Computing and Informatics, Vol. 35, 2016, 338-368

TOWARDS A TRANSFORMATION APPROACH
OF TIMED UML MARTE SPECIFICATIONS
FOR OBSERVER-BASED FORMAL VERIFICATION

Nadia MENAD

University of Science and Technology of Oran Mohamed Boudiaf
Department of Computer Science

Faculty of Mathematics and Computer Science, Algeria

e-mail: nadia.menad@univ-usto.dz

Philippe DHAUSSY, Zoé DREY

UEB, Lab-STICC Laboratory UMR CNRS 6285
ENSTA Bretagne, France
e-mail: {philippe.dhaussy, zoe.drey}@ensta-bretagne.fr

Rachida MEKKI

University of Science and Technology of Oran Mohamed Boudiaf
Department of Computer Science
Faculty of Mathematics and Computer Science, Algeria

Abstract. Modeling timing constraints of distributed systems and multi-clock elec-
tronic systems aims to describe different time requirements aspects at a higher ab-
straction level. An important aspect is the logical time of the behavior of these
systems. To model the time requirements, a specification language with multiple
clock domains called Clock Constraint Specification Language (CCSL) has been in-
troduced, in order to enrich the formalisms of existing modeling tools and also to
facilitate the description and analysis of temporal constraints. Once the software
has been modeled, the difficulty lies in both expressing the relevant properties and
verifying them formally. For that purpose formal transformation techniques must
be introduced. However, it remains difficult to exploit initial models as such, and to

Transformation of Timed UML MARTE for Verification 339

integrate them into a formal verification process. This paper introduces a method-
ology and the original tool chain for exploiting UML MARTE models enriched with
CCSL specification. These will be integrated together with a range of tools for
expressing and verifying time constraints. We propose a more general translation
approach that verifies not only CCSL constraints implementations but also prop-
erties of the complete model including all the functional components. We evaluate
our approach with a case study.

Keywords: Formal verification, model-checking, CCSL time constraints, observer
automata

1 INTRODUCTION

In the field of modeling software architectures of control-command systems, dis-
tributed systems or multi-clock electronic systems, the specification of systems is
often associated with temporal constraint specifications. These systems are often
critical and the requirements to be respected during the modeling step, concern not
only the determinism but also temporal constraints at a functional level. In the sys-
tem development process the designers look for methods and languages that allow
them to describe their architectures throughout the cycle and at various levels of
abstraction. At each level, the modeling of such systems should allow the expression
and the manipulation of time requirements, and the evaluation of the accuracy and
efficiency of applications in terms of temporal and measurable requirements.

For this purpose, the concept of abstract modeling of logical clocks has been
introduced with the Clock Constraint Specification Language (CCSL) [1] within
MARTE [2] and has been adopted by the OMG [3]. CCSL is a language to de-
fine causal, chronological and temporal relationships. It aims to complement the
existing formalisms and to provide models that can be analyzed so as to assess their
accuracy with regard to requirements expressed by the designer. It is therefore
essential to adopt temporal analysis approaches by integrating verification and val-
idation processes based on robust formal notions, in order to meet current quality
requirements of these systems.

To address this issue, several studies have proposed an engineering approach
founded on models, and the use of semi-formal notations such as UML, enriched with
formal notations. For example, the UML MARTE profile aims to express temporal
constraints on UML models. The models that are built must not only be simulated
but also formally analyzed so as to check the temporal requirements defined by the
designer. However, few approaches integrate formal verification to UML MARTE
models. In this study, we use model-checking verification techniques [4, 5] to enable
formal analysis of requirements on UML MARTE models. These techniques have
become highly popular due to their ability to automatically confirm software model
properties. A range of model-checking tools have been developed for this purpose [6,

340 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

7,8, 9, 10]. However, these techniques are difficult to exploit for both expressing
and verifying the functional properties and the time properties of a software model
under development.

This paper is an extension of a former publication [11] which studies the associ-
ation of CCSL constraint specification and a model-checking tool named Observer-
Based Prover (OBP)! [12]. The verifications carried out by OBP are based on the
exploration of programs expressed in a high-level language dedicated to the specifi-
cation of distributed systems called FIACRE? [13].

We have defined a transformation process to verify that UML MARTE mod-
els extended with CCSL specifications guarantee functional and time properties on
their behavior. These properties are expressed as invariants and observer automata
in a language called Context Description Language (CDL). The automatic transfor-
mation of UML MARTE models to FIACRE code is described in other paper [14]
and not detailed here. Only the transformation of CCSL properties is described in
this article. Our contributions are as follow:

e We provide a verification methodology and tool-chain to facilitate the verifica-
tion of distributed system models.

e We define a transformation approach to generate a FIACRE model from a CCSL
specification integrated in UML MARTE models.

e We show how to specify time properties in the form of CDL observer automata,
given as input of the OBP tool together with a specification of MARTE models.

e We provide a full description of a case study and we show a quantitative exper-
iment of our verification process on this case study.

In this article, we integrate our transformation process into a general verification
methodology that verifies not only CCSL constraints implementations, but also
properties on the complete model including all the functional components. We
provide a detailed description of a case study defined in MARTE.

This paper is organized as follows: Section 2 presents related work in formal
verification of CCSL constraints. We present the context of our approach and the
CCSL language in Section 3. An illustrative case study is presented in Section 4 and
the principles of transformation of CCSL constraints into FIACRE are introduced in
Section 5. Section 6 describes the CDL specification of properties based on observers
and invariants (scenarios). In Section 7, we introduce and discuss some results of
property proofs. Our conclusions are in Section 8.

2 RELATED WORK

This section is divided into three parts. We have separated each part according to
two criteria, which are:

! http://www.obpcdl.org
2 For a detailed description the reader can refer to the FIACRE documentation on:
http://projects.laas.fr/fiacre/papers.php

Transformation of Timed UML MARTE for Verification 341

1. input specifications of the transformation process for formal verification,

2. time specifications consideration in the transformation process.

The first part 2.1 concerns transformation approaches dealing with transforming
general specifications (UML, UML MARTE, etc.) into the input language for for-
mal verification purposes. The second part 2.2 deals with approaches dedicated
to extending a formal language with logical time for verification. Finally, the last
part 2.3 is dealing with approaches which concern only the transformation of CCSL
specifications into a formal representation to be verified by a model checker tool.

2.1 Transforming a Specification Language into the Input Language
for Model Checking Tool

A number of model checking based techniques have been proposed for specifying
and analyzing temporal constraints in several behavioral models, such as activity
diagrams and state machines (e.g. [15, 16, 17, 18, 19, 20]). In order to apply such
techniques, the semi-formal specification models must be transformed to the tool-
specific input languages. Many approaches to transform a specification language into
an input language of adequate model-checking tool have been proposed. For exam-
ple, Ge et al. present a verification-driven approach in [15] consisting in translating
UML MARTE Activity Diagrams into Time Transition System (TTS) in order to
guarantee the correctness of time properties. The authors use a formal semantics of
Time Petri Nets (TPN) to avoid the state space explosion on the TIme petri Net
Analyzer (TINA) model-checking tool. This approach is limited as it only verifies
a particular type of properties (i.e. synchronization and schedulability).

In [16], Ge et al. present a framework dedicated to time property verification
for UML MARTE. This work relies on a property-driven transformation from both
UML architecture and behavior models to executable and verifiable TPN models,
by translating time properties into a set of property patterns corresponding to TPN
observers. Another approach to formalizing and validating temporal requirements
is proposed by Cimatti et al. in [21]. A formalism for representing and analyzing
requirements using the NuSMV [10] model checker is proposed, where temporal
constraints are expressed by means of temporal operators, resulting in a fragment
of first order temporal logic. The formalism builds on class diagrams, and combines
fragments of first order logic with temporal operators to describe the evolution of
scenarios. The drawback of the approach is that only a part of the scenario is
considered to be controllable.

2.2 Extending a Formal Language with Discrete Time

Bosnacki et al. proposed a discrete time extension of Promela for concurrent systems
in [22]. A variable named “timer” is defined and corresponds to the discrete time
countdown timer. However, the proposed extension would be difficult to use in order
to express the coincidence clock tickings. Bosnacki et al. also proposed another

342 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

work, which can can be found in [23], that models time specifications from Algebra
of Communicating Processes, (ACP) by macro definitions on the level of Promela.
This work presents an extension of Promela and the SPIN model checker [6] with
discrete time that provides an opportunity to model systems the correct functioning
of which crucially depends on timing parameters.

2.3 CCSL Language Transformation for Verification

Several approaches based on model transformation have been published to enable
the formal verification of CCSL time requirements. This includes work by Mal-
let [24], who presented a technique for standard VHDL based design environment
and synchronous languages (Esterel). This work addressed VHDL generating observers to
check the compliance of a CCSL specification. The paper defines a state-based semantics
for some CCSL operators based on labeled transition systems.

Peters et al. presented a work in [25] in which they propose to translate CCSL into
SystemC which allows the simulation of the specified clocks in SystemC. The approach
adds a TimeController, which corresponds to one further module for handling the clock
behavior. The disadvantage of this approach is that the user has to implement the policy
interface manually, which is not desired during the process of specification.

Yu et al. [26] propose a framework for translating CCSL specifications into dynamic
systems, which are handled using the SIGALI [27] model-checker to verify specified con-
straint relations. This approach only focuses on the implementation of CCSL constraints
with SIGNAL programs. Additionally, the handling of the non-deterministic parts cannot
be chosen in this work, as polychrony can only be generated after eliminating the non-
determinism. The approach is too restrictive, as it does not take into account mixed clock
expressions, that deal with multiple future scheduled ticks. So the approach does not
resolve all existing CCSL constraints. Moreover, the generated executable controller only
enforces the satisfaction of the specified timing constraints without considering functional
properties.

André [28] proposed an approach for implementing observers [29] for the formal veri-
fication of CCSL specifications. Observers, encoding CCSL constraints are translated into
Esterel code. Mallet et al. [24] describe a technique to generate observers from a CCSL
specification. In this approach, a reachability analysis allows the determination of whether
or not an observer has reached an error state. The Times Square Environment [30], dedi-
cated to solving CCSL constraints and computing solutions, implements a code generator
in Esterel. The tool allows the detection of inconsistencies in CCSL specifications such
as deadlocks. It provides the user with chronograms showing the different temporal evo-
lutions of executions to facilitate the development of those specifications. However, the
environment is a simulator that allows the analysis of execution traces but it does not
verify the most general properties on execution graphs as do model-checkers.

Gascon et al. [31] contribute to the comparison of CCSL and Property Specification
Language, PSL [32] expressiveness. They identify CCSL constructs that cannot be ex-
pressed in PSL temporal logic. The article also designates the class of PSL formulas that
can be encoded in CCSL. It defines a translation between fragments of CCSL and PSL
using the automata formalism as an intermediate representation. However, this approach
does not take into account the CCSL constructs that cannot be expressed in PSL.

Transformation of Timed UML MARTE for Verification 343

In [33], Yin et al. propose a translation of CCSL specifications into a Promela model
to formally verify the CCSL constraints by the SPIN model checker. We have been in-
spired by this work to design the automatic translation of CCSL constraints into FIACRE
automata. Also, in this approach the properties to be checked are expressed in Linear
Temporal Logic (LTL) logic. The vUML [34] tool automatically converts UML state ma-
chines to Promela specifications and then invokes the SPIN model checker to verify the
desired properties. Although the system is modeled as UML state machines, the temporal
properties are specified in LTL. UML and OCL analysis tools, such as OCLE [35] and
USE [36] provide support for validating structural properties. However, it is difficult to
express specific time constraints with OCLE and USE, so these latters are limited when
analyzing temporal properties. We propose to express properties with the CDL language
with observer automata which allow a better expressiveness. For example, in our paper,
we show a property (illustrated in Figure 12) that would be tedious to express in LTL.

Another work by Romenska et al. [37] deals with CCSL unbounded operators. More
precisely, it defines a state-based representation of CCSL operators. In this approach,
a lazy evaluation is used to represent intentionally infinite transition systems, by providing
an algorithm to make the synchronized product of such transition systems with studying
its complexity. Recent work has been proposed by Suryadevara et al. in [38], that presents
a technique for transforming MARTE CCSL mode behavior into Timed automata for
model-checking using the UPPAAL tool, which enables verification of both logical and
chronometric properties of the system. This work only considers time specification and
analysis. In contrast, we have proposed a more general translation approach that verifies
not only CCSL constraints, but also functional properties. Furthermore, in our approach,
these properties are separated from the application model thanks to a high level language
(CDL) which facilitates the separation of the concerns. These properties, whether time-
related or functional, are expressed in the CDL language [39]. In addition, we use the
notion of contexts, also expressed in CDL, which in some cases allows to reduce the
combinatorial explosion during the exploration of models.

3 PRINCIPLES OF THE APPROACH

The goal of our work is to integrate formal verification techniques with real-time systems
described with semi-formal modeling languages such as UML, with respect to behavior
and time requirements that must be guaranteed by such systems. To do so, we define
an approach that is based on a tool-chain (Figure 1) that bridges the gap between UML
MARTE and formal specifications. In this section, we first present our approach. We then
provide a definition of time constraints specified by the CCSL language.

3.1 A Tool-Chain for the Verification of Models

The entry point of our tool-chain (Figure 1) is a semi-formal specification model of a real-
time system architecture (the structural model) and its behavioral model using the UML
MARTE profile, a language that is dedicated to the specification of real-time systems. The
UML MARTE models can be enriched with time constraints that describe causality (i.e.,
relations between the input/output states of a system), chronological and timing properties
on the models. These constraints are described in a dedicated language called CCSL, which

344 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

has been defined as an annex of the UML MARTE profile. An UML MARTE model aims
to describe the requirements that are written by the user for whom the real-time system
model is designed. These requirements informally describe behavioral properties that
should be guaranteed by the real-time system model.

Semi-formal
specification Formal
- Automated P
(UML-Marte) translation specification
Time constraints (Fiacre)
(ccsL)
Verification error
(OBP Explorer) report
Time
properties
Requirements —)[m]—) functional
properties
(CDL)

Figure 1. Overview of the proposed model transformation

Tooling of Our Approach

To be verified, the UML MARTE models need to be transformed into a formalism for
which verification tools exist. To do so, our approach consists of a tool-chain (Figure 1)
that leverages three elements:

1. CDL, a language to formally express requirements of the system,
2. FIACRE, a tool to model the system as a set of automata and
3. OBP, a tool to explore a system with respect to CDL properties.

e CDL (Context Description Language) is a language to formally specify properties
on the behavior of a system. CDL defines high-level syntactic constructs that ease
the expression of properties in terms of input/output states, representing scenarios
of execution that must be verified by a FIACRE specification. In so doing, CDL
contributes to bridging the gap between the user requirements and the formal model
of a system.

e FIACRE is a language for defining state-machine based representations of real-time
systems, aimed at being used as inputs for formal verification and simulation purposes.
The choice of FIACRE for our approach is driven by (1) the need to formally describe
real-time systems with a formal semantics, (2) the need to make models (in the sense
of model-driven engineering) of systems amenable to verification.

e The OBP tool® is based on model-checking techniques and is aimed at the exploration
of the execution states of a model. It takes CDL and FTACRE specifications as its

http://www.obpcdl.org

Transformation of Timed UML MARTE for Verification 345

inputs. OBP generates an exploration graph representing all the possible behaviors of
a system, given some input data representing the environment with which the system
should interact, and returns an error report (e.g. by means of counter-examples) when
CDL properties are violated.

The UML MARTE specification is automatically translated into FIACRE together
with the CCSL constraints with which it is associated. The translation from UML MARTE
(without CCSL) to FIACRE is described in [14, 40] and is not the subject of this paper.
The requirements are formalized into CDL properties. These properties are either func-
tional (i.e., they express a functionality that the system must achieve), or time-related (i.e.,
they express timing constraints that the system should take into account when achieving
a functionality).

Finally both the generated FIACRE specification and the CDL properties are given as
inputs to the OBP tool, which verifies the FIACRE specifications against the CDL proper-
ties. We use the OBP tool to conduct our experiments and verify that a system (initially
described in MARTE) containing time constraints (expressed in CCSL) guarantees the
expected requirements (expressed in CDL).

3.2 Time Constraints and the CCSL Language

CCSL [1], introduced as an annex of MARTE, is a declarative language used to specify time
constraints by means of binary relations between events based on logical clock concepts.
CCSL is based on a mathematical model giving a formal semantics to time. In a MARTE
model, any event (for example a communication, transmission or reception action, as
computing start) may be used to define a time base, by means of logical clocks (clock).
A clock represents a set of occurrences of discrete events, called instants. These instants
are strictly ordered and provide a temporal reference.

For modeling distributed applications (distributed systems or digital circuits) it is
necessary to identify a set of temporal or clock repositories and causal relations between
events. Logical clocks can be referenced in the expression of temporal constraints to express
causal relations such as synchronous or precedence constraints. These clocks can also be
used to provide sampled clocks (sub-clocks) or filtering (see [28] for the specification of
a set of relations). This vision of time allows the manipulation of the simultaneity notion
in a succession of discrete instants [41]. In a given instant, events can be executed; these
events are causally inter-dependent and considered to be simultaneous just like the instant
reaction concept, the abstraction exploited in synchronous languages [42].

4 ILLUSTRATING CASE STUDY

We consider a data acquisition circuit (C), with two channels, consisting of acquisition
components (Sensor; and Acg;) (¢ € {1,2}), an acquired data processing component
(Comput) and a filter (Filter) sampling the calculated values. Each acquisition channel ¢
is associated with a pair of components Sensor; and Acg;. We assume that, for each
channel 4, the component Sensor; receives data from the environment (from a device
Dew; outside the circuit) and transmits the value to Acg; through a shared memory M;.

346 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

Each Dev; sends N data data,, k € [0... N —1]. Acg; provides Comput with each datum
datag, via a synchronous communication? port portAcg;.

Comput applies the addition of datair and datagi respectively received from Dewy
and Devy and provides the Filter with the sum via a fifo. Filter provides the sampled
data (one in every three values) to Devyyt, external to the circuit.

i et i readl
Devl Sensorl write] ' Meml Acql
write2 | 1 read2
Dev2 Sensor2 > Mem2 ———> Acq2
filterOut comput
DevOut Filter Comput

Figure 2. Circuit architecture C

The temporal requirements associated with this circuit are:

e Reqla: Each acquired datum data; is written in the memory M; before being read by
Acq.

e Reqlb: Each acquired datum datag is written in the memory My before being read by
Acqgy.

o Req2: Comput starts the calculation of a sum after two receptions of data;k from each
Acg; (with i € {1,2}).

e Req3: Filter provides the environment with a sampled value from a sequence of one
in every three values calculated by Comput.

In summary, all the timing requirements for our case study are specified using the
CCSL language as follows:

write; alternates With read; (Reqla)
writey alternates With reads (Reqld)
read; strictPrec comput (Req2a)
reads strictPrec comput (Req2b)
filterOut = comput filteredBy (001)” (Regq3)

In addition to the above time constraints, we express the requirements that are specif-
ically associated with the expected behavior of the circuit. For example, we can express
the following requirement:

4 Synchronous communication uses passive port, it needs synchronization with other
ports to initiate an interaction.

Transformation of Timed UML MARTE for Verification 347

o Regd : the data result;,j € [0...(N — 1)/3] provided to the environment after the
sampling operation (one value in 3) must have the values datayy, + datag, with k =
(3x7)+2.

4.1 The MARTE Model

Figure 3 illustrates the model of this circuit using the concepts of the MARTE profile.
A package named CircuitApplication contains the description of the application circuit.
We consider Sensorl, Sensor2, Acql, Acq2. Comput, Filter, Devl, Dev2 and DevOut as
active objects (stereotyped with RtUnit). Each of these units has a possibility to invoke
other real-time actions, such as sending and receiving data.

CircuitApplication |
«RtUnit »
Sensorl =2 N
«RtUnit » EY
«Clock » writel:0p_Writel B Acql
RtUnit T =]
« Dc:ll ? N « DataPool » B « Clock » read1:0Op_Read1
FifoFrom_Devl1 : integer (e} N

{DataPool_Bindablelnstance.ordering (FIFO)} \m portAcql

« SharedDataComResource »

{SharedDataComResource_Classifier.writeServices (Op_Writel)}

{SharedDataComResource_Classifier.readServices (Op_Readl)}
«RtUnit » «RtUnit » =
Dev2
Sensor2 «RtUnit » =
= Acq2
«Clock » write2:0p Write 2 & —_— 4
« DataPool » B3 B «Clock » read2:0p_Read2
FifoFrom_Dev2 : integer
{DataPool_BindableInstance.ordering (FIFO)}

« SharedDataComResource »
M2

{SharedDataComResource_Classifier.writeServices (Op_Write2)}
{SharedDataComResource_Classifier.readServices (Op_Read2)}

ReceiveFrom [Acql

FifoFrom_Filter : integer

{DataPool_Bindablelnstance.ordering
(FIFO)}

« DataPool »

= ReceiveFrom_Acq2
«RtUnit » n LI
DevOut «RtUnit» = & «RtUnit » =]
Filter Comput
« DataPool » =
&l « k «Clock » filter:Op_Filter 5

« Clock » comput: Op_Comput

FifoFrom_Comput : integer
{DataPool_Bindablelnstance.ordering (FIFO)}

Figure 3. Circuit architecture

The CircuitApplication package also introduces two shared resources called M1 and
M2, stereotyped by SharedDataComResource. We define two read and write services that
read/write the shared data as the objects Op_Read! and Op_Writel. Comput and Acql
(resp. Acq?2) exchange data with synchronous communication. To specify this communi-
cation, we associate Comput with two ports ReceivedFrom_Acql and ReceivedFrom_Acq?2,
and we associate Acgl (resp. Acq2) with the portAcql (resp. portAcq2) port. We then
connect portAcgl and portAcg?2 to ReceivedFrom_Acql and ReceivedFrom_Acq2), respec-
tively. When a computation is completed, the Comput object generates a datum that is
transmitted to the Filter object through a dedicated port which is connected to a data-
Pool (contained in Filter) named FifoFrom_Comput. This dataPool is characterized by

348 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

the attribute ordering which is set to FIFO value to specify the kind of the asynchronous
communication.

« ClockConstraint »
{ Constraint: readl AlternatesWith writel;
o read?2 AlternatesWith write2;
« TimedDomain) readl StrictPrecedence comput;
read?2 StrictPrecedence comput;

TimedDomain filter = comput FilteredBy (001); }
« ClockType» =
L_clock

{ClockType_Class.isLogical}
ClockType Class.nature (discrete)}

EE = =
« Clock» « Clock» « Clock»
writel: L clock write2: L. clock readl: L clock

== | |5 =
« Clock» « Clock» « Clock»
read2: L. clock comput: L clock filter: L clock

Figure 4. TimedDomain and CCSL specifications

All the active objects provide real-time actions through their interface which carry
operations stereotyped by rtAction® or rtServiceS (not shown in Figure 3). These oper-
ations are defined in the Op_Writel, Op_Write2, Op_Readl, Op_Read?2, Op_Comput and
Op_Filter interfaces, bounded to dedicated ports. These ports also carry a clock stereo-
type (typed by clock specifications), indicating that the actions/services of the provided
interface operations are considered as events which are invoked by those clocks. For in-
stance, Acql accesses the shared resource object (M1) by a reader service, invoking the
reading real-time action. A boundary port can be connected to a port owning an interface
so as to relay an action/service invocation or a data flow to a real-time unit. In that case,
port directions are relayed as well.

5 A real-time action is an action that specifies real-time characteristics. It defines
a synchronization kind related to the execution of the action.

6 A real-time service is a service specialized with the additional pre-defined attributes
of real-time constraints, which are applied for all the invocations of the rtService.

Transformation of Timed UML MARTE for Verification 349
4.2 The CCSL Constraints

Once the application model has been described, we need to define a set of clock relations
between the the different events of the system involved. These relations describe the
desired access policies, e.g., preventing readers and writers to concurrently access the
same resource. To do so and as illustrated in Figure 4, a package named TimedDomain
specifies a clock for each operation. Specifically, each clock is an instance of the L_Clock
class, expressing a logical clock, which we defined with the MARTE Clock Type stereotype.
In this example, only one time domain is considered.

CCSL constraints are defined within the specific ClockConstraint MARTE stereotype.
Each constraint defines a relation between the clocks as defined in the TimedDomain
package. For example, an alternance between read and write operations is required in our
application model. Such dependency between the read and write operations of Sensori
(resp. Sensor2) and Acql (resp. Acq2), is specified by the AlternatesWith constraint.
Another constraint (FilteredBy) indicates that filter is derived from Comput, with a pattern
value equal to 001.

5 TRANSLATION OF MARTE-CCSL MODELS
INTO FIACRE PROGRAMS

This section presents the FIACRE language and the principles of the translation of
MARTE models enriched with CCSL constraints into FIACRE programs.

5.1 Overview of the Translation Process

We present here the principles of the translation of MARTE models enriched with CCSL
constraints (Figure 5a)) into FIACRE code (Figure 5b)). We illustrate these principles
on the circuit architecture introduced in Section 4. Specifically, we detail how the CCSL
constraints (Reqla, Reqlb, Req2a, Req2b and Req3) are transformed into FIACRE pro-
cesses.

The translation consists in generating the following FIACRE elements (Figure 5b)):

a set of processes corresponding to the active objects of the MARTE model,
processes corresponding to the CCSL constraints,

a Scheduler process for synchronizing the execution of the generated processes and

L s

a FTIACRE component describing the architecture containing all the generated pro-
cesses.

The translation method of CCSL constraints into FIACRE processes and the gener-
ation of the Scheduler process are inspired by the work described in [33]. In the next
sections, we detail how FIACRE code is generated.

5.2 Mapping a MARTE Model into FIACRE

The transformation of the UML MARTE concepts into FIACRE constructs is summarized
in Table 1. Note that we do not explain the complete transformation principle, which has

350 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

CCSL . . .
- Constraint Constraint Constraint
constraints oo o
process,; process, process,
RtUnit,
Automatic FIACRE
translation Code Scheduler
RtUnit, | | °~ | v
 syne, L syne, | sync,
) v v v
RtUnit, Functional Functional | , . ,| Functional
process;, process, process,
UML-MARTE
a) b)

Figure 5. Global view of the translation principles

been the subject of another work (see [14, 40]). The active objects of the UML MARTE
model (i.e. the RtUnit elements) correspond to the functional parts of the model. They
are generated into FIACRE processes that we call functional processes. In our case study,
the translation is applied to the following RtUnit elements: Sensorl, Sensor2, Acql, Acq2,
Comput, Filter.

The CCSL constraints that are attached to the MARTE model are also translated
into FTACRE processes, named constraint processes. The DataPool elements (for the
asynchronous communication) are translated into the FIACRE predefined queue data
structure, and the Shared resource becomes a shared variable associated to the FIACRE
processes corresponding to the involved RtUnit elements. The two ports used for the
synchronous communication of two RtUnit elements are translated into the FIACRE pre-
defined port constructs. Finally, the ports associated with an interface are translated into
a FIACRE conditional statement that we detail in Section 5.4.

MARTE FIACRE
RtUnit functional process
Clock Constraint constraint process
DataPool queue structure

SharedDataComResource shared variable

Synchronous port oc—ao synchronous communication port
Port with interface o—o triggering port

Table 1. Mapping from MARTE to FIACRE concepts

Transformation of Timed UML MARTE for Verification 351

In our case study, the objects Devy, Devy and Devyy represent actors executed in
the environment of the circuit. Their behavior is expressed in the CDL language, as we
will see in Section 6.2.

5.3 Mapping a CCSL Time Constraint into FIACRE

We translate each CCSL constraint into a FIACRE process that implements the corre-
sponding automaton. We call this process a constraint process.

These constraint processes are synchronized by a generated specific process, the Sched-
uler, which is described in Section 5.4. The Scheduler synchronizes the constraint processes
via three ports, start, update and end, for the activation of the transitions in the constraint
automaton. For example, in our case study, the transitions of AlternatesWith process are
synchronized with the Scheduler via the ports startA, updateA and endA. Alternates With
automaton updates the values of clock_state that allow the triggering of process Sensori
and Acql (respectively Sensor2 and Acg2) by ports sync_pwl and sync_prl (respectively
sync_pw?2 and sync_pr2) (cf Section 5.4.1).

The automaton corresponding to Alternates With constraint is shown in Figure 6. The
encoding principle for the two other constraints, strict precedence and filtering is similar.

updateA/

startA/
write 1
not read i

startA/
not write i
read i

updateA/

Figure 6. Automaton for the constraint write; alternates With read;

5.4 Interpreting Time Constraints with Scheduler

The role of the Scheduler process is to determine the order of execution of functional
processes based on the constraint process state. The interpretation of time constraints is
done through a Scheduler. It is in charge of triggering the functional processes according
to the constraint states.

5.4.1 The Scheduler and Connection with Processes

Figure 7 is an excerpt of the FIACRE program generated for two functional processes
(Sensorl and Acql) and a constraint process (alternates With). Dash lines represent syn-
chronization links. For example, Sensori is synchronized with the Scheduler via the port
sync_pwl to execute a writing operation of a given datum data in memory M1 shared
between Sensorl and Acql processes.

352 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

CCSL .
writel alternatesWith readl Constraint P r(?cess
AlternatesWith1 read/
write
startAl, updateAl, endA II
(from Devl) .
Ny« RtUnit » rea}?/ ________________
Sensorl . FIACRE write E Shared var E
Automatic Scheduler €~ > tab_Clock[] |
i translation Code [
o E —_— e Vo
[1 sync_pwl sync_prl i
1 i
Process i Shared E Process
(to Comput) .)
’ o -omP | « RtUnit » Sensorl _>E var §\> Acql
Acql oML
portAcql
fifoToSensorl
UML-MARTE T(from Devl) (to Comput)
Synchronization
writel, clockNo: 0, sync_pw1, none to Sensorl;
readl, clockNo: 1, sync prl, none to Acql;
a) b)

Figure 7. Illustration of a part of the generated FIACRE program

Acql and Comput communicate through the portAcql port with an integer value.
Comput and Filter communicate through a shared variable fifoFromComput of the fifo
type. Filter is synchronized with the Scheduler via sync_filter for filtering operation and
sync_filter carries a boolean value required by the Filter behavior. The Scheduler process
and constraint processes share logical clocks (Table tab_Clocks structure, cf Section 5.4.2)
that correspond to events occurring in the circuit computation (writel, write2, readl,
read2, comput, filterOut).

5.4.2 The Scheduler Behavior

The Scheduler process consists in an infinite loop. For each iteration of the loop, it executes
four steps as shown in Figure 8 a):

1. The Start step for the declared clocks initialization and the activation of constraint
processes.
2. The FEnd step for the synchronization at the end of the constraint processes.

3. An active phase during which the Scheduler synchronizes with each functional process
so that each process runs.

4. An intermediate phase Update is interposed between the Start steps and End steps to
synchronize some constraints if required.

Transformation of Timed UML MARTE for Verification 353

An iteration is called an execution period and corresponds to the time between two Start
steps. The algorithm executed by the Scheduler is repeated to simulate the coincident
moment sequence (an instant). Interleaving or simultaneous execution of functional pro-
cesses is simulated by synchronization between the Scheduler and the functional processes
involved, at every temporally bounded instants.

For example, Figure 8 b) shows two clocks ck1 and ck2 that are activated in each case
at the same time. ck3 alternates with ckl or ck2.

Triggering synchronization instant
of the functional processes ((Active |
ckl e * D
Evaluation and Csz . | . | . —>
activation of all clocks ck3— ; ° : >

which are associated
with the k ™ instant

Clock value :T‘ Tactive 'T‘ Tactive'f
initialization start| end start | end start
Synchronization

date date
(k ™ instant) P upea

Figure 8. Scheduler process automaton

Each event in the model gives rise to a clock which is located by a FIACRE structure
tab_Clocks. This structure is declared as follows (Listing 3):

type T_CLOCK is record clock_state:nat, enable_tick, dead: bool end
type T_ARRAY_CLOCK is array 7 of T_CLOCK
tab_Clocks: T_ARRAY_CLOCK

Listing 3. FIACRE declaration of structure T_-CLOCK.

In each iteration of the Scheduler, each constraint process updates its variable
clock_state which takes the integer values 0, 1 or 2, in accordance with the execution
of the automaton it encodes. Once the process has executed a constraint, the Scheduler
evaluates this variable and sets another variable enable_tic to either true or false. If
enable_tic is evaluated as true, the functional process associated with the event is synchro-
nized with the Scheduler, which triggers an execution step in the functional process (for
example with sync_pw! for triggering Sensor! as shown in Figure 7). The assessment of
the value enable_tic is set to true only if the clock_state value is equal to 2. In other cases,
enable_tic are set to false. The value dead is set at true when the associated clock should
not be active in the rest of the execution.

The Scheduler process that is generated thus includes the following code (Listing 4)
which is executed during the Active step:

354 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

. if (tab_Clocks [0].enable_tick) then sync_pwl
elsif (tab_Clocks [1].enable_tick) then sync_pril
elsif (tab_Clocks [2].enable_tick) then sync_pw2
elsif (tab_Clocks [3].enable_tick) then sync_pr2
elsif (tab_Clocks [4].enable_tick) then sync_comput
elsif (tab_Clocks [5].enable_tick) then sync_filter (true)
elsif (tab_Clocks [6].enable_tick) then sync_filter (false)
end ...

Listing 4. Excerpt of FIACRE code of the Scheduler for functional process synchronization

5.5 Generated FIACRE Architecture

Figure 9 illustrates the FIACRE architecture of our case study, resulting from the trans-
lation of the MARTE /CCSL source model.

In our case study, the code generator produces 12 processes: the Scheduler, 5 constraint
processes (2 for alternates With, 2 for strict Prec, 1 for filter By) and 6 functional processes
(Sensorl, Sensor2, Acql, Acq2, Comput and Filter). Figure 9 shows that the Scheduler
process is connected to each functional process via synchronous communication ports
called triggering commaunications. The Scheduler controls the execution of the connected
functional processes and gives an explicit rhythm of execution of the different processes.
The functional processes Sensorl, Sensor2, Acql, Acq2, Comput and Filter are respectively
synchronized with the Scheduler via sync_pwl, sync_prl, sync_pw2, sync_pr2, sync_comput
and sync_filter ports. For example, Sensor! and Acql are respectively synchronized by the
Scheduler for writing and reading operations in M'1. Likewise, Filter is synchronized with
the Scheduler via sync_filter for the filtering operation, where sync_filter carries a boolean
value.

In addition, the Scheduler is connected to all the declared constraint processes via
the shared Table tab_clock, in order to update the clock state values according to the
constraints states to make a decision if such clock can tic or not in each specific instant.

Generation of Top Level Program

The processes representing MARTE elements, the CCSL constraints, and the interpre-
tation of these constraints are finally instantiated in a FIACRE component called C,
and specified as independent running entities through the || operator. The scheduler,
the constraint processes and the functional processes are all synchronized through their
communication ports.

As a result of our generation algorithm, the codes of functional processes, constraint
processes and the Scheduler are built within C.

To enable automatic code generation, we must explicitly declare clock numbers (cloc-
kNo) and links between clocks and synchronization triggers provided by the Scheduler.
For example, the readl clock is associated with the sync_prl synchronization port to syn-
chronize the first instance (Acg:1) of the Acq process. The filter clock is associated with
sync_filter synchronization port which carries a boolean value. For this last clock, two
clock numbers are declared, one for each boolean value. These attributes are specified as

Transformation of Timed UML MARTE for Verification 355
AlternatesWith1 AlternatesWith2 StrictPrecl StrictPrec2 FilteredBy
1 i Shared var E
fifoToSensorl Sensorl | IRV Scheduler <_>: tab_Clock [] !
fifoToSensor2 Sensor2 €---{------ S ____________________ pooooeseeeennnnnonnnees |
; ; ! sync_filter;
sync_pw2 i syne_prl i sync_comput '
F-%-- E portAcql W :
: M] r—— Acql ‘{Il
o1 !
; fifoToFilter .
sync_pr2; Comput Filter
] portAcq2
1 Mz —_—>
___1 Acq2
fifoFromFilter

Figure 9. Structure of the generated FIACRE code

follows (Listing 5)7:

Synchronization
writel: clockNo: O
readl: clockNo: 1
write2: clockNo: 2,
read2: clockNo: 3
comput: clockNo: 4
filterOut: clockNo:

clockNo:

synchro:
synchro:
synchro:
synchro:
synchro:

sync_pwl none
sync_prl none
sync_pw2 none
sync_pr2 none

to:
to:
to:
to:
sync_comput none

Sensor:1;
Acq:1;
Sensor:2;
Acq:2;

to: Comput:1;

5, synchro: sync_filter bool:true,

6, synchro: sync_filter bool:false to: Filter:1;

Listing 5. Explicit declaration of clock numbers and links between clocks

and synchronization triggers

6 SPECIFICATION OF PROPERTIES AND CONTEXTS USING CDL

In order to check the requirements expressed for a real-time system model, it is necessary
to specify them as formal properties that can be interpreted by the targeted model checker.

" The complete code of the case study can be found on the site http://www.obpcdl.

org.

356 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

Additionally, to validate the requirements, the environment in which the system is aimed
to evolve may need to be described. In our approach, we use the CDL language

1. to express the properties of the system model as observer automata, and

2. to specify the interaction between the environment and the system model.

In doing so, we are able to achieve two complementary objectives: one to verify that
the implementation of CCSL constraints is correct, the other to ensure that the func-
tional parts of the circuit (Sensorl, Sensor2, Acql, Acq2, Comput, Filter) are properly
implemented.

In this section, we show how CDL properties are expressed for CCSL, and how to
specify the interaction between the system model and its environment using contexts.

6.1 Properties Associated with CCSL Constraints

Here we illustrate the specifications of some properties associated with CCSL constraints
included in our system model. The goal is to prove the correct FIACRE implementation
of the Scheduler and constraint automata.

Alternance Properties

To verify the alternation requirements Reqla and Reglb described in Section 4, we declare
the CDL events evt_writel, evt_readl, evt_write2 and evt_read2 (Figure 10).

event evt_writel is {sync sync_pwl from {Scheduler}1 to {Sensor}1i}
event evt_write2 is {sync sync_pw2 from {Scheduler}1 to {Sensor}2}
event evt_readl is {sync sync_prl from {Scheduler}1 to {Acq}1}
event evt_read2 is {sync sync_pr2 from {Scheduler}1 to {Acq}2}

Listing 7. Declaration of CDL events

With these events, we specify two properties Pla and P1b: Pla (resp. P1b) satisfies
the alternating synchronization write! and read! (respectively write2 and read2). The
CDL code of properties Pla and P1b is as follows (Listing 8).

Both properties correspond to observers, as illustrated in Figure 10. The initial state
of the observer Pla (resp. P1b) is the Start state and has an error state (Reject). Each
transition of the observer is triggered by the occurrence of an event evt_write! or evt_read!
(respectively evt_write2 or evt_read?).

The CDL language also allows the specification of predicates that can be verified
during the exploration of the model. For example, if we want to check those clocks, in
an instant, write! and read! (respectively write2 and read2) do not “tick” at the same
instant, we first define the following predicates.

We then declare the following invariants, using the assert operator®.

During the exploration of the model, the OBP tool checks that the invariants are not
violated.

8 See detailed syntax of the CDL language available at http://www.obpcdl.org.

Transformation of Timed UML MARTE for Verification 357

property Pla is {

start -- / / evt_writel / -> Sw; // writing into M1
Sw -- / / evt_readl / -> start; // reading

//-=--== errors ——----

start -- / / evt_readl / -> reject;

Sw -- / / evt_writel / -> reject

}

property Plb is {

start -- / / evt_write2 / -> Sw; // writing into M2
Sw -- / / evt_read2 / -> start; // reading

//-=-—= errors —-----

start -- / / evt_read2 / -> reject;

Sw -- / / evt_write2 / -> reject

}

Listing 8. Declaration of CDL properties Pla and P1b

evt readl

evt writel

Aevt readl

evt writel evt_write2

Aoyt read2 2

a) b)
Figure 10. Observer automata corresponding to properties Pla and P1b

predicate enable_tick_pwl_true is

{{C}1:tab_Clocks [0].enable_tick = true}
predicate enable_tick_pril_true is

{{C}1:tab_Clocks [1].enable_tick = true}
predicate enable_tick_rwl_together is

{enable_tick_pwl_true and enable_tick_pri_true}
predicate enable_tick_pw2_true is

{{C}1:tab_Clocks [2].enable_tick = true}
predicate enable_tick_pr2_true is

{{C}1:tab_Clocks [3].enable_tick = true}
predicate enable_tick_rw2_together is

{enable_tick_pw2_true and enable_tick_pr2_true}

Listing 9. Declaration of CDL predicates

assert not act_tick_rwl_together
assert not act_tick_rw2_together

Listing 10. Declaration of CDL invariants

358 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

Precedence Properties

In a similar way, we can specify observers to verify properties of the requirements Req2a
and Req2b by declaring the event evt_comput:

event evt_comput is {sync sync_comput from {Scheduler}l to {Comput}i}
The CDL code of their corresponding properties P2a and P20 is as follows (Listing 11).

property P2a is {

start -- / / evt_readl / -> Sr;

Sr -- / / evt_comput / -> start;
//-=—==== error —-—-----

start -- / / evt_comput / -> reject;

Sr -- / / evt_readl / -> reject

}

property P2b is {

start -- / / evt_read?2 / -> Sr;

Sr -- / / evt_comput / -> start;
//-====== error --------

start -- / / evt_comput / -> reject;

Sr -- / / evt_read2 / -> reject

}

Listing 11. Declaration of CDL properties P2a and P2b

evt _comput

evt read2

evt_compu

a) b)

evt readl

evt_compu

evt _readl evt read2

Figure 11. Observer automata corresponding to properties P2a and P2b

Filtering Property

The CDL predicates can also facilitate the writing of more complex observers when they
refer to a large number of events. For example, the requirement Reg3 associated with
the generation of data by Comput and the filtering constraint is expressed by the CCSL
term: filterOut = comput filteredBy (001)*. During the exploration, we need to verify
that the sequence of data generated from Filter is the sequence generated by Comput
with a sampling of every third value. In the current version of the model, the filter word
(001) is stored in an array variable tabFilter of the constraint process FilteredBy. The

Transformation of Timed UML MARTE for Verification 359

(i modulo 3)™ datum of the sequence generated by Comput will be copied in the sequence
derived from Filter if the value tabFilter[i modulo 3] is equal to 1. Otherwise, it is not
copied into the sequence of data supplied to the environment. To verify this constraint,
we therefore declare the following predicates (for z € {0,1,2}):

1}
0}

predicate bitx_true is {{FilteredByl}1:tabFilter [x]
predicate bitx_false is {{FilteredByl}1:tabFilter [x]

The transitions of an observer can be decorated with one of the predicates together
with the events evt_comput, evt_filterTrue and evt_filterFalse which trigger the transitions;
they are declared as follows:

event evt_filterTrue is

{sync filter (true) from {Scheduler}1l to {Filter}1}
event evt_filterFalse is

{sync filter (false) from {Scheduler}1l to {Filterl}1}

Figure 12 illustrates the observer encoding property P3 for requirement Reg3 and
referencing the above predicates and events.

evt_filterTrue or evt_filterFalse

evt_filterTrue

bit0_true /
evt_comput Alse /

put
evt_filterTrue

evt_filterFalse

Figure 12. Observer automaton corresponding to property P3 for requirement Reg3
A range of properties can be further specified on the behavior of our model. For

example, the Regd requirement, expressed in Section 4, can be expressed by an observer
automaton using predicates and appropriate events.

6.2 CDL Context Specification for Case Study

The core of the CDL language is based on the concept of context, which has an acyclic
behavior communicating asynchronously with the system. The environment is specified

360 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

through a number of such contexts. To illustrate CDL scenarios, we suppose that two
devices Devl, Dev2 each emit 3 values. Then we describe these interactions with CDL by
(event) as follows.

event evt_send_datal_sensorl is {send DATA1 to {Sensor}i};
event evt_send_data2_sensorl is {send DATA2 to {Sensor}i};
event evt_send_data3_sensorl is {send DATA3 to {Sensor}i};
event evt_send_datal_sensor2 is {send DATA1 to {Sensorl}2};
event evt_send_data2_sensor2 is {send DATA2 to {Sensorl}2};
event evt_send_data3_sensor2 is {send DATA3 to {Sensorl}2};

Listing 13. Declaration of CDL events for scenarios

These events allow the behavior of devices Devi, Dev2 to be specified with activities
as follows.

activity Devl is

{
event evt_send_datal_sensorl;
event evt_send_data2_sensoril;
event evt_send_data3_sensorl

}

activity Dev2 is

{
event evt_send_datal_sensor2;
event evt_send_data2_sensor?2;
event evt_send_data3_sensor2

}
Listing 14. Declaration of CDL activities Devl and Dev2
The behavior of DevOut that receives three values of the Filter process is specified as
follows.

event evt_recv_dataOut is {receive ANY from {Filter}1 to {env}1}
activity DevOut is { loop 3 {event evt_recv_dataOut} }

Listing 15. Declaration of CDL activity DevOut

The context is finally described as follows (Listing 16).

cdl_2dev specifies that the environment is composed of 3 devices Devl, Dev2 and De-
vOut. During the exploration by OBP, the properties Pla, P1b, P2a, P2b, pty_Filtered By,
not act_tick_rwl_together and not act_tick_rw2_together will be checked.

7 EXPERIMENTS AND DISCUSSION

To conduct the experiments for verifying properties of our case study, we use the OBP tool
which has been developed in our group. The system model and the CDL specifications

Transformation of Timed UML MARTE for Verification 361

cdl cdl_2dev is

{

properties Pla, Plb, P2a, P2b, pty_FilteredBy
assert mnot act_tick_rwl_together;

assert not act_tick_rw2_together

main is { Devl || Dev2 || DevOut }

¥

Listing 16. Declaration of CDL context cdl_2dev

that we defined in the previous Section are fed to the OBP tool that generates a Labeled
Transition System (LTS). It is a state-transition graph that represents all the behaviors of
the model, given input data representing the environment in which the model is intended
to evolve. On this LTS, the verification of the properties is carried out by applying
a reachability analysis of the reject/success states of the observers.

OBP is structured in three modules. The front end OBP imports FIACRE models
corresponding to a translation of UML MARTE models including CCSL specifications. In
addition, it imports CDL programs which describe the properties and context scenarios if
required. OBP Explorer explores the model, and after each transition model run, it hands
over to the Observation Engine. It captures the occurrences of events and evaluates the
value of predicates and the status of all involved observers, at each step of the running
model. A verification of all invariants and reachability analysis of error state observers is
thus conducted.

At the end of exploration, a report is generated by OBP, revealing the list of properties
evaluated to true or false. In addition, OBP provides counter examples when reaching
a state of reject or when the invariant has been violated.

These indications may refer the user to the scenario having the defeated properties.

7.1 Result Verification Using the OBP Tool

With CDL, we specified observers and invariants to express and verify a range of proper-
ties corresponding to requirements (Regla to Regd) as expressed in Section 4. In addition,
we specified CDL scenario diagrams as shown in Section 6.2. From these diagrams, OBP
generates an acyclic graph (called context graph) that represents all the possible interac-
tions between the model and the environment. To verify properties, OBP composes the
Circuit model with the context graph. Each property referenced in the CDL is checked
on the result of this composition.

Table 2 shows the result of the OBP explorations. For example, we show the results
if we consider three devices and 16 values issued by each device. It shows the number
of LTS configurations and transitions that are generated during exploration by OBP.
For this execution, we vary the fifo size shared between the environment and the Sensor
components?. For example, for the case where the size of fifo is equal to 1, the number of
explored configurations is then 744 592 and the number of transitions is 3 295 261.

9 All tests are run with a machine such as Windows 32-bit — 10 GB RAM with OBP
vers.1.4.5.

362 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

Fifo Number of Number of
Size Configurations Transitions
1 744592 3295261
2 3328269 17797040
3 Explosion Explosion

Table 2. Complexity with 3 devices and 16 values received from the environment

With 16 values and a fifo size of 3, we notice a state explosion because of the explored
configurations number and the limited memory of our computer. In other experiments,
if we increase the number of devices (> 3), we notice an explosion in the number of
configurations and transitions. In this case, the analysis of the properties cannot be
brought to completion.

7.2 Handling the Complexity with Automatic Splitting

The principal challenges regarding software verification of real-time systems deal with
devising solutions that scale up to the increasing complexity of these systems. Actually,
resources to verify these systems are limited, both in terms of time and memory size. We
treat in this section how our approach attempts to take into account the larger models
corresponding to the sizes of industrial models.

The context-aware Verification (CaV) has been proposed [43, 44, 45] and offers a so-
lution for addressing some of these issues. With CaV, independent contexts are exploited
by the verification tools by using new algorithms for fighting the state space explosion
problem. In this section, we present a context driven reachability algorithm for automati-
cally partitioning contexts [43, 44]. OBP integrates a powerful context-guided state-space
reduction technique which relies on the automated recursive partitioning (splitting) of
a given context in independent sub-contexts [12]. This technique is systematically applied
by OBP when a given reachability analysis fails due to lack of memory resources to store
the state-space.

The idea is to automatically split each identified context into a set of k smaller sub-
contexts context;. After splitting, each sub-contexts context; is composed with the model
for exploration and the properties associated with context; are checked on the resulting
global system. If the exploration fails with a context;, it is automatically and recursively
partitioned into a set of sub-contexts. Actually, we transform the global verification prob-
lem into k smaller verification sub problems. In our approach, the complete context model
can be split into pieces that have to be composed separately with the system model (see
the details in [12]). This technique allows models with a greater number of ranged states
to be explored.

For example, Table 3 shows results in the case of three channels with a transmission
of 16 different values. Without context splitting, the exploration does not end. Then
applying the partitioning of contexts, we obtain the following results: The behavior of the
environment is partitioned into four sub-contexts. The number of explored configurations
(cumulative) is then 27564 280 and 159 993 196 transitions.

Transformation of Timed UML MARTE for Verification 363

Splitting Fifo Number of Number of Number of
Size Configurations Transitions Sub-Contexts
yes 3 27564280 159993196 4

Table 3. Complexity with 3 devices and 16 values received from the environment with
splitting

These results show us that we can contain the combinatorial explosion with this spe-
cific technique of model exploration with splitting. OBP tool can provide an assessment
of the validity of the property, even with a machine having a limited memory size (10 GB).
If the model has a number of behaviors compatible with an exhaustive search, the ver-
ification results can be obtained without using the partitioning technique implemented
in OBP. If the circuit is connected with an interacting environment, partitioning may be
used. However, this is not always the case if the circuit has a large number of behaviors
that do not interact with an environment. In this case, the method cannot be applied.
Therefore it is necessary to have a machine with a larger memory, or to focus on parts of
the model.

Table 4 shows exploration results in another case: 6 devices, fifo size equal to 3 and
3 values received from the devices. Without splitting, there is a state explosion because
of the limited memory of our computer. With splitting and 7 sub-contexts, the checking
is possible.

Splitting LTS Configurations LTS Transitions Sub-Contexts

no explosion -
yes 77225 206 607639474 7

Table 4. Complexity with 6 devices, fifo size equal to 3, and 3 values received from the
environment

We will not go into more detail here as this has already been published [12, 45]. The
necessity of clear methodologies (e.g. the splitting process) has also to be identified, since
the context partitioning is still not trivial, i.e., it requires the formalization of the context
of the subset of functions under study (out of scope of this paper). Therefore, an associated
methodology must be defined to help users for modeling contexts.

7.3 Discussion

Now, the question is: Is the proof still relevant (applicable) to a number greater than
16 values? In the above part we argue that the correctness of the properties is always
verified for all natural numbers sent from the given devices. To demonstrate the correctness
of the generated FIACRE model, we take the following reasoning: The behavior of the
FIACRE processes does not depend on the acquired input values by Sensor processes. To
achieve this goal, we introduce a stand alone code version in order to point out that the
behavior of the circuit model involved is not exchangeable whatever the values sent from
the environment. We transform our model by integrating two actors Devl and Dev2 in

364 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

the model as FTACRE processes. Both processes iterate on sending of the same value.
The complexity of the exploration of the model is then 45328 configurations and 168 664
transitions. So, we can check properties with observers and invariants described above.

If we increase the number of values to over 16, the complexity increases but the same
configurations will result. We show here that if the sent values are constants, and in infinite
time, the configuration of the exploration graph is still finite. Moreover, the behavior of
the circuit is independent from the input data values. This proves that we can verify all
the expressed properties in this graph independently from the data values.

8 CONCLUSION

In this work, we have defined an automatic translation approach to generate FIACRE
programs from UML MARTE models enriched with CCSL constraints. This approach
allows the formal verification of the implementation of CCSL constraints and functional
requirements. We carried out a verification technique of properties by model-checking
using the CDL language and the OBP tool. Functional as well as temporal properties
can be easily expressed in CDL as predicates and observers which are checked during the
exhaustive model exploration by OBP. We have shown that this language facilitates the
expression of properties. They can be expressed with a very fine granularity, referencing
variables and process states.

Our CDL language can be compared with the Property Specification Language
(PSL) [31]. In future work, we aim to compare CDL expressiveness with PSL and the
discussion in [31] is very interesting on this topic. Additionally, we are currently working
to facilitate the interpretation of data provided by OBP and to display understandable
data in the user’s models, allowing ease of diagnosis.

We can take advantage of the CCSL automata encoding. These automata are reusable
inputs to apply the verification. Our translation approach can be an important step to-
wards the formal verification process of both MARTE models and CCSL specifications.
Once the translation of CCSL constraints into FIACRE is completed, the operation re-
quires only a single verification as it does not depend on the modeled application. Even
though the model may change, the FIACRE code is reusable as this translation principle
is independent of the application. We think that our approach contributes to clarifying its
role when addressing this domain by expressing temporal properties dedicated to CCSL
relation constraints.

REFERENCES

[1] ANDRE, C.: Syntax and Semantics of the Clock Constraint Specification Language
CCSL. Technical Report 6925, INRIA, 2009.

[2] MALLET, F.—ANDRE, C.—SIMONE, R.D.: CCSL: Specifying Clock Constraints
with UML/MARTE. Innovations in Systems and Software Engineering, Springer Ver-
lag, Vol. 4, 2008, No. 3, pp. 309-314.

[3] OMG: Uml Profile for Marte, v1.1. Object Managment Group, Document number:
PTC/10-08-32, August 2010.

Transformation of Timed UML MARTE for Verification 365

(4]

[10]

(1]

(12]

(13]

QUEILLE, J.-P.—SIrAKis, J.: Specification and Verification of Concurrent Systems
in Cesar. Proceedings of the 5" Colloquium on International Symposium on Pro-
gramming, London, UK, Springer-Verlag, 1982, pp. 337-351.

CLARKE, E.—EMERSON, E.—SI1STLA, A.: Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), Vol. 8, 1986, No. 2, pp. 244-263.

HorzMANN, G.: The Model Checker SPIN. Software Engineering, Vol. 23, 1997,
No. 5, pp. 279-295.

LARSEN, K. G.—PETTERSSON, P.—Y1, W.: UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, Vol. 1, 1997, No. 1-2, pp. 134-152.

BERTHOMIEU, B.—RIBET, P.-O.—VERDANAT, F.: The Tool TINA — Construction
of Abstract State Spaces for Petri Nets and Time Petri Nets. International Journal
of Production Research, Vol. 42, July 2004, pp. 2741-2756.

FERNANDEZ, J.-C.—GARAVEL, H.—KERBRAT, A.—MOUNIER, L.—MATE-
ESCU, R.—SIGHIREANU, M.: CADP: A Protocol Validation and Verification Tool-
box. Proceedings of the 8" International Conference on Computer Aided Verification
(CAV’96), London, UK, Springer-Verlag, 1996, pp. 437-440.

CmmMATTI, A.—CLARKE, E.—GIUNCHIGLIA, F.—ROVERI, M.: NUSMV: A new
Symbolic Model Checker. International Journal on Software Tools for Technology
Transfer, Vol. 2, 2000, No. 4, pp. 410-425.

MENAD, N.—DHAUSsY, P.: A Transformation Approach for Multiform Time Re-
quirements. 11*" International Conference on Software Engineering and Formal Meth-
ods (SEFM ’13), Madrid, Spain, Lecture Notes in Computer Science, Vol. 8137, 2013,
pp. 16-30.

DuAussy, P.—BonioL, F.—ROGER, J.-C.—LERoOUX, L.: Improving Model
Checking with Context Modelling. Advances in Software Engineering, Vol. ID 547157,
2012, 13 pp.

FARAIL, P.—GAUFILLET, P.—PERES, F.-—BODEVEIX, J.-P.—F1LALI, M.—BER-
THOMIEU, B.—RODRIGO, S.—VERNADAT, F.—GARAVEL, H.—LANG, F.: FI-
ACRE: An Intermediate Language for Model Verification in the TOPCASED En-
vironment. European Congress on Embedded Real-Time Software (ERTS), Toulouse,
SEE, 2008.

Jovaurr, F.—TEODOROV, C.—DELATOUR, J.—Roux, L.L.—DHAuUssy, P.:
Transformation de Modeles UML vers FIACRE, via les Langages Intermédiaires
tUML et ABCD. In Revue Genie Logiciel, No. 109, June 2014.

GE, N.—PANTEL, M.—CREGUT, X.: Time Properties Dedicated Transformation
from UML-MARTE Activity to Time Transition System. ACM SIGSOFT Software
Engineering Notes, Vol. 37, 2012, No. 4, pp. 1-8.

PANTEL, M.—GE, N.—CREGUT, X.: A Framework Dedicated to Time Properties
Verification for UML-MARTE Specifications. Conférence en IngénieriE du Logiciel
(CIEL), June 2012, pp. 1-6.

RIBEIRO, L.—D0OS SanTOs, O.M.—DortTi, F.L.—Foss, L.: Correct Transfor-
mation: From Object-Based Graph Grammars to PROMELA. Science of Computer
Programming, Vol. 77, 2012, No. 3, pp. 214-246.

366
[18]
[19]

20]

21]

N. Menad, P. Dhaussy, Z. Drey, R. Mekk:

PopDAR, R.K.—BHADURI, P.: Verification of Giotto Based Embedded Control
Systems. Nordic Journal of Computing, Vol. 13, 2006, No. 4, pp. 266-293.

ROMERO, A.G.—VIEIRA FERREIRA, M. G.: An Approach to Model-Driven Archi-
tecture Applied to Space Real-Time Software. SpaceOps 2012 Conference, 2012.

PERALDI-FRATI, M.-A.—SOREL, Y.: From High-Level Modelling of Time in
MARTE to Real-Time Scheduling Analysis. MoDELS 08 ACES-MB Workshop Pro-
ceedings, 2008, pp. 129-143.

CimaTTi, A.—ROVERI, M.—SUSI, A.—TONETTA, S.: Formalizing Require-
ments with Object Models and Temporal Constraints. Software & Systems Modeling,
Vol. 10, 2011, No. 2, pp. 147-160.

BoSNACKI, D.—DAMs, D.: Integrating Real Time into Spin: A Prototype Imple-
mentation. Formal Description Techniques and Protocol Specification, Testing and
Verification. FORTE XI/PSTV XVIII'98, IFIP TC6 WG6.1 Joint International Con-
ference on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XI) and Protocol Specification, Testing and Verification
(PSTV XVIII), Paris, France, 1998, pp. 423-438.

BoSNACKI, D.—DAMSs, D.: Discrete-Time Promela and Spin. Formal Techniques in
Real-Time and Fault-Tolerant Systems, 5™ International Symposium (FTRTFT ’98),
Lyngby, Denmark, September 14-18, 1998, Lecture Notes in Computer Science,
Vol. 1486, 1998, pp. 307-310.

MALLET, F.: Automatic Generation of Observers from MARTE/CCSL. International
Symposium on Rapid System Prototyping (RSP 2012), Tampere, Finland, IEEE,
October 2012, pp. 86-92.

PETERS, J.—WILLE, R.—DRECHSLER, R.: Generating SystemC Implementations
for Clock Constraints Specified in UML/MARTE CCSL. 2014 19" International Con-
ference on Engineering of Complex Computer Systems, Tianjin, China, August 4-7,
2014, pp. 116-125.

Yu, H.—TaLpPiN, J.-P.—BESNARD, L.—GAUTIER, T.—MARCHAND, H.—LE
GUERNIC, P.: Polychronous Controller Synthesis from MARTE CCSL Timing Spec-
ifications. 2011 9*® TEEE/ACM International Conference on Formal Methods and
Models for Codesign (MEMOCODE), 2011, pp. 21-30.

DUTERTRE, B.: Specification et Preuves de Systemes Dynamiques. Ph.D. thesis,
Université de Rennes 1, 1992.

ANDRE, C.: Verification of Clock Constraints: CCSL Observers in Esterel. Research
Report 7211, INRIA, 2010.

HarLBwAcHS, N.—LAGNIER, F.—RAYMOND, P.: Synchronous Observers and the
Verification of Reactive Systems. In: Nivat, M., Rattray, C., Rus, T., Scollo, G.
(Eds.): Third International Conference on Algebraic Methodology and Software Tech-
nology (AMAST ’93), Twente, June 1993, Workshops in Computing, Springer, 1993,
pp- 83-96.

DEANTONI, J.—MALLET, F.—ANDRE, C.: Timesquare: On the Formal Execution

of UML and DSL Models. Tool Session of the 4" Model Driven Development for
Distributed Real Time Systems, 2008.

Transformation of Timed UML MARTE for Verification 367

(31]

GAscoN, R.—MALLET, F.—DEANTONI, J.: Logical Time and Temporal Logics:
Comparing UML MARTE/CCSL and PSL. Research Report 7459, INRIA, 2012.
18502005 — IEEE Standard for Property Specification Language (PSL), 2005.

YN, L.—MALLET, F.: Correct Transformation from CCSL to PROMELA for Ver-
ification. Research Report 7491, INRIA, 2011.

LiLius, J.—PALTOR, 1.: vUML: A Tool for Verifying UML Models. 14** IEEE Inter-
national Conference on Automated Software Engineering (ASE), 1999, pp. 255-258.
CHIOREAN, D.—PaAgcAa, M.—CARcu, A.—BoTiza, C.—MOLDOVAN, S.: Ensur-
ing UML Models Consistency Using the OCL Environment. Electronic Notes in The-
oretical Computer Science (ENTCS), Vol. 102, 2004, pp. 99-110.

GoGoLLA, M.—BUTTNER, F.—RICHTERS, M.: USE: A UML-Based Specification
Environment for Validating UML and OCL. Science of Computer Programming,
Vol. 69, 2007, No. 1-3, pp. 27-34.

ROMENSKA, Y.—MALLET, F.: Lazy Parallel Synchronous Composition of Infinite
Transition Systems. International Conference on ICT in Education, Research and
Industrial Applications (ICTERI), CEUR-WS.org, Vol. 1000, 2013, pp. 130-145.
SURYADEVARA, J.—SECELEANU, C.C.—MALLET, F.—PETTERSSON, P.: Verify-
ing MARTE/CCSL Mode Behaviors Using UPPAAL. Software Engineering and For-
mal Methods, Lecture Notes in Computer Science, Vol. 8137, 2013, pp. 1-15.
DuAUssy, P.—ROGER, J.-C.: Cdl (Context Description Language): Syntax and
Semantics. Technical report, ENSTA-Bretagne, 2011.

Jouaurt, F.—DELATOUR, J.: tUML: Syntax and Semantic. Technical report,
ESEO, 2014.

ANDRE, C.: Le Temps Dans le Profili UML MARTE. Technical Report, ISRN
13S/RR-2007-19-FR, Laboratoire 13S, 2007.

BENVENISTE, A.—BERRY, G.: The Synchronous Approach to Reactive and Real-
Time Systems. Technical Report RR-1445, INRIA, 1991.

DHAussy, P.—PiLLAIN, P.-Y.—CREFF, S.—RAJI, A.—LE TRAON, Y.—BAU-
DRY, B.: Evaluating Context Descriptions and Property Definition Patterns for
Software Formal Validation. 12t IEEE/ACM Conference Model Driven Engineering
Languages and Systems (MODELS), Springer-Verlag, Lecture Notes in Computer
Science, Vol. 5795, 2009, pp. 438-452.

DHAussy, P.—ROGER, J.-C.—BonNIoL, F.: Reducing State Explosion with Con-
text Modeling for Model-Checking. 13" IEEE International High Assurance Systems
Engineering Symposium (HASE), Boca Raton, USA, 2011, pp. 130-137
TeODOROV, C.—LEROUX, L.—DHAUSSY, P.: Context-Aware Verification of
a Cruise-Control System. 4" International Conference on Model and Data Engi-
neering (MEDI 2014), Larnaca, Cyprus, September 2014, Lecture Notes in Computer
Science, Vol. 8748, 2014, pp. 53-64.

368 N. Menad, P. Dhaussy, Z. Drey, R. Mekki

Nadia MENAD is a Ph.D. student at University of Science and Technology of Oran Mo-
hamed Boudiaf and STIC Laboratory within ENSTA-Bretagne. She is now working under
the supervision of Prof. Philippe Dhaussy and Prof. Rachida Mekki on her Ph.D. thesis
“Formal verification of logical time requirements with model checking process”. Her re-
search interests include model-driven software engineering and model transformation for
formal verification of real time systems.

Philippe DHAUSSY is the Director at STIC Laboratory within
ENSTA-Bretagne. His expertise and his research interests in-
clude model-driven software engineering, formal validation for
real time systems and embedded software design. He received
his engineer degree in computer science from ISEN (French In-
stitute of Electronics and Computer Science) in 1978, his Ph.D.
degree at Telecom — Bretagne (France) in computer science do-
main in 1994 and his HDR in 2014. He joined ENSTA-Bretagne
in 1996 as Associate Professor and he has been building up a re-
search group on real-time embedded systems modelling within
the STIC laboratory.

Zoé DREY is Associate Professor at the ENSTA Bretagne En-
gineering School. She received her Ph.D. degree in computer
science in 2010 from the University of Bordeaux. Her research
is focused on the concepts and techniques for the construction
of domain-specific languages and dedicated tools for their imple-
mentation and verification.

Rachida MEKKI is Professor in the Department of Computer Science at University of
Science and Technology of Oran — Mohamed Boudiaf. Her research interests are in dis-
tributed systems and computer networks fields, mainly mobile agents and middlewares
using different communication models in distributed systems.

