path. In
such a case, the execution of thread is serialized, which heavily affects the perfor-
mance.

In this article, we compare two approaches popular in crowd modeling, dedi-
cated for engineering purposes, namely the social force model (based on differen-
tial equations) and a cellular automata based model – the social distances model.
Two proposed models are connected with a microscopic – agent-based – simula-
tion of a crowd. In such an approach each pedestrian is represented as a mobile
entity. The aim of the research is to assess GPU technology for implementing con-
tinuous and discrete crowd models, to consider the applicability of GPU in reli-
able crowd simulators. The article is a continuation of two previously published
articles by the authors, where the basic ideas of GPGPU application were pre-
sented [2, 3].

The application was created using NVidia CUDA (Compute Unified Device Ar-
chitecture) technology. At the same time, 3D Object-oriented Graphics Rendering
Engine (OGRE 3D) environment was used for the visualization.

The paper is structured as follows: Some related works are presented in Sec-
tion 2. Next, some issues concerning using GPU in simulations are described in
Section 3, whilst the issue of adapting algorithms for GPU and our two applied

1420 J. Wąs, H. Mróz, P. Topa

models, continuous and discrete, are presented in Section 4. Consequently, the re-
sults of simulations are described in Section 5 and concluding remarks are placed in
Section 6.

2 RELATED WORKS

The issue of the use of the GPU in modeling and simulation is becoming more and
more important in recent years. One can observe a rapid growth in applications ef-
fectively using GPU in calculations, e.g. [4, 5, 6, 7]. Much theoretical and practical
research is carried out in this field, for instance Bakhoda et al. [4] characterized seve-
ral non-graphics applications written in NVIDIA’s CUDA programming model and
compared them against a CPU-only version of the application. Sunpyo and Hye-
soon [9] proposed an analytic model that estimates the execution time of massively
parallel programs using GPU.

We can find several interesting attempts at using GPU in crowd dynamics simu-
lations. It should be stressed that such an approach is especially popular in simula-
tions not created for engineering purposes.

Demeulemeester et al. proposed using a GPU during recalculations of poten-
tial fields in crowd simulations dedicated to computer games [10]. They developed
simulation using the concepts of persistent threads and inter-block communication
in GPU calculations. Similarly, Pelechano et al. [8] proposed an agent-based sys-
tem of crowd dynamics based on differential equations and in further research they
proposed using GPU for automatic generation of a navigation mesh.

Passos et al. [11] proposed using a fine-grained grid and accompanying data
manipulation in order to lead to scalable algorithmic complexity in massive crowd
simulations. They proposed such an implementation for game purposes of flocking
boids, from which they ran benchmarks with more than one million simulated and
rendered boids at nearly 30 fps.

Richmond et al. [12] presented a parallel framework for agent based modelling
(ABM) exploiting the parallel architecture of the graphics processing unit (GPU).
The framework included agent communication through messages with efficient use
of shared memory. The publication was a part of FLexible Agent Modelling En-
vironment (FLAME) project, devoted to agent-based simulations of complex sys-
tems.

An other use of the GPU cards in pedestrian dynamics was demonstrated by
Machida and Naito in [13], where a pedestrian and vehicle detection framework was
presented. The framework enables real-time processing of images obtained from
a camera installed on a vehicle. They proposed a sliding-window – the cascade
approach with multi-classifiers used for both the direction of a pedestrian and the
distance of the pedestrian from a camera.

GPGPU Computing for Microscopic Simulations of Crowd 1421

3 BASIC CONCEPTS OF GPU COMPUTATIONS

Graphic processor unit (GPU) was developed for processing graphic data that has
a unique structure and features: regularity and weak dependencies between them.
It is a perfect target for massive parallel processing. Whilst graphics systems allow
only a fixed pipeline (e.g. OpenGL lower than 2.0), GPU was not an interesting tool
for computational science. The situation changed when graphics vendors provided
processors with programmable shader units. The feature allows a programmer to
manipulate the data transferred to the processor.

Initially, the only programmer interfaces were shading languages such as Cg or
GLSL. They were designed for graphic purposes, but if the problem was encoded
into graphic data structures (e.g. textures), it was possible to use the processor
for scientific computation (i.e. [14, 15]). Soon the main GPU vendors provided
more flexible programming interfaces that allow using GPU to solve general pur-
pose problems (GPGPU). The most advanced and most popular API is CUDA
(Common Unified Device Architecture) developed by Nvidia Corporation and com-
patible only with Nvidia processors [16]. A competitive programming environment
was proposed by IT companies associated with the Khronos Group [17]. OpenCL
(Open Computing Language) was designed as an open programming framework
that is able to utilize all computational resources [18]. Unlike CUDA, OpenCL
has support from all processor vendors (Nvidia, AMD, Intel). For obvious rea-
sons, OpenCL’s support for Nvidia processors is not as good as in the case of
CUDA.

Both CUDA and OpenCL are low-level programming interfaces which require
experience and deep knowledge about GPU architecture from developers. For those
who are not interested in mastering in GPU features possible good choices are Ope-
nACC and OpenMP. These are the sets of compiler directives that allow easy paral-
lel programming at thread level. OpenACC was intentionally developed to provide
convenient support for GPU programming [19]. In its recent version, version 4.0,
OpenMP offers support for various computing devices, including GPU [20].

The popularity of the CUDA programming environment is a result of intensive
development of hardware and software. For Nvidia processors, a set of features sup-
ported by a given generation of processors is called Compute Capability (currently
CC 3.5 in Kepler architecture). Development of hardware results in more powerful
processors with higher number of computational cores, fast memory and advanced
control units. Development of software provides programmers new instructions,
data structures and functionality that allows more efficient programming. Nvidia
also provides a complete programming environment, compiler, profiler and other
tools that support the development of GPU-aware software.

Designing and implementing computationally efficient GPU algorithms is still
a challenge [21]. It requires a very careful consideration of how the components of
this architecture affect computation. In practice it means designing new algorithms
and data structures.

1422 J. Wąs, H. Mróz, P. Topa

4 IMPLEMENTATION OF CONTINUOUS AND DISCRETE CROWD
MODELS USING GPU

4.1 Social Distances Model Implemented for GPU Computation

Cellular automata based simulations of crowd dynamics have become more and
more popular in recent years. It is a popular approach in modeling and simulation
of pedestrians [23, 24, 25], due to its effectiveness, massive parallelism and reliabil-
ity.

The framework of cellular automata is often combined with the concept of po-
tential fields [22]. In these models a set of static and dynamic fields is applied, and
the fields modify the transition function of applied cellular automaton.

We also develop models of pedestrian dynamics based on cellular automata [29].
For instance, the social distances model was recently adapted for the mass evacuation
of pedestrians [28].

In order to implement such a discrete model we have used two kinds of grids:

Grid of occupancy – the grid stores information about the appearance and po-
sition of an agent. This is the grid of a cellular automaton, when the state of
particular cell is stored. A cell can be empty or occupied by an agent. An agent
is represented as an ellipse, the center of which coincides with the center of
a square cell. According to [28] the orientation of an agent is a state from the
following set; Si ∈ {Horizontal, V ertical, Right, Left}, which refers to an ellip-
tical representation of pedestrian [29].

Static potential field – the grid stores information about the distance from a pre-
viously defined target (POI). A target is a source of a potential field, which is
propagated to the next cell of a Moore neighborhood.

An agent can change the potential fields, but in a particular time slice he/she
can be associated with only one potential field. The parallelism of calculations in
this model is based on the simultaneous processing of multiple agents (one thread
is associated with a single agent). The thread retrieves information from the neigh-
borhood, it decides on the action and, if necessary, updates the information about
the grid occupancy.

4.2 Social Force Model Implemented Using GPU

The social force model does not use any grid that establishes a static neighbourhood
schema [30]. The space that contains moving agents is divided into containers. We
use containers sized 15m× 15m. It should be emphasized that during calculations
we have taken into account only forces associated with a current container. Each
container is assigned to different threads, which execute all steps necessary to update
the agent position, direction and speed. We apply the following steps in our social
force algorithms:

GPGPU Computing for Microscopic Simulations of Crowd 1423

• calculate force affecting agent
• resolve the collisions
• update the position of agent
• update the speed of agent
• update the direction of agent movement

This model of parallelism is relatively difficult to implement in GPU. The main prob-
lem is the different number of agents in each container, especially after several steps
of simulations, when agents are concentrated around their targets. Additionally,
moving agents can leave containers due to their dynamics and defined aims. These
situations cannot be directly handled by kernels because it requires synchronization
and communication between them, when agents are exchanged between containers.
In our approach, after a single step of computation, data is collected and sent to the
host, where the contents of containers are updated.

4.3 Calculation Scheme

We have used the scheme of calculations presented in Figure 1. In our approach
Simulation manager is the master unit, which watches over the course of the simu-
lation. Next, the chosen Simulation model is initialized, as well as Calculation
Module and memory is allocated. Afterwards, the simulation is performed, and all
information about the agents is actualized iteratively.

4.4 Allocation of Memory in Discrete and Continuous Crowd Models

Among most important aspects of the models developed for large simulations are
the issues of memory occupancy. This is particularly important in applications using
GPUs (amount of available memory). The implementation of a discrete model, as
well as a continuous one, in terms of used memory, was determined by two variables:
the number of implemented agents and the size of the simulation world. Other
objects like buildings or obstacles have a marginal impact on memory.

As we have mentioned above, implementation of the social force model is based
on the idea of containers. An important factor influencing the performance of the
application is the selection of their optimal size. Why? The main reason for looking
for optimal container size is the fact, that having a large number of small contain-
ers causes high memory consumption, whilst the introduction of large containers
will reduce the speed of the simulation, because the number of agents located in
a particular container increases, and in such a situation it is necessary to perform
calculations between each of them. As a result of our tests, the decision was made to
determine the size of the container to be 15 meters. This means that each container
requires 276 bytes of data to store.

In the social distances model we have identified those elements with the greatest
impact on the memory occupation as applied grids. In the minimal case two grids

1424 J. Wąs, H. Mróz, P. Topa

Figure 1. Sequence diagram of presented application

GPGPU Computing for Microscopic Simulations of Crowd 1425

are created: a potential grid (static potential field) and an occupancy grid. In our
model the size of each cell is 0.25 meters. One cell of grid requires 5 bytes of memory
(2 bytes for the occupancy grid and 3 bytes for potential field grid). This gives
300 bytes for the 15-meter area in the social distances model compared 276 bytes
in the social force model. However, each additional grid in the CA-based model
increases this value by 180 bytes. This does not constitute a significant limitation in
the simulation of evacuation, but in the case of free movement (with many possible
targets) this should be perceived as a limitation.

We present levels of memory occupancy according to implemented number of
agents (see Table 1), and according to simulation world size (see Table 2).

Number of Agents Social Force Model Social Distances Model
1 000 0.031MB 0.08MB
5 000 0.153MB 0.038MB
10 000 0.305MB 0.076MB
50 000 1.526MB 0.381MB

100 000 3.052MB 0.763MB
500 000 15.259MB 3.815MB

1 000 000 30.518MB 7.629MB

Table 1. Data size of the array of agents (with rendering disabled)

World Size Social Force Social Distances – 2 grids Social Distances – 5 grids
50m 0.004MB 0.114MB 0.420MB
100m 0.013MB 0.458MB 1.678MB
500m 0.304MB 11.444MB 41.962MB

1 000m 1.182MB 45.776MB 167.847MB
2 500m 7.34MB 286.102MB 1 049.042MB
5 000m 29.363MB 1 144.409MB 4 196.168MB

Table 2. Data size of the simulation world (with rendering disabled)

5 SIMULATION RESULTS

5.1 Level of Details

In order to implement our project, we have used Nvidia CUDA programming plat-
forms. The applied technology enables the creation of executable code on CPU,
as well as on GPU. We have also compared the differences in performance. Tests
presented in the paper were carried out on a hardware platform equipped with:
Dual-Core AMD Athlon II 250 (3.00GHz), 4GB of RAM and a GeForce GTS 250
graphics card with 512MB RAM and Compute Capability 1.1.

An object-oriented Graphics Rendering Engine was used for rendering the graph-
ical part of the simulation as performed additional task. Three scenarios were used

1426 J. Wąs, H. Mróz, P. Topa

for handling graphics: full rendering, simplified rendering (Level of Details) and
no rendering. We present screen-shots of our application for full rendering mode
(Figure 2 on the left) and for simplified rendering – LoD (Figure 2 on the right).

Figure 2. Two modes of visualization in our application – full rendering and simplified
rendering (Level of Details)

Table 3 contains rendering performance for 500 acting agents and environment
size of 100m×100m, while Table 4 contains rendering performance for 2 500 agents
and environment size of 250m× 250m.

Unfortunately the rendering system appears to be insufficient in large agent
populations. In the future we would like to implement a dedicated rendering system
that retrieves necessary information directly from the existing data blocks in the
device memory.

Performance Performance Performance
Model Full Rendering Level of Details Simplified Rendering

Social Force 29FPS 78FPS 98FPS
Social Distances 35FPS 100FPS 122FPS

Table 3. Performance of rendering of 500 agents, environment size equals 100m× 100m

Performance Performance Performance
Model Full Rendering Level of Details Simplified Rendering

Social Force 8FPS 25FPS 28FPS
Social Distances 9FPS 32FPS 39FPS

Table 4. Performance of rendering of 2 500 agents, environment size equals 250m× 250m

5.2 Usage of Grids of Potential Fields

For more complex environments we can define many targets and for each class of
target we have to define a different, static potential field. An agent heading to

GPGPU Computing for Microscopic Simulations of Crowd 1427

a target is assigned to one occupancy grid, or one of the available potential grids
(static potential field).

We have also tested the impact of the number of potential grids (potential fields)
on performance of the simulation. The tests were performed several times, for
a population of 5 000 agents, in an area of 500 × 500 meters (Table 5). Rendering
of three-dimensional objects has been disabled.

1 grid 5 grids 10 grids 15 grids 20 grids
CPU 178FPS 176FPS 173FPS 168FPS 165FPS
GPU 295FPS 298FPS 299FPS 295FPS 293FPS

Table 5. Performance tests for different numbers of potential fields

As the results show (Table 5), increasing the number of grids does not affect
significantly the performance of the simulation. Small differences result mainly
from the random generation of the simulation world e.g. agent positions, buildings
and targets, which can affect performance. No greater influence on the number of
grids (on simulation performance) is a very important observation. This lets us know
that, while ensuring sufficient space in the memory, we are able to carry out complex
simulations (using a large number of grids) without affecting its performance.

5.3 Towards Efficient GPU Computation

A typical program applying GPU for computation consist of two parts: the first one
is executed by a host processor and the second one is issued to run on a graphic
processor. The main task of the host-executed code is to prepare data for compu-
tation and call GPU-executed functions called kernels (part). Moreover, in the case
of more complex problems, the part of the task that cannot be parallelized is also
executed by the host.

In social force and cellular automata approach (namely the social distances
model) we also use the same schema of task partitioning. The host code prepares
and initializes data for model and sends them to the global memory of the GPU
device. In each step of simulation the kernel that updates position of agents is called.
In both models, the original algorithms are relatively complex with many branch
instructions. Also, especially in the case of social force model, the date cannot be
efficiently distributed among the threads.

In order to use streaming processors efficiently, we must ensure that the sched-
uler will be able to fill them by threads. This is only possible when all threads
execute exactly the same instructions, thus branch instructions should be avoided.
In this task the profiler supplied by Nvidia was especially helpful, identifying branch
instructions that generate divergent executions.

In such a complex code where many new values are calculated at each step of
simulation, eliminating problematic “if” instructions is not an easy task and in some
situations it is impossible. Moreover, such modifications make the code unclear and

1428 J. Wąs, H. Mróz, P. Topa

difficult to analyse. As an example, below we present, how “if” instructions can be
replaced by an arithmetical calculation.

__device__ f loat angleBetween (const f l o a t 2& v1 ,
const f l o a t 2& v2)

{
f loat ang le = atan2 (v2 . y , v2 . x) − atan2 (v1 . y , v1 . x) ;
i f (ang le >= PI)

ang le = 2 ∗ PI − ang le ;
i f (ang le <= −PI)

ang le = −2 ∗ PI − ang le ;
return ang le ;

}

This simple code is identified by a profiler as a reason for divergent executions.
It can be replaced by the following code:

__device__ f loat s tep (f loat a , f loat x)
{

return x>=a ;
}

__device__ f loat angleBetween (const f l o a t 2& v1 ,
const f l o a t 2& v2)

{
f loat i = step (PI , ang le) ;
ang le = 2∗PI ∗ i − (2∗ i − 1)∗ ang le ;
i = step (angle , −PI) ;
ang le = − 2∗PI ∗ i − (2∗ i −1)∗ ang le ;
return ang le ;

}

Branch divergence occurs only for threads that are grouped in the same warp.
Thus, in order to avoid branch divergence, the calculations should be organized in
such a way that threads within a single warp execute the same sequence of instruc-
tions. Other instruction paths should be performed by a thread in another warp
(see [27] for a more detailed explanation).

Memory transactions are another area where optimization should be performed.
The highest performance and lowest latency are provided by registers. These are
exclusively used by a single thread for storing its local data. The small capacity
of the registers and their limited number is another bottleneck in this architecture.
When the number of local variables used within a single thread exceeds the limit
of registers, they can be stored in slower shared/local memory (register spilling).
Another issue is the total amount of registers that are distributed across the threads.
If a single thread uses a higher number of registers, a lower number of threads can be
executed at the same time. The original algorithms in both models use a relatively

GPGPU Computing for Microscopic Simulations of Crowd 1429

large number of registers (32 for social distances model and 48 for social force model),
which significantly affects occupancy parameter.

The use of fast shared memory (local memory) ca be considered another area of
optimization. It has almost the same speed and latency as registers. It is located on-
chip, thus its capacity is also relatively small (up to 48KB in Kepler processors). All
threads in the same block of threads have access to the same shared memory. Access
to shared memory has to be carefully organized in order to avoid bank conflicts
which destroy parallel transactions [27]. In [26] the potential effects of using shared
memory were concluded to be:

• for GPU with CC < 2.0 shared memory gives speedup 1.5 to 4 times faster
compared to algorithms that use only global memory

• for GPU with CC >= 2.0 algorithms that use shared memory are as good as
algorithms that use only global memory

This effect comes from the fact that in case of a GPU with CC >= 2.0 (Fermi
and Kepler architecture) global transactions are cached. In our opinion, in this
area optimization should concentrate on ensuring that transactions to/from global
memory are coalesced into larger blocks (64 or 126 bits).

5.4 Performance Tests

In order to verify the efficiency of the presented models, a series of tests have been
carried out. Criterion used for comparison purposes was the speed of the simulation,
expressed in frames per second (related to number of agents). Computational effort
and time required to perform the calculations in the simulation of crowd dynamics
is closely related to the density of the population of agents. Therefore, tests were
carried out in a similar population density for continuous and discrete models using
CPU and GPU technologies.

The tests described in the current section were performed with rendering dis-
abled (because of the inefficient rendering module).

The chart in Figure 3 shows the results of performance tests for social force and
social distances models carried out respectively on CPU and GPU. Performance
in this case is expressed by the relationship: number of supported pedestrians to
FPS (frame per second). As we can see on the chart for both models, simulations
executed on GPU are characterized by a higher performance, than the corresponding
CPU simulations. It is worthwhile to emphasize that this increase is achieved for
non-optimized algorithms.

As a discrete model, social distances in tests showed much greater efficiency
than continuous social force: on CPU results are better by 160–300%. By using
GPU we are able to improve results by an additional 60–70%. As we mentioned
earlier, we still have space for improvements by optimizing GPU algorithms. The
increase of the performance for the discrete model was lower for GPU, because it
requires a large amount of memory references. This is due to the fact that threads

1430 J. Wąs, H. Mróz, P. Topa

Figure 3. Results of performance tests for social force and social distances models imple-
mented respectively on CPU and GPU

related to agents must (during operation) access information about their neighbor-
hood, and then update the data in an occupancy field. This results in a mem-
ory overhead, because operations related to memory access are very expensive (in
a calculation) and may lead to bottlenecks in GPU applications. However, further
optimizations can be achieved in this field. CUDA allows users to take advantage
of different types of memory, such as global, shared or texture memory. All of
them have pros and cons and appropriate usage can be crucial in an application’s
performance.

6 SUMMARY

GPU technology has a great potential in the field of simulation acceleration, and
requires a different approach to creating a simulation framework and particular
algorithms when compared to the “traditional” approach.

The aim of our article was to apply GPGPU computations in microscopic crowd
simulation and to compare two popular microscopic models of crowd dynamics. The
first one is the differential equations based continuous social force model, whilst the
second one is the cellular automata based discrete social distances model.

Both models have been implemented using GPGPU and, for comparative pur-
poses, using CPU. It should be noted, that the use of GPU requires a completely
different approach to the development of applications and in this case many limita-
tions will appear. This issue was addressed in Section 3. It should be noted, that

GPGPU Computing for Microscopic Simulations of Crowd 1431

for technical reasons connected with using GPU (limitations in creating of complex
instructions, inadvisable data transfer etc.) final algorithms should be simplified
in comparison to the latest implementations of crowd dynamics models by the au-
thors [28, 31] (significantly simplified transition function, limited reproduction of
operational, tactical and strategic level of decision-making, etc.).

Based on the analysis of many variants of size and environment complexity and
the available number of agents, the authors proposed ranges of applicability for the
two models created using the GPU technology. This was addressed in Section 5.

The social force model works well in large, sparsely populated areas, where the
density of agents is relatively small. This continuous model works perfectly for free
pedestrian traffic, where agents head for a large number of defined targets.

The discrete social distances model gives good results for the simulation of ob-
jects with a large number of obstacles and a large population of agents. Due to
the necessity of application in many potential fields, the GPU implementation of
social distances model is suitable for simulations in which the number of pedes-
trian targets is not high: it can be applied in evacuation scenarios or in relatively
simple, freeway traffic scenarios. The social force method is continuous, thus it
allows more accurate mapping of pedestrian movement. The trajectories of mo-
tion are much more accurate than in a discrete model. On the other hand, the
social distances method offers the possibility to generation an environment with
more complex topology (building, obstacle), whilst in social force model it is more
problematic.

Currently, the development of GPU technology is rapid and the authors expect
that GPGPU will be more and more competitive when compared to traditional CPU
programming. During the implementation of the models presented in this work, the
specification of CUDA technology has been changed several times and some new
features have been included (for example Thrust library of templated primitives).
Currently, most professional applications dedicated to crowd dynamics, especially
applications developed for engineering purposes (such as evacuation, crowd man-
agement, etc.), implement a simulation engine using traditional CPU. However, the
immediate future may bring a change in this area.

We found some issues that should be addressed in the future. The first is
the issue of a branch divergence parameter that should be lowered by eliminating
conditional instructions or grouping threads executing the same path of instructions
into the same warps. The second one is connected with more optimal usage of
registers in order to enable more efficient SM (shared memory) utilization. The last
issue is arranging data to achieve memory coalescing in store/load transactions.

Acknowledgments

Jarosław Wąs and Hubert Mróz gratefully acknowledge that this research is partially
supported by AGH University of Science and Technology, contract No. 11.11.120.859.
Paweł Topa acknowledges the partial support from AGH University of Science and
Technology, contract No. 11.11.230.124.

1432 J. Wąs, H. Mróz, P. Topa

REFERENCES

[1] Kryza, B.—Król, D.—Wrzeszcz, M.—Dutka, Ł.—Kitowski, J.: Interactive
Cloud Data Farming Environment for Military Mission Planning Support. Computer
Science, Vol. 13, 2012, No. 3, pp. 89–100.

[2] Mróz, H.—Wąs, J.: Discrete vs. Continuous Approach in Crowd Dynamics Model-
ling Using GPU Computing. Journal Cybernetics and Systems, Vol. 45, 2014, No. 1,
pp. 25–38.

[3] Mróz, H.—Wąs, J.—Topa, P.: The Use of GPGPU in Continuous and Discrete
Models of Crowd Dynamics. Proceedings of the 10th International Conference on
Parallel Processing and Applied Mathematics (PPAM 2013), Warsaw, Poland, 2013,
Revised Selected Papers, Part II, LNCS, Vol. 8385, 2014, pp. 679–688.

[4] Bakhoda, A.—Yuan, G.—Fung, W.W.L.—Wong, H.—Aamodt, T.M.: An-
alyzing CUDA Workloads Using a Detailed GPU Simulator. Proceedings of IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS
2009), 2009, pp. 163–174.

[5] Blecic, I.—Cecchini, A.—Trunfio, G.A.: Cellular Automata Simulation of Ur-
ban Dynamics through GPGPU. The Journal of Supercomputing, Vol. 65, 2013, No. 2,
pp. 614–629.

[6] Yuan, F.: An Interactive Concave Volume Clipping Method Based of GPU Ray
Casting with Boolean Operation. Computing and Informatics, Vol. 31, 2012, No. 3,
pp. 551–571.

[7] Worecki, M.—Wcisło, R.: GPU Enhanced Simulation of Angiogenesis. Computer
Science, Vol. 13, 2012, No. 1, pp. 35–48.

[8] Pelechano, N.—Allbeck, J.M.—Badler, N. I.: Controlling Individual Agents
in High-Density Crowd Simulation. Proceedings of the 2007 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation (SCA ’07). Eurographics Association,
Aire-la-Ville, Switzerland, 2007, pp. 99–108.

[9] Sunpyo, H.—Hyesoon, K.: An Analytical Model for a GPU Architecture with
Memory-Level and Thread-Level Parallelism Awareness. SIGARCH Computer Archi-
tecture News, Vol. 37, 2009, No. 3, pp. 152–163.

[10] Demeulemeester, A.—Hollemeersch, C. F.—Mees, P.—Pieters, B.—Lam-
bert, P.—Van de Walle, R.: Hybrid Path Planning for Massive Crowd Simulation
on the GPU. Motion in Games, LNCS, Vol. 7060, 2011, pp. 304–315.

[11] Passos, E. B.—Joselli, M.—Zamith, M.—Gonzalez-Clua, E.W.—Monte-
negro, A.—Conci, A.—Feijo, B.: A Bidimensional Data Structure and Spatial
Optimization for Supermassive Crowd Simulation on GPU. ACM Computers in En-
tertainment (CIE), Vol. 7, 2009, No. 4, 15 pp., DOI: 10.1145/1658866.1658879.

[12] Richmond, P.—Coakley, S.—Romano, D.M.: A High Performance Agent Based
Modelling Framework on Graphics Card Hardware with CUDA. Proceedings of the
8th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS ’09), 2009, Vol. 2, pp. 1125–1126.

GPGPU Computing for Microscopic Simulations of Crowd 1433

[13] Machida, T.—Naito, T.: GPU and CPU Cooperative Accelerated Pedestrian and
Vehicle Detection. 2011 IEEE International Conference on Computer Vision Work-
shops (ICCV Workshops), 2011, pp. 506–513.

[14] Gobron, S.—Devillard, F.—Heit, B.: Retina Simulation Using Cellular Au-
tomata and GPU Programming. Machine Vision and Application, Vol. 18, 2007, No. 6,
pp. 331–342.

[15] Rumpf, M.—Strzodka, R.: Graphic Processor Units: new Prospects for Parallel
Computing. Numerical Solution of Partial Differential Equations on Parallel Com-
puters, Lecture Notes in Computational Science and Engineering, Vol. 51, 2006,
pp. 89–132.

[16] Nvidia CUDA, http://www.nvidia.com/object/cuda_home_new.html.
[17] The Khronos Group, http://www.khronos.org/.
[18] OpenCL, The open standard for parallel programming of heterogeneous systems,

https://www.khronos.org/opencl/.
[19] OpenACC, Directives for accelerators, http://www.openacc-standard.org/.
[20] OpenMP Application Program Interface, Version 4.0, http://www.openmp.org, July

2013.
[21] Mann, Z.Á.: GPGPU: Hardware/Software Co-Design for the Masses. Computing

and Informatics, Vol. 30, 2011, pp. 1247–1257.
[22] Burstedde, C.—Klauck, K.—Schadschneider, A.—Zittartz, A.: Simula-

tion of Pedestrian Dynamics Using a Two-Dimensional Cellular Automaton. Phy-
sica A, Vol. 295, 2001, No. 3-4, pp. 507–525.

[23] Zhang, P.—Jian, X.X.—Wong, S. C.—Choi, K.: Potential Field Cellular Au-
tomata Model for Pedestrian Flow. Physical Review E, Vol. 85, 2012, No. 2, Art.
No. 021119.

[24] Koyama, S.—Shinozaki, N.—Morishita, S.: Pedestrian Flow Modeling Using
Cellular Automata Based on the Japanese Public Guideline and Application to Evac-
uation Simulation. Journal of Cellular Automata, Vol. 8, 2013, No. 5-6, pp. 361–382.

[25] Dietrich, F.—Köster, G.—Seitz, M.—von Sivers, I.: Bridging the Gap: From
Cellular Automata to Differential Equation Models for Pedestrian Dynamics. Journal
of Computational Science, Vol. 5, 2014, No. 5, pp. 841–846.

[26] Topa, P.: Cellular Automata Model Tuned for Efficient Computation on GPU with
Global Memory Cache. Proceedings of 2014 22nd Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), Torino, Italy, 2014,
pp. 380–383.

[27] Topa, P.—Młocek, P.: Using Shared Memory as a Cache in Cellular Au-
tomata Water Flow Simulations on GPUs. Computer Science, Vol. 14, 2013, No. 3,
pp. 385–401.

[28] Wąs, J.—Lubas, R.: Adapting Social Distances Model for Mass Evacuation Simu-
lation. Journal of Cellular Automata, Vol. 8, 2013, No. 5-6, pp. 395–405.

[29] Wąs, J.—Gudowski, B.—Matuszyk, P. J.: New Cellular Automata Model of
Pedestrian Representation Incorporating Proxemics into People Dynamics. ACRI
2006, LNCS, Vol. 4173, 2006, pp. 724–727.

1434 J. Wąs, H. Mróz, P. Topa

[30] Helbing, D.—Molnar, P.: Social Force Model for Pedestrian Dynamics. Phys.
Rev. E, Vol. 51, 1995, No. 5, pp. 4282–4286.

[31] Wąs, J.—Lubas, R.: Towards Realistic and Effective Agent-Based Models of Crowd
Dynamics. Neurocomputing, Vol. 146, 2014, Iss. C, pp. 199–209.

Jarosław Wąs is currently Assistant Professor at AGH Uni-
versity of Science and Technology in the Department of Applied
Computer Science. After graduation in 1999 he worked in Com-
Arch S.A. as a system analyst, next he successfully completed
several projects in Boccard as a project manager. Afterwards,
he worked as a junior researcher at AGH University (from 2001)
in the Faculty of Electrical Engineering, Automatics, Computer
Science and Electronics. In 2006 he finished his Ph.D. in the
area of crowd dynamics modeling, at AGH University. His re-
search areas are connected with agent-based modeling, cellular

automata, complex systems and crowd dynamics. He has been responsible for large-scale
crowd models in national and international projects.

Hubert Mróz studied applied computer science at the AGH
University of Science and Technology in Cracow, in the Faculty of
Electrical Engineering, Automatics, Computer Science and Elec-
tronics and in 2011 he completed his Master’s degree. Since 2009
he is working in game industry as a programmer and designer.
He was responsible for gameplay mechanics, multiplayer imple-
mentation, AI and tools, among other things. He took part in
over a dozen of projects, released on most available game plat-
forms (personal computers, handheld and stationary game con-
soles, mobile devices, web browsers). He also used to work in

Bloober Team S.A. and iFun4All Sp. z o.o. He was one of the founders of Tap It Games
company. He is also working on his own game projects.

Paweł Topa is currently Assistant Professor at AGH Univer-
sity of Science and Technology in the Department of Computer
Science. Since his graduation in 1999 he is working at AGH
University of Science and Technology. In 2005 he defended his
doctoral thesis proposing new tools for modeling phenomena in
the area of geology and micropalaeontology. Since 2010, he works
also at Institute of Geological Sciences, Polish Academy of Scien-
ces as Assistant Professor. His scientific interests cover cellular
automata theory and applications, complex systems modelling,
GPU computing.

