
Computing and Informatics, Vol. 28, 2009, 29–56

SOLVING LARGE SCALE INSTANCES
OF THE DISTRIBUTION DESIGN
PROBLEM USING DATA MINING

Héctor Fraire, Laura Cruz

Instituto Tecnológico de Ciudad Madero
1o. de Mayo y Sor Juana I. de la Cruz S/N, C. P. 89440
Cd. Madero, Tamaulipas, México
e-mail: {hfraire, lcruzr}@prodigy.net.mx

Joaqúın Pérez, Rodolfo Pazos

Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)
AP 5-164, C. P. 62490, Cuernavaca, Mor., México
e-mail: {jperez, pazos}@cenidet.edu.mx

David Romero

Instituto de Matemáticas, Universidad Nacional Autónoma de México
Cuernavaca, Mor., México
e-mail: davidr@matcuer.unam.mx

Juan Frausto

ITESM, Campus Cuernavaca
Reforma 182-A, C. P. 62589
Temixco, Mor., México
e-mail: juan.frausto@itesm.mx

Manuscript received 27 November 2006; revised 11 October 2007

Communicated by Ladislav Hluchý

30 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

Abstract. In this paper we approach the solution of large instances of the distribu-

tion design problem. The traditional approaches do not consider that the instance
size can significantly reduce the efficiency of the solution process. We propose a new
approach that includes compression methods to transform the original instance into
a new one using data mining techniques. The goal of the transformation is to con-

dense the operation access pattern of the original instance to reduce the amount of
resources needed to solve the original instance, without significantly reducing the
quality of its solution. In order to validate the approach, we tested it proposing
two instance compression methods on a new model of the replicated version of the
distribution design problem that incorporates generalized database objects. The
experimental results show that our approach permits to reduce the computational
resources needed for solving large instances by at least 65%, without significantly
reducing the quality of its solution. Given the encouraging results, at the moment
we are working on the design and implementation of efficient instance compression
methods using other data mining techniques.

Keywords: Data mining, machine learning, distribution design problem

1 INTRODUCTION

The increasing popularity of the Internet and e-business has generated a great de-
mand for applications of distributed databases (DDBs). These applications are
developed using Distributed Database Management Systems (DDBMSs). Despite
the advanced technology of DDBMSs, the design methodologies and tools have many
limitations. Consequently, database administrators carry out the distribution de-
sign using empirical an informal approaches due to the problem complexity. In this
paper a formal and systematic methodology is proposed aimed at overcoming these
limitations. The distribution design problem consists of determining data allocation
so that the communication costs are minimized. Like many other real problems, it
is a combinatorial NP -hard problem. The solution of large scale instances is usu-
ally carried out solving a simplified version of the problem or using approximate
methods [1, 2]. General purpose nondeterministic heuristic methods are, at present,
the best tools for the approximate solution of this class of problems [3, 4]. In the
balance these methods will be referred to as heuristic methods. For several years
we have worked on the distribution design problem and its solution with heuristic
methods. In [5] we proposed an on-line method to set the control parameters of
the Threshold Accepting algorithm. In [6] a mechanism for automatically obtaining
some control parameter values for genetic algorithms is presented.

2 RELATED WORK

Traditionally, the analysis of the distribution design problem has been carried out
using a DBMS model for evaluating different design alternatives. In recent studies,

Solving Large Scale Instances of the Distribution Design Problem 31

regarding the implementation of automatic tools for database physical design, the
DBMS query processor is used. In the following subsections the most relevant works
on these approach are described.

2.1 Works Based on Modeling

Ceri, Wiederhold and Navathe carried out the pioneering studies of this type [7, 8].
Their approach consists of dividing the problem into two serial phases: fragmen-
tation and allocation. The key idea behind the serial approach is inspired on the
proverb “divide and conquer”, which supposedly permits to deal with “less-hard”
instances than those obtained with an integral approach. However, it overlooks the
fact that the inputs to both phases are the same [9]. In [5] this fact is exploited and
it is proven that the integral approach outperforms the serial one.

Pérez et al. propose the use of an integral approach for the non replicated ver-
sion of the problem [5] and develop a integer linear programming method, called
DFAR, in which vertical fragmentation and non replicated fragment allocation are
integrated. The objective function of the model considers query processing costs,
fragment join costs, migration costs, and storage costs. They report the solution of
instances with up to 500 attributes, 500 sites and 500 queries using the Threshold
Accepting algorithm.

Johansson et al. approached the replicated data allocation problem for a dis-
tributed database system on a high speed network and introduced a network latency
time model for integrating it as a component of the system response time [10]. They
formulated a model, using realistic parameters, for optimizing the response time of
a distributed system with parallel transactions operating on replicated data.

Huang et al. approach the replicated fragment allocation problem on a wide area
network [11]. They propose a model that incorporates fragment retrieval costs, read
and write operations cost, and the protocol connection costs.

Tamer Ozsu approaches the problem of the dynamic allocation of replicated
fragments on the Internet, for which he presents a model that simulates a physical
model and minimizes the total processing cost of operations: retrieval, join and mi-
gration [12]. A maximum of four replicas are considered, and the model parameters
permit to specify instances that simulate loads typically found on the Internet.

Baiao et al. propose a methodology for fragmenting distributed databases, which
includes techniques for generating horizontal, vertical and mixed fragments [13].
They evaluate the fragmentation schemas generated considering the concurrency
level of the operations execution.

2.2 Works Related to Industrial Applications

Papadomanolakis et al. approach the fragmentation problem of a very large database
and present an algorithm called AutoPart, which automatically generates the schema
of the database physical fragmentation for a representative transaction load [14].

32 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

They present experimental results from a real astronomical database implemented
on SQL Server 2000. The database objects to be fragmented are tables and indexes.

Agrawal et al. report an automatic tool for the physical design of a database [15].
Given an operation load, it automatically determines the fragmentation and physical
allocation schemas and the fragmentation of the logical database. Currently it can
only obtain the design for one node, but they are considering extending their tool to
handle multiple nodes. They present experimental results, on SQL Server, obtained
from standard tests [16].

Zilio et al. present an automatic tool for the physical distribution design, on mul-
tiple servers, of indexes, materialized views and multidimensional tables for a given
operation load [17]. The tool includes an independent module for load compression
in order to increase its capacity. Due to the low efficiency of the clustering method
used, it is used only to compress a fraction of the load defined by the user [18]. In
order to evaluate the distribution design quality they use DB2 UDB and standard
tests [16].

2.3 Comparative Analysis

Table 1 shows the most relevant characteristics of the studies related to the problem
of database design automation. The shaded rows correspond to the works related to
industrial applications, which are analyzed in order to identify an important limi-
tation of the available models. Columns 2 and 3 specify the type of fragmentation
performed, column 4 indicates whether the fragment allocation is replicated or not,
and column 5 indicates whether the approach uses instance compression. The ap-
proach proposed in [5] has been the most successful in solving large scale instances
of the problem. The main limitation of these approaches based on modeling is that
they do not consider that the size of the instances can significantly reduce the ef-
ficiency of the solution process, which only involves a model of the problem and
a solution algorithm. Conversely, in [17] the relevance of instance compression is
recognized, but the effect of compression on the solution quality is not considered;
consequently, the compression methods proposed are inefficient and do not guarantee
the scalability of the tools for automatic database design.

In order to overcome these limitations, we propose two efficient instance com-
pression methods that use data mining techniques: clustering [19, 20] and progressive
sampling [21, 22]. We tested them on a new model of the replicated version of the
distribution design problem that incorporates generalized database objects [23].

3 ARCHITECTURE OF THE SYSTEM

This section describes the architecture of the system used for analyzing the prob-
lem of automating the distribution design. A distributed database system with
client/server architecture operating on the Internet has four fundamental compo-
nents: servers, clients, data, and network links.

Solving Large Scale Instances of the Distribution Design Problem 33

Fragmentation Replicated
Vertical Horizontal Allocation Compression

Pérez Ortega [5]
√ √

Johansson [10]
√

Huang [11]
√

Visinescu [12]
√

Baiao [13]
√ √

Papadomanolakis [14]
√

Agrawal [15]
√

Zilio [17]
√ √ √ √

Our approach [23]
√ √ √ √

Table 1. Related work on distribution design automation

Data can only be stored in the servers and can be fragmented and replicated.
The distribution unit is a relation fragment and the data may have a given initial
distribution. Changes in access patterns to fragments, in given intervals of time,
may cause the movement, creation or elimination of their replicas, or even fragment
reconfiguration.

Servers are DDBMSs with all of their functionality and are the sites where data
resides. Each pair of servers has a communication cost associated, which represents
the distance between them and is assumed constant. This is a usual assumption in
this kind of studies and permits to simplify the problem treatment.

Clients are the sites where users issue their operation requests, which are trans-
ferred to the server to which they are connected through permanent or intermittent
(wireless) links. All the operations generated by the clients of a server are considered
to be issued from the server site. Servers are connected to the Internet through high
speed links.

Figure 1 shows the main characteristics of an architecture of this type. For
obtaining a good system performance, the database administrator must design the
fragmentation and fragment allocation schemas, aiming at reducing the transmission
costs incurred by the read, write (for maintaining consistency) and fragment join
operations. An optimal design permits to minimize the overall communication cost
required for handling all the operations [9].

4 PROBLEM DEFINITION

The DDB distribution design problem consists of allocating DB-objects, such that
the total cost of data transmission for processing all the applications is minimized.
A DB-object (or simply object) is an entity of a database that requires to be allo-
cated, which can be an attribute, a tuple set, a relation, or a file. DB-objects are
independent units that must be allocated at the sites of a network.

Let us consider a set of DB-objects O = {o1, o2, . . . , ono}, a computer commu-
nication network that consists of a set of sites S = {s1, s2, . . . , sns}, where a set

34 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

INTERNET

ServidoresServidores

ClientesClientes

INTERNETINTERNET

ServidoresServidores

ClientesClientes

Fig. 1. Architecture of the system

of operations Q = {q1, q2, . . . , qnq} are executed, the DB-objects required by each
operation, an initial DB-object allocation schema, and the emission frequencies of
each operation from each site in a time period. The problem consists of obtaining
a new allocation schema that adapts to a new database usage pattern and minimizes
transmission costs. Figure 2 depicts an instance of the problem with 4 DB-objects,
3 sites and 4 operations, as well as the emission frequency of the operations from
each site and the usage matrix of DB-objects by operations.

q2

q3

q1 OO11

S1

Query Frequency

1 8

2 7

3 5

q5

S3

Query Frequency

5 8

q4

q1

S2

Query Frequency

1 2
4 7

INTERNET

OO22

OO33

OO44

OO55q2

q3

q1 OO11

S1

Query Frequency

1 8

2 7

3 5

q5

S3

Query Frequency

5 8

q4

q1

S2

Query Frequency

1 2
4 7

INTERNET

OO22

OO33

OO44

OO55

Fig. 2. Distribution design problem

5 MATHEMATICAL MODEL

Traditionally it has been considered that the DDB distribution design consists of two
sequential phases: fragmentation and allocation. Contrary to this widespread belief,
it has been shown that it is simpler to solve the problem using our approach which

Solving Large Scale Instances of the Distribution Design Problem 35

combines both phases [5, 23]. A key element of this approach is the formulation of
a mathematical model that integrates both phases.

5.1 Objective Function

The objective function of the mathematical model (1) includes four terms: the first
models the cost of processing read-only operations, the second models the cost of
read-write operations, the third models the migration cost of DB-objects, and the
last one models the storage cost of DB-objects in the sites.

min z =
∑

k

∑

j

fkj

∑

m

∑

i

qkmlkmcjiwjmi +
∑

k

∑

j

f ′
kj

∑

m

∑

i

q′kml′kcjixmi

+
∑

j

∑

m

∑

i

w′
jmicjidmi +

∑

m

∑

i

CAibmxmi (1)

The problem is modeled using binary integer linear programming. In Table 2
the parameters and variables used in the formulation are described.

5.2 Model Constraints

A solution to the model must satisfy a set of constraints that specify: the possible
replication of DB-objects, their location, the access policy applied to the read and
write operations, the conditions for DB-object migration, and the storage capacity
of the sites. In Table 3 the model constraints are shown.

5.3 Cost of Read Operations

The first term of the objective function models the overall cost of read operations.
The calculation is carried out as follows: For each read operation k issued from site
j, its emission frequency fkj is multiplied by the cost of retrieving from different
sites the fraction of DB-objects that is needed. The DB-objects m required by the
read operation are all those for which the product qkmwjmi = 1. For each DB-object
m located at site i and needed by read operation k, the cost for transmitting it from
site i to site j is lkmcji.

Note that restriction 1 allows several replicas of the same DB-object in different
sites, but fortunately restriction 4 enforces the use of only one of the available
replicas by each read operation. This restriction uses binary parameter θjm, which
adopts value 1 if and only if any of the products fkiqkm is positive. The value of
this product indicates whether there exists some read operation k issued from some
site j that needs DB-object m. If so, restriction 4 states that, if DB-object m is
required from site j, only one of the variables wjmi may adopt value 1, which means
that from all the replicas of m only one is chosen for the operation.

36 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

no Number of DB-objects to distribute.

ns Number of sites in the network.

nq Number of user queries.

fki Frequency matrix of integer values that describes the emission frequency
of read-only query k from site i, in a given time interval.

qkm Usage matrix that indicates the DB-objects that are used by the differ-
ent read-only queries; qkm = 1 if query k uses DB-object m; qkm = 0
otherwise.

lkm Communication packets required to transmit a DB-object m to satisfy
a read-only query k, lkm = (bm · sk)/PA where bm is the size in bytes of
DB-object m, sk is the selectivity of query k and PA is the size in bytes
of the communication packet.

f ′
ki Frequency matrix of integer values that describes the emission frequency

of read-write query k from site i, in a given time interval.

q′km Usage matrix that indicates the DB-objects that are used by the different
read-write queries; q′km = 1 if query k uses DB-object m; q′km = 0
otherwise.

l′k Communication packets required to transmit a write instruction;
l′k = Pk/PA where Pk is the size in bytes of the write instruction required
by query k.

dmi Communication packets required to create a replica of DB-object m in
site i.

CAi Storage cost for byte in site i.

CSi Storage capacity in bytes of site i.

cji Matrix that contains the transmission costs between sites.

xmj Binary variable that indicates if DB-object m is located in site j;
xmj = 1 if DB-object m is in site j, otherwise xmj = 0.

wjmi Binary variable that indicates if DB-object m located in site i is required
by a read-only query located in site j;
wjmi = 1 if DB-object m located in site i is required by a read-only
query in site j, otherwise wjmi = 0.

w′
jmi Binary variable that indicates if DB-object m that must be located in

site i is currently located in site j;
w′

jmi = 1 if DB-object m that must be located in site i, is currently
located in site j 6= i, otherwise w′

jmi = 0.

amj Binary matrix that contains the DB-objects current allocation schema;
amj = 1 if DB-object m is currently located in site j, otherwise amj = 0.

Table 2. Model elements

Solving Large Scale Instances of the Distribution Design Problem 37

∑
i xmi ≥ 1 ∀m DB-objects can be replicated in one or several

sites.

xmi ≤
∑

k qkmθim ∀m,i Each DB-object can only be located in one site
i that issues an operation that uses the DB-
object. (θim = 1 if

∑
k fkiqkm > 0, and θim = 0

if
∑

k fkiqkm = 0)

ns xmi-
∑

jwjmi ≥ 0 ∀m,i It is possible to request from other sites only the
DB-objects stored in those sites; i.e., if a DB-
object is not stored in a site, this object can not
be requested to this site from any other site.∑

i wjmi − θjm = 0 ∀m,j When a replicated DB-object is requested from
a given site j, only one of its replicas should be
used for satisfying a read operation. (θjm = 1 if∑

k fkjqkm > 0, and θjm = 0 otherwise.)∑
m xmipm ∗ CA ≤ CSi ∀i The overall space used for storing the DB-

objects in a site must not exceed the site storage
capacity.

w′
jmi − amj ≤ 0 ∀j,m,i A new replica of a DB-object must be generated

from an existing replica in the previous distri-
bution schema.

w′
jmi − (1 − ami)xmi = 0 ∀m,i A new replica of a DB-object must be generated

from exactly one replica that exists in the pre-
vious distribution schema.

Table 3. Model constraints

5.4 Cost of Write Operations

The second term of the objective function models the overall cost of write operations.
The calculation is performed in the following way: for each write operation k issued
from site j, its emission frequency fkj is multiplied by the cost for transmitting the
write instruction to all the sites that hold the DB-objects needed by the operation.
The DB-objects m needed by the write operation are all those for which qkmxmi = 1.
For each DB-object m located at site i that is needed by write operation k, the cost
for transmitting the write instruction from site i to site j is l′kcji.

5.5 Cost of DB-object Replication

The third term models the cost of modifying the current allocation schema of DB-
object into a new allocation schema. This model term allows the application of the
model not only to the design of DDBs but also to its redesign. The calculation is
carried out adding the cost of transferring each DB-object from its previous to its
new location. The decision variable w′

jmi permits to select the DB-objects m that
were previously located at site j and must be relocated to site i. For each of these
DB-objects the cost for transmitting it from site j to site i is dmicji. The difference

38 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

between the replication operation and the DB-object retrieval for a read operation
is that in the first case the entire DB-object is transferred from one site to another
while in the second case the entire DB-object remains in its site and only a fraction
of it is transmitted. This difference is established in the definitions of lkm and dmi.

5.6 Cost of DB-Object Storage

The fourth term models the cost for storing DB-objects in the sites. This is calcu-
lated multiplying the storage cost of each site by the storage space required by all
the DB-objects stored in the site.

6 INSTANCE COMPRESSION THROUGH CLUSTERING

6.1 General Description

Regarding the DDB distribution design problem, when a problem instance has repe-
titive operations, it is possible to transform it into an instance with fewer operations,
since repetitive operations are represented by similar rows in the access matrix.
Therefore, such operations can be considered as a single operation that is issued
with larger frequency. The reduction level that such transformation can yield is
directly proportional to the amount of repetitive operations. Such transformation is
a relation on the problem instances set, which associates a given instance to a smaller
instance. Figure 3 depicts a transformation r of this type, where I is the instance set
of the DDB distribution design problem, and i is the original instance, I ′ is a subset
of I , and i′ is the compressed instance.

I I’
r

i i’

Size(i) > Size(i’)

I I’
r

i i’

Size(i) > Size(i’)

Fig. 3. Instance transformation

The goal of the transformation is to yield a reduction in the amount of resources
needed to solve the original instance, without significantly reducing the quality of its
solution. In order to preserve the solution quality, the transformation must capture
the operations access pattern of the original instance. Data mining techniques allow
to carry out this type of tasks, thus we describe a method that uses clustering
techniques. To present a detailed description of the method, several concepts will
be introduced first.

Solving Large Scale Instances of the Distribution Design Problem 39

The binary vector that indicates from which sites an operation is issued is called
access pattern. The access pattern matrix Pki is constructed in such a way that, for
every k and i, Pki = 1 if and only if fki 6= 0. Figure 4 shows the access frequency
matrix fki of the operations involved in the example of Figure 2 and the resulting
access pattern matrix Pmi. The marked cells show examples of the transformation
process when the access frequency is zero (squares) and larger that zero (circles).

 Sites Sites

 1 2 3 1 2 3

O
p

er
a

tio
n

s 1 2 3 0

O
p

er
a

tio
n

s 1 1 1 0

2 0 0 6 2 0 0 1

3 3 4 0 3 1 1 0

4 0 0 3 4 0 0 1

 fki Pki

Fig. 4. Obtaining the access pattern matrix Pki from fki

All the operations that have the same access pattern are considered as a single
operation of the compressed instance, and all the DB-objects required by the grouped
operations constitute a single DB-object of the compressed instance.

6.2 Adjustment of the Instance Formulation

Once the operation and DB-object groups are created, it is necessary to adjust the
access frequencies to the groups, the operation selectivity to each group and the
group sizes of the compressed instance. The adjustment process is carried out as
follows. Given the original instance i, matrix fk, operation selectivities skm and
DB-object sizes bm, then the access frequency of each grouped operation c at site i

is given by

f ′
ci =

∑

k∈QueryCluster(c)

fki, ∀ ci, (2)

the size of DB-object group c is given by

b′c =
∑

m∈DB objectCluster(c)

bm, ∀ c, (3)

and the selectivity of operation k to DB-object group c is given by

s′kc =

∑
m∈DB objectCluster(c) skm ∗ bm∑

m∈DB objectCluster(c) bm

, ∀k,c. (4)

Figure 5 describes the compression process and the formulation adjustment, and
shows the operation access fki, the access pattern Pki and the grouped operation
access f ′

ci matrices.

40 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

 Sites Sites Sites

 1 2 3 1 2 3

O
p

er
at

io
n

s 1 2 3

O
p

er
at

io
n

s 1 2 3 0

O
p

er
at

io
n

s 1 1 1 0 1 5 7 0

2 0 0 6 2 0 0 1 2 0 0 9

3 3 4 0 3 1 1 0

4 0 0 3 4 0 0 1

 fki Pki f’ci

Fig. 5. Compression process

Since operations #1 and #3 have the same access pattern (dark rows in matrices
fki and Pki), they are integrated into operation #1 (dark row in matrix f ′

ci) of the
compressed instance. Similarly operations #2 and #4 of the original instance are
integrated into operation #2 of the compressed instance. The sum of the two encir-
cled frequencies, corresponding to operations #1 and #3, becomes the frequency of
operation #1 of the compressed instance, which is shown encircled. The rest of the
frequencies of the compressed instance are calculated similarly.

6.3 Clustering Algorithm

The input to the algorithm is matrix fki. To each binary pattern of the access pattern
matrix a decimal code is assigned, which is used to identify the group to which the
operation belongs. Figure 6 shows the detailed description of the algorithm used.
The decimal coding is carried out in line 5 of the algorithm. If for a given operation
the value of the cell corresponding to a site in the frequency matrix is larger than
zero, the power of 2 corresponding to the site position is added to Code. When all
the sites are accounted, at line 8 the operation is associated to the group denoted
by Code.

7 INSTANCE COMPRESSION THROUGH PROGRESSIVE
SAMPLING

7.1 General Description

This section presents an instance compression method that uses a data mining tech-
nique known as progressive sampling [21, 22]. The basic idea consists of generating
a representative sample (subset) of the instance operations and solving the problem
instance that involves only the operations in the sample; thus the new problem is
a reduced version of the original one. Notice that any feasible solution to the re-
duced instance i′ is also a feasible solution to the original instance i, but the optimal
solution to i′ is generally a suboptimal solution to i, whose quality (closeness to the
optimum) depends on the representativeness of i′.

For very large problem instances, if the number of sites is much smaller than the
number of operations, the access pattern of operations to data will appear repeatedly

Solving Large Scale Instances of the Distribution Design Problem 41

Algorithm CODE_GROUPING
Function: Determine the decimal value corresponding to the binary coding of the access
pattern of each operation, which is used as identifier of the group to which the operation is
assigned.
Input: Matrix fki of emission frequencies of operations (k) at sites (i).
Structures:
Code: Decimal coding of the binary access pattern of each operation.
Cardl: Elements of the group l.
Output: Groupk (group to which operation k is assigned)
1 For each operation k ∈ fki

2 Code ← 0

3 For each site i ∈ fki

4 If (fki>0)

5 Code ← Code + 2i

6 End if

7 End for

8 Groupk ← Code

9 CardCode ← CardCode + 1

10 End for

Fig. 6. Code grouping algorithm

in the frequency matrix. Since the access pattern of an operation is a binary vector of
size ns (where a 1 in the ith place of the vector means that the operation accesses data
in site i), the maximum number of different access patterns is 2ns. Because of the
exponential growth of this number, only instances with a maximum of 15 sites will
be considered. In these circumstances it is reasonable to suppose that a progressive
sampling process can identify the access pattern of operations using relatively small
samples, learning the optimal sample size.

7.2 Similarity Metric

The process has as input the original instance and yields the compressed instance.
A sample with the optimal size is called a minimal representative sample. The
concepts introduced below constitute the basis for the proposed learning process.

Tuple cluster. Let C = {c1, c2, . . . , cn} denote a partition of relation R tuples.
Each element of C is a tuple cluster, which for simplicity will be called cluster.

Cluster access probability. Ratio of the cluster size to the relation size.

pci
=

Size(ci)∑n

j=1 Size(cj)
(5)

Size(ci) is the size of cluster ci and n is the number of clusters.

42 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

Operation access probability. Ratio of the number of operation accesses to the
number of accesses to the relation.

pqi
=

Acc(qi)∑nq

j=1 Acc(qj)
(6)

Acc(qi) is the number of accesses of operation qi and nq is the number of ope-
rations.

Joint operation probability. Operation access probability multiplied by the sum
of the probabilities of access to the clusters used by the operation.

Pqi
= pqi

·
∑

pcj
, ∀cj ∈ qi (7)

Relevant operations of a sample. Sample operations such that their joint ope-
ration probabilities is larger than or equal to λ = Pmin + α(Pmax − Pmin) where
Pmin and Pmax are the minimum and maximum joint probabilities of the sample
operations, and α ∈ (0, 1) is a factor used for setting the relevance boundary.
The set of all relevant operations of a sample is denoted by RS.

Sample Representativeness. Average joint probability of the relevant opera-
tions.

rmi
= P (RS), (8)

where P (RS) =
P

qi∈RS Pqi

‖RS‖ .

Similarity between two samples ma and mb. It is defined as 1 minus the ab-
solute value of the difference of their representativenesses.

sim(ma, mb) = 1− | rma
− rmb

| (9)

7.3 Learning the Size of the Minimal Representative Sample (MRS)

In this section the basic progressive sampling algorithm is described, which is used
in the instance transformation process.

The sampling program S = {n0, n1, n2, . . . , nk} specifies the sizes of the samples
considered in the process. A geometric program is defined as S = {n0k

n|n0 and
k are fixed values and n = 0, 1, 2, 3, . . .}. For evaluating the sampling program
S = {n0, n1, n2, . . . , nk}, the algorithm in [22] is applied, which is shown in Fi-
gure 7.

The algorithm progressively extracts random samples of the programmed sizes
from the set of the instance operations, using the random sequential sampling tech-
nique proposed in [24]. This technique belongs to the most utilized ones in data
mining for extracting samples from large databases [25]. Sample extraction is a cru-
cial factor for guaranteeing the method scalability. The algorithm determines the
sample representativeness and stops when this indicator remains consistently in the
interval [R− δ, R+δ], where R is a fixed value that is determined in the process and

Solving Large Scale Instances of the Distribution Design Problem 43

Algorithm PROGRESSIVE_SAMPLING

Function: Determine the size of the minimal representative sample.
Input:
fki : Matrix of emission frequencies of operations (k) from the sites (i).
S = {n0, n1, n2, …, nk}: Sampling program.

Structures:
i = 1, 2, …, k : Sampling counter.
n: Size of the sample to be extracted.
M: Structure for storing the extracted sample.
r: Sample representativeness.

Functions:
Generate_Sample(fki , M, n)

Extracts from fki a random sample M of operations of size n, using the random sequential
sampling technique [24].

Representativeness(M)
Determines the representativeness of sample M.
Output:
N: Size of the minimal representative sample.
1 i ← 0
2 n ← ni
3 Generate_Sample(fki , M, n)
4 r ← Representativeness(M)
5 While r does not converge
6 i ← i + 1
7 n ← ni
8 Generate_Sample(fki , M, n)
9 r ← Representativeness(M)
10 End while
11 N ← n
12 Return (N)

Fig. 7. Progressive sample algorithm

δ is some given tolerance. Considering the definition of similarity, it converges to 1
if and only if the samples representativeness converges to a fixed value. Therefore,
the process can be stopped when the similarity stabilizes in the interval [1− ε, 1] for
a given tolerance ε. Since this mechanism is simpler to implement, it was chosen
for our approach. The last sample of the process is called Minimal Representative
Sample (MRS). Figure 8 shows the learning curve that is generated as the process
proceeds. The process described previously is an inductive mechanism that learns
the MRS size.

The compression process is carried out adjusting the instance formulation so as
to include only the operations of the MRS and the sites and DB-objects related to
these operations. As a result of the process, a compressed or transformed instance
is generated.

44 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

0

0.2

0.4

0.6

0.8

1

1.2

10 20 40 80 160 320

Sample Size

S
im

ila
ri

ty
0

0.2

0.4

0.6

0.8

1

1.2

10 20 40 80 160 320

Sample Size

S
im

ila
ri

ty
0

0.2

0.4

0.6

0.8

1

1.2

10 20 40 80 160 320

Sample Size

S
im

ila
ri

ty

Fig. 8. Learning curve

8 EVALUATION OF THE COMPRESSION GROUPING METHOD

For evaluating the compression method through grouping two experiments were
conducted. In the first one the effect of the type of user access on the reduction
level and solution quality generated by the method was evaluated. In the second
one the efficiency of the method was evaluated. This factor is crucial for increasing
the performance of the algorithms used for solving the distribution design problem.
For carrying out the experiments 9 test cases were generated. Each case includes
30 random instances which have the same characteristics. Table 4 shows the cha-
racteristics used for each case and includes the case ID, the number of DB-objects,
sites and operations, the instance size, and the ratio of operations to sites.

8.1 Reduction Degree and Solution Quality

The purpose of this experiment is to obtain evidence on the reduction degree and
the solution quality that are achieved as a result of the instance compression using
grouping. Each instance of the test cases was solved using an exact algorithm
and was compressed using a grouping algorithm. The transformed instance was
solved using an exact algorithm and the DB-object location that corresponds to the
optimal solution of the compressed instance was determined. Finally, the value of
this distribution was calculated using the objective function of the original instance,
which was compared against the optimal solution of the original instance, and the
error percentage was calculated. For each case, the sizes of the 30 original instances
and the 30 compressed instances were added, and the overall reduction percentage
was calculated as well as the average error percentage corresponding to the results
of the 30 instances.

The test cases used were generated randomly with different access probabilities
of the users to the sites. The results obtained were compared against those obtained
from applying two other transformations. Each of these transformations is similar to
the one proposed, but they use the agglomerative hierarchical grouping algorithm

Solving Large Scale Instances of the Distribution Design Problem 45

Characteristics
Case RD (O) Sites (S) Operations (Q) Size in bytes Q/S

C1 100 3 100 86 060 33

C2 200 5 200 338 560 40

C3 500 7 500 2 062 252 71

C4 1 200 15 1 200 11 823 420 80

C5 1 000 10 1 000 8 172 480 100

C6 1 500 15 1 500 18 379 020 100

C7 2 000 20 2 000 32 665 760 100

C8 3 000 20 3 000 72 997 760 150

C9 4 000 20 4 000 129 329 760 200

Table 4. Cases for evaluating compression using grouping

reported in [26]. In one case only the DB-objects with similarity 1 are grouped.
This algorithm is called level 1 and is denoted by A1. In the other case the DB-
objects are grouped if their similarity equals 1 or the closest value to 1 present in
the matrix of similarity between DB-objects. This algorithm is called level 2 and is
denoted by A2. The coded grouping algorithm proposed in this work is denoted by
AC. In the experiment the method effectiveness was investigated for different access
probabilities, and it was expected that algorithms AC and A1 achieved the same
effectiveness since they generate the same grouping for a given instance.

Table 5 shows the experimental results, where the first column indicates the
case solved (C). For each case there exist three rows that show the results obtained
using algorithms AC, A1 and A2. The results are grouped by columns according
to the access probability of the operations to the sites, used for generating the case
instances. For each probability two columns are included: the first shows the average
error percentage (% E) obtained when solving the 30 instances of each case, and the
second shows the average reduction percentage (% R) attained by their compression.

Figures 9 and 10 permit to view the effect of the type of user access on the
solution quality and the reduction degree attained using the proposed algorithm
(AC).

In these figures it is perceived that as the access probability of the users to the
sites increases, the method effectiveness decreases. However, in the low probability
region its performance remains high. In an environment like the Internet, in which
users access from only 20 % of the sites, the largest instances (case C5) are solved
with a 65 % reduction at a minimal cost in solution quality. Figure 9 reveals that the
solution quality obtained with the method is very high (the error percentage never
reaches 1 %), independently of the probability of user access to the sites. It is ob-
served in Table 5 that similar results are obtained when algorithm A1 is used, which
corresponds with the expectations. When algorithm A2 is used, the approach to the
optimal solution occurs generally from below, and for larger instances (case C5) the
maximal error percentage is −7.86 %. The proposed method is highly precise, but
its reduction degree depends on the repetition degree of the operation patterns.

46 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

Probability 10% Probability 20% Probability 30 % Probability 40%

C A %E %R % E % R % E %R % E % R

C1 AC 0.00 99 0.00 99 0.01 99 0.08 98

C1 A1 0.00 99 0.00 99 0.01 99 0.08 98

C1 A2 −25.00 99 −30.27 99 −17.23 99 −10.22 99

C2 AC 0.01 97 0.05 98 0.03 97 0.22 96

C2 A1 0.01 99 0.05 98 0.03 97 0.22 96

C2 A2 −13.03 99 −4.84 98 −10.11 98 −3.08 97

C3 AC 0.01 99 0.12 97 0.15 95 0.32 93

C3 A1 0.01 99 0.12 97 0.15 95 0.32 93

C3 A2 −8.58 99 −11.13 98 −1.01 96 −9.72 95

C4 AC 0.07 98 0.20 93 0.24 83 0.00 68

C4 A1 0.07 98 0.20 93 0.24 83 0.24 68

C4 A2 −2.91 98 −2.97 94 −2.70 83 −4.07 69

C5 AC 0.10 94 0.03 65 0.07 24 0.08 8

C5 A1 0.10 94 0.03 65 0.07 24 0.08 8

C5 A2 −7.86 94 0.03 65 −1.57 24 0.09 8

Table 5. Evaluation results of the reduction degree and solution quality

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

Test cases

A
ve

ra
g

e
er

ro
r

(%
)

10 20 30 40 Access probability

Fig. 9. Effect of access probability on solution quality

8.2 Efficiency of Grouping Method

The purpose of this experiment is to evaluate the efficiency of the proposed grouping
algorithm (AC) with respect to that of the other algorithms considered (A1 and A2).

Compression was carried out on each of the instances of the test cases, and the
time expended on grouping was recorded. Tests were conducted for each of the
algorithms considered, and in each transformation the number of groups generated
was recorded. The instances were generated considering an access probability of

Solving Large Scale Instances of the Distribution Design Problem 47

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5

Test cases

R
ed

u
ct

io
n

 p
er

ce
n

ta
g

e

10 20 30 40 Access probability

Fig. 10. Effect of access probability on reduction degree

20 %, which corresponds to the situation where the method showed good perfor-
mance.

Table 6 shows the experiment results, where the first column indicates the case
solved (C). Columns 3, 4 and 5 show the average execution time expended in instance
grouping for the case. Columns 6, 7 and 8 show the average number of groups
generated. For each case there exist two rows: the first presents average values and
the second presents their corresponding standard deviations.

As revealed in Figure 11 the proposed algorithm (AC) shows a clear superio-
rity over the hierarchical grouping algorithms. A remarkable characteristic of the
AC algorithm is that as the instance size grows, the performance difference grows
larger. These results are considered satisfactory, since they provide experimental
evidence on the ability of compression using grouping to solve problems of much
larger size.

9 EXPERIMENTAL EVALUATION OF THE TRANSFORMATION
THROUGH PROGRESSIVE SAMPLING

For evaluating the compression method through progressive sampling, two types of
experiments were conducted. In the first the effect of the type of user access on the
reduction degree and the solution quality produced by the method are analyzed.
In the second the difference of the method performance is studied when fixed and
variable DB-object sizes are considered.

48 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

Average Execution Time Number of Groups

C AC A1 A2 AC A1 A2

C1 a 0.0001 0.0594 0.1932 7 6 2

C1 d 0.0000 0.0208 0.0703 1 0 2

C2 a 0.0001 0.0718 0.2150 22 22 13

C2 d 0.0000 0.0141 0.0568 2 2 6

C3 a 0.0001 0.2842 0.8280 67 67 65

C3 d 0.0000 0.0072 0.3764 5 5 4

C4 a 0.0001 1.6344 3.7374 695 696 692

C4 d 0.0000 0.0490 0.2465 19 19 21

C5 a 0.0001 1.0406 2.4468 246 247 244

C5 d 0.0000 0.0176 0.3739 9 9 8

C6 a 0.0062 2.5406 7.0904 816 817 811

C6 d 0.0085 0.0420 1.2461 9 9 12

C7 a 0.0001 5.7410 13.7902 1 609 1 606 1 615

C7 d 0.0000 0.4639 2.5599 21 28 24

C8 a 0.0126 14.2468 28.0094 1 863 2 263 2 257

C8 d 0.0130 2.1548 1.9666 889 11 9

C9 a 0.0062 25.2842 48.3376 2 889 2 900 2 897

C9 d 0.0085 1.7786 4.7664 24 24 26

Table 6. Results of the efficiency evaluation

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9

Test cases

A
ve

ra
g

e
ti

m
e

o
f

 in
st

an
ce

g
ro

u
p

in
g

 (
se

c)

AC algorithm A1 algorithm
A2 algorithm

Fig. 11. Efficiency of the grouping algorithms

Solving Large Scale Instances of the Distribution Design Problem 49

In the compression process the samples are generated using the random se-
quential sampling method described in [24]. This method is very efficient, so it is
frequently used in data mining for sampling large databases [25].

For carrying out the experiments 6 test cases were generated. Each case includes
30 random instances which have the same characteristics. Table 7 describes the
characteristics of each case and includes an identifier for the case, the number of
DB-objects, sites and operations, the instance size, and the operations to sites ratio.

Characteristics

Case Objects (O) Sites (S) Operations (Q) Size in bytes Q/S

C1 20 3 100 19 820 33

C2 20 5 200 42 620 40

C3 30 7 300 93 252 42

C4 50 10 1 000 492 680 100

C5 20 3 1 000 192 620 333

C6 40 6 2 000 754 252 333

Table 7. Test cases for evaluating the transformation through progressive sampling

9.1 Reduction Degree and Solution Quality

This experiment provides evidence on the reduction degree and the solution quality
produced when transforming instances through progressive sampling. Each instance
of the test cases was solved by an exact algorithm and was compressed using the pro-
posed method. The compressed instance was solved by an exact algorithm and the
location of the DB-object that corresponds to the optimal solution of this instance
was determined. Finally, the value of this distribution was calculated using the
objective function of the original instance, and the error and reduction percentages
were calculated. After solving each test case, the sizes of the 30 original and com-
pressed instances was added, and the overall reduction percentage was calculated,
as well as the average error percentage from the 30 results.

Test cases with different probabilities of user access to sites were used. The re-
sults obtained were compared against those resulting from the application of a trans-
formation that uses a modified similarity metric. The modification consists of using
as similarity metric the access probability to operations instead of the joint probabi-
lity. The metric based on the joint probability proposed in this work, defined by
expression (7) in Section 7.2, is denoted by m1. The metric based on the access
probability to operations, defined by expression (5) in Section 7.2, is denoted by m2.
In the experiment the efficiency of the method was investigated for different access
probabilities.

Table 8 shows the experiment results, where the first column indicates the case
solved (C). For each one two rows of results are shown: the first presents the results
obtained when metric m1 is used, and second presents those obtained using met-
ric m2. The results are grouped according to the access probability of operations

50 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

to sites that was used for generating the case instances. For each access probability
two columns are included: the first presents the average error percentage (% E) ob-
tained by solving the 30 instances of each case, and the second presents the average
reduction percentage (% R) attained through compression.

Probability 10% Probability 20% Probability 30 % Probability 40%

C % E %R % E % R % E % R %E % R

C1 m1 73 65 79 72 33 73 2 72

C1 m2 220 78 161 73 18 73 4 74

C2 m1 92 70 71 85 9 85 1 84

C2 m2 65 88 59 83 8 83 1 84

C3 m1 32 92 40 89 7 88 1 88

C3 m2 34 93 46 89 7 89 1 89

C4 m1 18 93 8 96 2 96 53 96

C4 m2 15 96 11 96 2 96 53 96

C5 m1 12 97 8 96 21 97 84 97

C5 m2 11 94 9 96 21 97 81 97

C6 m1 5 98 7 98 83 98 211 98

C6 m2 6 97 6 98 83 98 210 98

Table 8. Results on the reduction degree and solution quality

Figures 12 and 13 allows to observe the effect of the type of user access on the
solution quality and the reduction degree obtained as a result of the method when
the joint metric (m1) is used.

0
10
20
30
40
50
60
70
80
90

100
110
120

1 2 3 4 5 6

Test cases

A
ve

ra
g

e
er

ro
r

(%
)

10 20 30 40 : Access probability

Fig. 12. Effect of access probability on quality

In these figures it is perceived that this transformation also shows its best perfor-
mance in situations of low access dispersion. The average error percentage is never
above 10 %. Figure 13 shows the high reduction degree attained and its growth as
the instance size increases.

Solving Large Scale Instances of the Distribution Design Problem 51

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Test cases

R
ed

u
ct

io
n

 p
er

ce
n

ta
g

e

10 20 30 40 : Access probability

Fig. 13. Effect of access probability on reduction degree

From Table 8 it can be observed that, if the metric based on access probability
to operations (m2), the performance is generally equal to the one obtained with the
joint probability metric (m1). The evidence generated by the experiment shows that
it is possible to carry out compression transformations of the instances with high
reduction degrees and with an acceptable reduction in solution quality.

9.2 Effect of DB-object Size

Since the compression method through progressive sampling assumes that the data
are already grouped, in this experiment the effect of DB-object size on the method
efficiency is evaluated. For each of the situations in which the method showed the
best performance (20 % access probability), the test cases were first solved consi-
dering only instances with fixed size DB-objects and afterwards considering variable
size DB-objects. In both tests the observed error percentage average and the overall
reduction degree were determined. The joint probability was used for defining the
similarity metric.

Table 9 shows the experiment results, where the first column indicates the case
solved (C). The results are presented in two-column groups. The first column pair
corresponds to cases for which the DB-object size is fixed, while the second pair
shows the results obtained for cases with variable DB-object size. For each type of
size considered, the first column shows the average error percentage (% E) obtained
by solving the 30 instances of each case, and the second column shows the average

52 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

reduction percentage (% R) attained by their transformation. As previously noted,
the access probability of operations to sites is 20 % for all the cases. As can be
perceived in Table 9, the method shows virtually the same performance with DB-
objects of fixed or variable size. These results provide experimental evidence on the
insensibility of the method efficiency with respect to DB-object size.

Fixed Size Variable Size

C % E % R % E %R

C1 79 72 120 74

C2 71 85 68 85

C3 40 89 47 90

C4 8 96 6 96

C5 8 96 7 96

C6 7 98 3 98

Table 9. Effect of DB-object size

10 CONCLUSIONS AND FUTURE WORK

This paper shows the feasibility of the proposed approach to solve large scale in-
stances of the distribution design problem. The general strategy includes, unlike
other approaches, an additional feature regarding compression of the instance to be
solved. A compression method consists of the application of a transformation of the
original instance into a new instance that requires fewer resources to solve it than
the original. The goal of the transformation is to obtain a reduction in the amount
of resources needed to solve the original instance, without significantly reducing the
quality of its solution. In order to preserve the quality solution, the transformation
condenses the access pattern of the original instance using data mining techniques.

A set of experiments, using instances configured with typical access patterns
found on the Internet, were conducted for evaluating quantitatively the size reduc-
tion that can be achieved and its effect on the solution quality. For instances with
access probability of 10 % and 20 %, the resource reduction is at least 65 % with
the clustering compression method. The minimal and maximal reductions are 65 %
and 99 %, which constitute a considerable reduction of resources. The error percent-
age of the solution varies from 0.10 % to 3.20 %, which shows that the degradation
is relatively small.

The progressive sampling method shows an interesting property, as the instance
size increases the reduction level increases too. Additionally, the resource reduction
with this method is always larger than 90 %. In contrast the precision is worse than
the one attained with the grouping method. Therefore, the feasibility of reducing
the resources required to solve large scale instances at the expense of a reasonable
loss in the solution quality, is demonstrated.

The learning method was evaluated with two different similarity metrics and con-
sidering variable size data DB-objects, obtaining similar results. The efficiency of the

Solving Large Scale Instances of the Distribution Design Problem 53

clustering algorithm was compared against two hierarchical clustering algorithms,
and our algorithm consistently outperformed the others. Given the encouraging re-
sults with both methods, we are currently working on the design and implementation
of efficient compression methods using other data mining techniques.

REFERENCES

[1] Garey, M.R.–Johnson, D. S.: Computer and Intractability: A Guide to the The-

ory of NP-Completeness. WH Freeman, New York 1979.

[2] Papadimitriou, C.—Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications 1998.

[3] Barr, R. S.—Golden, B. L., Kelly, J.—Steward, W.R.—Resende, M.:
Guide-lines for Designing and Reporting on Computational Experiments with Heuris-
tic Solving Large Scale Instances of the Distribution Design Problem Using Data
Mining 1025 Methods. Proceedings of International Conference on Metaheuristics for
Optimization, pp. 1–17, Kluwer Publishing, Norwell, MA 2001.

[4] Michalewicz, Z.—Fogel, D.B.: How to Solve It: Modern Heuristics. Springer
Verlag 1999.

[5] Pérez, J.—Pazos, R.A.—Frausto, J.—Romero, D.—Cruz, L.: Vertical Frag-
mentation and Allocation in Distributed Databases with Site Capacity Restrictions
Using the Threshold Accepting Algorithm. Lectures Notes in Computer Science,
Vol. 1793, pp. 75–81, Springer-Verlag 2000.

[6] Pérez, J.—Pazos, R.A.—Frausto, J.—Rodŕıguez,G.—Cruz, L.—Fraire,

H.—Mora, G.: Self-Tuning Mechanism for Genetic Algorithms Parameters, an Ap-
plication to Data-Object Allocation in the Web. Lectures Notes in Computer Science,
Vol. 3046, pp. 77–86, Springer-Verlag 2004.

[7] Ceri, S.—Navathe, S.—Wiederhold, G.: Distribution Design of Logical
Database Schemes. Proc. IEEE Transactions on Software Engineering, Vol. SE-9,
1983, No. 4, pp. 487–503.

[8] Apers, P.: Data Allocation in Distributed Database Systems. ACM Transactions
on Database Systems, Vol. 13, 1988, No. 3, pp. 263–304.

[9] Ozsu, M.—Valduries, P.: Principles of Distributed Database Systems. Englewood
Cliffs, N. J., Prentice-Hall 1999.

[10] Johansson, J.—March, S.—Naumann, J.: The Effects of Parallel Processing on
Update Response Time in Distributed Database Design. Proc. of the 21st Int. Conf.

on Information Systems, 2000, pp. 187–196.

[11] Huang, Y.F.—Chen, J.H.: Fragment Allocation in Distributed Database Design.
Journal of Information Science and Engineering, Vol. 17, 2001, No. 3, pp. 491–506.

[12] Visinescu, C.: Incremental Data Distribution on Internet-Based Distributed Sys-
tems: A Spring System Approach. Master of Mathematics in Computer Science The-
sis, supervised by Tamer Ozsu, University of Waterloo, 2003.

54 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

[13] Baiao, F.—Mattoso, M.—Zaverucha, G.: A Distribution Design Methodo-

logy for Objects DBMS. Distributed and Parallel Databases. Vol. 16, 2004, No. 1,
pp. 45–90. Kluwer Academic Publishers 2004.

[14] Papadomanolakis, S.—Ailamaki, A.: Autopart: Automating Schema Design for

Large Scientific Databases Using Data Partitioning. Proceedings of the 16th IEEE
Conference on Scientific and Statistical Database Management, p. 383, 2004.

[15] Agrawal, S.—Surajit, Ch.—Lubor, K.—Arunprasad, M.—Vivek, N.—

Manoj, S.: Database Tuning Advisor for Microsoft SQL Server 2005. Proceedings
of the Thirtieth International Conference on Very Large Data Bases 2004, Toronto,
Canada, Morgan Kaufmann 2004, pp. 1110–1121.

[16] TPC Benchmarks, http://www.tpc.org.

[17] Zilio, D.—Rao, J.—Lightstone, S.—Lohman, G.—Storm, A.—Garcia-

Arellano, C.—Fadden, S.: DB2 Design Advisor: Integrated Automatic Physi-
cal Database Design. Proceedings of the Thirtieth International Conference on Very

Large Data Bases 2004, pp. 1087–1097, Toronto, Canada, Morgan Kaufmann 2004.

[18] Chaudhuri, S.—Gupta, A.—Narasayya, V.: Compressing SQL Workloads.
SIG-MOD Conference 2002, pp. 488–499.

[19] Halkidi, M.—Batistakis, Y.—Vazirgiannis, M.: On Clustering Validation
Techniques. Journal of Intelligent Information Systems. Vol. 17, 2001, No. 2,
pp. 107–145, Kluwer Academic Publishers 2001 .

[20] Berkhin, P.: Survey of Clustering Data Mining Techniques. Accrue Software. 2002.

[21] Stamatopoulos, C.: Observations on the Geometrical Properties of Accuracy
Growth in Sampling with Finite Populations. FAO Fisheries Technical Paper 388
(ISSN 0249-9345), Food and Agriculture Organization of the United Nations, Rome
1999.

[22] Provost, F.—Jensen, D.—Oates, T.: Efficient Progressive Sampling. Proceed-
ings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM 1999, pp. 23–32.

[23] Fraire, H.: Una Metodoloǵıa para el Diseño de la Fragmentación y Ubicación
en Grandes Bases de Datos Distribuidas. Ph.D. thesis. Centro Nacional de Inves-
tigacin y Desarrollo Tecnolgico (CENIDET), Cuernavaca, Morelos, Mexico 2005.

[24] Vitter, J.: An Efficient Algorithm for Sequential Random Sampling. ACM Trans-
actions on Mathematical Software, Vol. 13, 1987, No. 1, pp. 58–67, ACM Press, New
York, USA.

[25] Jermaine, Ch.—Pol, A.—Hwang, S.: Online Maintenance of Very Large Sam-
ples. Proc. of the 2004 SIGMOD Int. Conf. on Management Data. 2004.

[26] Beeferman, D.—Berger, A.: Agglomerative Clustering of a Search Engine Query
Log. KDD 2000, pp. 407–416.

Solving Large Scale Instances of the Distribution Design Problem 55

Héctor Fraire received the Ph. D. degree in computer science

from the Centro Nacional de Investigación y Desarrollo Tec-
nológico Cuernavaca (Mexico) in 2005. His scientific interests
include metaheuristic optimization and machine learning.

Joaqúın P�erez received the Ph.D. degree in computer sci-
ence from the Instituto Tecnológico y de Estudios Superiores
de Monterrey (Mexico) in 1999. His scientific interests include
distributed databases design and metaheuristic optimization.

Rodolfo Pazos received the Ph.D. degree in computer science
from the University of California at Los Angeles (USA) in 1983.
His scientific interests include distributed databases design and
natural language processing.

Juan Frausto received the Ph. D. degree in electrical engi-
neering from the Institut National Polytecnique de Grenoble
(France) in 1982. His scientific interests include computational
methods in electrical engineering, optimization and simulation.

56 H. Fraire, L. Cruz, J. Pérez, R. Pazos, D. Romero, J. Frausto

David Romero received the Ph. D. degree in applied mathe-

matics from L’Université Scientifique et Medicale de Grenoble
(France) in 1978. His scientific interests include complex systems
and mathematical modeling and simulation.

Laura Cruz received the Ph.D. degree in computer science

from the Centro Nacional de Investigación y Desarrollo Tec-
nológico Cuernavaca (Mexico) in 2004. Her scientific interests
include metaheuristic optimization and machine learning.

