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1 INTRODUCTION

The goal of this paper is to analyze, design and implement a parallel solver for large
systems of linear inequalities. The resulting solver should utilise Fourier-Motzkin
elimination and be highly optimized for both speed and memory efficiency. Its
implementation should be based on the MPI library. The results of the experiments
should be compared with theoretical expectations. The performance and correctness
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will be tested on publicly available and randomly generated data sets from the data-
dependency analysis.

1.1 Problem Description

Solving a system of n linear inequalities in m variables can be expressed formally as
finding a solution of the system

Ax < b with A € R*™ b € R".

We are usually interested in finding a real solution x € R™ or an integer solution
x € Z™ of Ax < b. Explicit representation of the set of solutions is desirable.

1.1.1 Basic Definitions
A set © C R" is convex if
Vx,y € A, € (0,1): Ax— (1 =Ny € A.

There are some special cases of convex subsets:

e hyperplane, if it can be expressed as x € R*|aTx = ¢,
e half-space, if it can be expressed as x € R"|a’x > c,

e convex polyhedron, if it is an intersection of finitely many half-spaces.

1.1.2 The Fundamental Theorem of Linear Inequalities

Existence and form of a solution for a system of linear inequalities results from the
fundamental theorem of linear inequalities (generalization of the Farka’s lemma [1]):
Let ay,...,an, b be n-dimensional vectors, then

e cither b is a non-negative linear combination of linearly independent vectors

ai,...,am

e or there exists a hyperplane {x|cx = 0}, containing ¢ — 1 linearly indepen-
dent vectors from ay,...,any,, such that cb < 0 and cay,...,ca, > 0, where
t =rank{ay,...,am}.

It follows from this theorem that a solution to a system of linear inequalities is either
a convex polyhedron or an empty set.

1.2 Fourier-Motzkin Elimination

1.2.1 The Algorithm

The Fourier-Motzkin elimination is a mathematical algorithm for eliminating vari-
ables from a system of linear inequalities. FME is a generalization of Gaussian
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elimination and it is capable of finding both real and integer solutions. Its compu-
tational complexity is double-exponential. The main disadvantages are restriction
to linear inequalities only and rapid growth in the number of them. It was first de-

scribed by the well-known French mathematician J. B. J. Fourier in 1826 and later
rediscovered by American mathematician T.S. Motzkin.

A concise description as found in [2], [3] and [4] follows:

1. A matrix a = (a;;);; € R™™ and a vector b € R™ represent the system

a1 + a2 +. .. F QT < by,

ap1T1 + Ap2T2 +...+ ApmTm S bn

A “working system” is initialized with a matrix T € R™™ and a vector q € R™:
tij = a;; and ¢; = b, where 1 <i<n,1<j<m

and set variables r = m and s = n.

2. The s inequalities are sorted and indices ni,ny € N, 1 < ny < ny < s are
determined such that the following holds after index renaming:

ti >0 for 1 <i < ny,
tir <0 for ng +1 < < ng,
tie =0 for ng +1 <" <s.

3. The first ny inequalities are normalized as follows:

tzg:tm/tzr fOI']_SiSTLQ-,lSjST_l,
¢ = qi/tir for 1 <i < no.

The system now looks as follows:

tanwy +lpze+ .o+ lpr e <q, 1<40<ny, (1)
tiny + tinxo + ..+ tur 1T 2 < g, mp+ 1< <ng, (2)
timay + oo + . At a1t < g, np+1 <07 s (3)

4. From subsystem (1) following inequalities are obtained:

r—1
T < g — ZtijIj for all i, 1 <1< my.
j=1
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We define the upper bound BY for z, as

r—1
U .
B/ (z1,...,2p—1) = min [¢ — E tijz; |,
1<i<ny —
=

if ny =0, then BY(z1,...,2,_1) = +00.
Similarly, from subsystem (2) following inequalities are obtained:
r—1

Ty Z qir — th/]l’] for all i',n1 +1 S ZII S No.
j=1

Thus we define the lower bound BTL for z, as

r—1
L
B (xzy,...,x,—1) = max ,'/—E tiriZs
(71, ) Ly ) Loy q; - RN )
=

if ny = ny, then BE(zy,..., 2, 1) = —o0.

The range of feasible values for variable z,.
Bf(-rh s 7337“71) S Ty S Bg(-rh feey xrfl)

is expressed using only variables x1, ..., z,_1, these bounds are recorded for later
use.

Further in the text we will refer to inequality categories (1), (2) and (3) as
positive, negative and zero categories, respectively.

5. If r = 1, the algorithm has finished, because the bounds B* and BY are con-
stants. The system has a real solution x € R™ if and only if BY < BY and
g > 0 for all i, ny + 1 <" < s. Otherwise (if r > 1) the algorithm continues.

6. The variable z, is eliminated by adding all inequalities from the negative cat-
egory to all inequalities from the positive category. This produces ni(ny — ny)
new inequalities in » — 1 variables:

r—1 r—1
qir — Zti/ﬂj ST S G- thjl‘j
s i=1
for all ¢, ¢/, with 1 <i<mny, n;+1<4 < ny.

By putting these inequalities together with s — ns inequalities from the zero
category, a new system is obtained with s’ = s — ngy 4+ nq(ny — ny) inequalities in
r—1 variables. If s = 0 the algorithm has finished and the unknowns 1, ..., z,_1
can be chosen arbitrarily (the system has infinitely many solutions). Otherwise
the algorithm continues.
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The elimination step can be geometrically interpreted as projection of the input
polyhedron onto successive smaller dimensional space [2].

7. In the new system

STty —tu)w; < o —qr foralld, i with 1 <i<ng,ng+1 < <y,

Z;;} ti”jxj S qir for all i, 7 with ng + 1 S 7 S S.

The coeflicients are renumbered as ¢; j and ¢;, where 1 <4 < s'and 1 < j <r—1.
The variables are set s = s',7 = r — 1 and the algorithm continues with step 2
(sorting step).

The algorithm ends when all unknowns are eliminated or when a column where
all ™" values have the same sign is reached. In the first case, having all inequalities
in the form x; < C (where C is an unspecified constant), the unknown is easily
computed. In the latter case, unknowns are chosen arbitrarily.

To express the solution the bounds that are saved throughout the computation
are used — for re-substitution the subsequently obtained values.

A simplified version of the FME is outlined in Algorithm 1.

Input: system of linear inequalities R
for i < r to 1 do
i is the variable to eliminate
W2 W« W« 0
for each inequality e € R according to value of x in column i do
if =0 then
| insert e into W
else if > 0 then
| insert e into W;"
else if < 0 then
| insert e into W~
end

end
normalize all inequalities in W and W,
record W,;© and W, as lower and upper bounds respectively
R+ WP
foreach pair a € W' and b € W, do
| create a new inequality @ — b and insert it into R
end
R now contains inequalities without variable i
end

use the recorded bounds in back substitution

Algorithm 1: A simplified FME algorithm
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1.2.2 Properties of the Algorithm

As described in [3], if we are interested in a real solution to Ax < b with a € R™™,
b € R”, the FME algorithm tells us whether it exists and provides an explicit rep-
resentation. It follows from the course of the algorithm that real solutions satisfy
the recorded bounds:

BEl(xy,.. . 2m 1) < 2y < BY(21,.. 0 Tin1),

Bé71($17 e ,Imfg) S Tm—1 S B%il(l’l, ey l’m,2)7
Bf< =z, <BYV.

To obtain one real solution vector the back substitution algorithm (Algorithm 2)
should be applied.

Input: upper and lower bounds Bf ... BL | and BY ... BY |
Output: vector z satisfying the recorded bounds
for i< 1tom—1do

by« BE (21, ..., )

bU — Bg_l((ﬁl, Ce ,CCi)

x; + a value chosen from the interval [by,, by]
end
return

Algorithm 2: Back substitution algorithm

As suggested in [5, 6], the value can be chosen from an interval according to the
following rule:

0 for interval (—o0, 00),

. L+|L| for interval [L,o0), (4)
U —|U| for interval (—o0o, U],
U for interval [L, U].

On the other hand, if our aim is an integer solution (e.g., in data dependency
analysis), the fact that the FME algorithm finished successfully does not guarantee
the existence of one (for details see [7]). An explicit test of the following system is
required:

[BE(z1,.. s 2m1)] < @y < |BY(21,.. . 2m1)],
[Bra (@, &m2)] < @moy < [Bp (@1, Tmea) ],

B < o <|BY)

This can be approached in two ways:
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e If no upper bounds BY = +o0 and no lower bounds B = —oo for some r,
1 < r < m, then the loop nest of Algorithm 3 enumerates the complete solu-
tion set. This approach is obviously feasible only when the solution set is of
reasonable dimensions. It is therefore desirable to somehow infer the maximum
size of the solution set. If one is only interested in the existence of an integer
solution set, the loop nest can be terminated after the first suitable x has been
found.

e If a symbolic representation is desired, for example in the case when restruc-
turing loop nests during compilation, then bounds for x are directly provided
by (5).

Input: upper and lower bounds Bf ... BL | and BY ... BY |
Output: the complete solution set

for x; + [BF] to |BY| do

for x5 < [B%(71)] to |BY(z)| do

for x,, + [BL_(x1,...,21)] to |BY_,(z1,...,2n_1)] do
| print x
end
end
end
Algorithm 3: Complete integer solution set enumeration algorithm

1.2.3 Complexity of the Algorithm

The article [8] states that a weak lower bound on run time of FME was established
in a previous print of [2] in 1986. The same paper then provides the first asymptotic
complexity analysis of FME. Such analysis is not the objective of this paper, thus
a similar analysis given in [3], which is easier to understand, is provided here. The
run time of FME can be catastrophic in the worst case:

T'(n, m) stands for the run time of FME for a system of n inequalities in m vari-
ables. From the normalisation and elimination steps (3 and 6) of the algorithm one
can obtain the run time for the general case:

T(s,r) =0(sr)+ max T(ni(ng —n1)+s—ng,r—1).

1<n;<ns<s
The worst case scenario, which occurs when ny = ny — ny = n/2, produces:
T(n,m) < O(nm) + T(n*/4,m — 1)

=0 <Z(m — 7")47;_1>

r=0
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The double-exponential complexity is especially detrimental to the performance
when m is large. However, the average run time should be significantly better
because of two factors:

1. Generally low probability that the first argument of T' reaches its maximum in
every single step of the algorithm.

2. Because ny < s if the matrix A includes a great deal of zeros, run time is signifi-
cantly affected by the sparsity of A. In the worst-case scenario the proportion of
non-zero coefficients with inequalities of positive and negative categories doubles
every iteration. The number of zero coefficients does not change for inequalities
in the zero category.

1.3 Possible Technologies for Parallelization

1.3.1 OpenMP

OpenMP [9] is a cross-platform standard for parallel processing. The OpenMP API
specification is defined as a collection of compiler directives, library routines and
environment variables extending the C, C++, and Fortran programming languages.
They can be used to create portable parallel programs utilizing shared memory. The
process of parallelization is however not automated, the programmer is responsible
for correct usage of the OpenMP APIs and avoidance of race conditions, deadlocks,
and other data consistency issues related to the shared memory environment. We
do not discuss this kind of parallelization further because it was already deeply
discussed in the paper [3].

1.3.2 CUDA

CUDAJ10] is a common GPGPU technology. It is an API for general purpose graph-
ics processor unit programming mainly focused on performance through massive
parallelism. Programmers are required to have more knowledge of the underlying
hardware, than it is usual in CPU-based parallel programming. Parallel programs
written in CUDA (for example [11, 12]) are, however, limited to the NVIDIA hard-
ware. We do not discuss this kind of parallelization further because FME algorithm
is not suitable for the CUDA execution model (it requires a lot of global synchro-
nization and so on).

1.3.3 MPI

MPT (Message Passing Interface) is a cross-platform standard for parallel processing
utilizing distributed memory. The standard defines the syntax and semantics of
a core of library routines useful to a wide range of users writing portable message-
passing programs in different computer programming languages such as Fortran,
C, C++ and Java. Parallelization using MPI technology is deeply discussed in
Sections 2 and 3.
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1.4 Related Works

There are several other papers about FME, but most of them are aimed at studying
the theoretical properties (e.g. the computational complexity for sparse systems,
etc.). As far as we know, there is the only one research paper about FME in the
context of the parallelization of this algorithm [3], where the authors present a par-
allel implementation for a shared memory parallel computer, and several variants
for distributed memory parallelization are only sketched.

1.5 Existing Implementations

There are several other implementations of method for solving a system of linear
inequalities (not all based on FME) including following products:

e Maple [13]: Maple is a commercial computer algebra system specialized in both
symbolic and high-performance numeric mathematics. It provides an extensive
suite of visualization tools, has comprehensive linear algebra support, powerful
tools for solving optimization problems, and can solve a wide range of systems
of equations.

e Maxima [14]: Maxima is a universal symbolic computer algebra system, a de-
scendant of Macsyma CAS developed in the 1960s. Many modern CAS such as
Maple or Mathematica were influenced by it. Maxima still has an active user
community thanks to its open source nature.

e fm-eliminator package [15]: A somewhat similar solver “fm-eliminator” is open-
source and freely available at [15]. The GNU GSL and cdd libraries are required
to build it. It is written in C and is purely sequential. Its limitation is that
it performs only the elimination and displays the final bounds for one chosen
variable. We analyzed its code and discovered that despite the program’s name it
actually eliminates variables with different algorithm — block elimination using
the extreme rays of a dual linear system. The source code also contains the
FME, but it is commented out.

e R [16]: The R [16] language and statistical toolbox (version 3.1.0) offers purely
sequential FME with its editrules package.

o Kessler’s code: We could neither download the original code of this algorithm [3]
(the project was canceled and deleted) nor run (the original code uses Cray
Microtasking technology).

Comparison with these implementations is done in Section 4.3.
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2 ANALYSIS AND DESIGN
2.1 Sequential FME

The sequential algorithm executes the sequence: distribute, normalize, record
bounds and eliminate for each unknown and then performs back substitution. The
distribute inequalities step is important only for the parallel solver and does nothing
in the sequential solver.

2.1.1 Sorting Step Elision

We conceived a method to omit the sorting step altogether by having three containers
for inequalities of respective categories. Based on the sign of the last coefficient the
inequalities are moved to the corresponding container whenever necessary, i.e.:

e when inequalities are read from the input,
e when the last coeflicient is truncated,

e when a new inequality is created during the elimination step.

2.1.2 Record Bounds

The record bounds step stores all the inequalities of the positive category as the
upper bound and all the inequalities of the negative category as the lower bound for
the current variable respectively. Numeric bounds for the current variable cannot
be directly expressed at this stage because the bounds for the remaining variables
are not known yet, thus all inequalities have to be recorded. No copying is necessary
for this step, only references to the inequalities are moved.

2.1.3 Eliminate

In this step, we need to test whether the remaining variables can be chosen arbi-
trarily — this occurs when the zero category is empty and no inequality sets the
lower or upper bound for the current variable. If that is the case the remaining
variables can be chosen arbitrarily and we proceed directly to the back substitution.
Otherwise all inequalities of the zero category are truncated (the zero coefficient is
deleted) and new inequalities are generated by subtracting each inequality from the
last recorded lower bound from each inequality from the last recorded upper bound.
The last coefficients of the bound inequalities are equal to 1 and can therefore be
ignored.

2.1.4 Back Substitute

The back substitution is performed either as the last step when all the unknowns
have been eliminated or when arbitrary solution is warranted. In the first case, only
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inequalities in the form z, < C or —z, < C' (where C' is an unspecified constant)
remain — the lower and upper bound for x, (i.e. Bf and BY) are computed as the
maximum or minimum of the right hand sides, respectively. The system does not
have any solution if the upper bound is lower than the lower bound (BY < BY)
or when any of the inequalities of the zero category (in the form 0 < C') does not
hold.

If the goal is only one solution then execution of Algorithm 2 is required. Oth-
erwise if the goal is to enumerate the integer bounds then Algorithm 4 must be
performed instead.

Input: upper and lower bounds Bf...BL | and BY ... BY |

Output: the complete solution set
Data: S is a stack of triplets (4, v, b) where 4 is the index of current
variable, v is the integer value and b is a Boolean value indicating
whether to start a new interval or continue with previous
push the triplet (1, BF, false) onto S
repeat
(¢,v,b) « pop the top of S
if b = true then
| je B
else
| G
end
for j to BY do
ali] < j
if i = unknowns then
| print z
else
find exact upper and lower bounds by and by, of x;,1, using
L1...25
B « |bu]
push (z,v + 1, false) onto S
push (i + 1,v, true) onto S
break;
end

end
until S # 0;

Algorithm 4: Non-recursive version of FME

In the case of arbitrary solution, the remaining variables are set to 0 and start
the back substitution for the already eliminated variables.
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2.2 Parallelization of FME

In paper [3], several variants for distributed memory parallelization are only sketch-
ed. We extend these ideas further, we were inspired by papers [17, 18, 19, 20].

2.2.1 Data Distribution Strategies

The article [3] suggests three data distribution variants:

1. Uniform distribution of inequality categories. Computational load is perfectly
balanced. Sorting step of the algorithm causes much communication and elimi-
nation step only modest communication.

2. Uniform distribution of inequalities (possibly non-uniform distribution of cate-
gories). Computational load is also perfectly balanced. Reduced communication
for the sorting step but increased for the elimination step.

3. Cyclical distribution of variables. Imbalanced computational load for the most
expensive last p — 1 iterations. No communication for sorting and elimination
steps in exchange for a broadcast for each inequality in the normalization step.

Let us first scrutinize them before we delve into details of the elected strategy.

2.2.2 Uniform Distribution of Categories

The algorithm starts with an arbitrary, equal distribution of all inequalities over
p processors. A redistribution of all three inequality categories that achieves (6)
must occur at the beginning of each iteration of FME.

n ny —n s—n
a2 P a2l and a2 (6)
p

where:

° nﬁ‘” denotes the processor ¢’s share of the n; inequalities of the positive category,

° ngq) denotes the processor ¢’s share of inequalities of the negative category and

° nz(f) denotes the processor ¢’s share of inequalities of the zero category.

Incidentally, (6) also implies equal load balance for the normalization step (3).

Maintaining a uniform distribution of inequality categories requires communi-
cation of O(s) messages of length r [3]. Moreover, a broadcast of the smaller set
of inequalities to all processors is necessitated before generating new inequalities in
the elimination step.

2.2.3 Uniform Distribution of Inequalities

The redistribution of inequalities is not necessary before the sorting step. However,

for a larger number of processors nﬁf” and n;q) cannot be expected to be equal — this
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would cause a computational load imbalance and [3] states that all inequalities have
to be broadcast instead of only min(ny, no—n4). This would indeed produce an equal
distribution of the s’ new inequalities, but it would render the parallelization of the
solver pointless. If all processors had all inequalities then they would perform the
exact same computation on the same data. This would not mitigate the extreme
memory usage by the FME at all.

2.2.4 Cyeclical Distribution of Variables

The processor in possession of the coefficients x,. has to broadcast the divisors for
all inequalities before the normalization step in every iteration. The load imbalance
for the last p— 1 iterations worsens during the course of the algorithm — this renders
the distribution inappropriate for massively parallel computers.

2.2.5 Elected Strategy

We analyzed all three variants and chose to implement the first one. We devised
a redistribution algorithm (outlined in Algorithm 5) that determines how many
inequalities are to be sent or received as well as by whom. Prior to the algorithm
an all-to-all broadcast and subsequent summation of all local counts of inequalities
needs to take place:

p—lL p—1
ny = Z n@ and ng = Z ng@.
q=0 q=0

In MPI, this is done using the MPI_Allgather routine. Following this, each proces-
sor finds the ideal count by dividing the summations by the number of processors.
Next the ideal count is subtracted from the actual counts, resulting in a positive
or negative number when the given processor has an excess or short supply of in-
equalities respectively; this array of differences is then used by the redistribution
algorithm.

The algorithm itself is as follows: each processor builds a stack of send or re-
ceive operations based on how many inequalities each processor is missing or has
excess of. The stack of operations is then executed (it is a no-operation for nodes
with ideal inequality counts). Matching of senders and receivers is guaranteed as
all the processors execute the same sequence of operations. To be able to track
how many inequalities are present in each node, all processors (including those that
are neither sending nor receiving) increase or decrease the global inequality counts
respectively. To avoid needless communication the nodes only send inequalities if
they have more than one extra. This also prevents problems occurring when the
inequalities cannot be equally distributed, e.g. when there are 11 inequalities for
6 processors — in this case the ideal inequality count would be one, but 5 processors
will have a surplus of one.

The Algorithm 6 from [3] carries out a broadcast of the smaller set of inequalities
before generating new in the elimination step. This will incur a communication
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Input: d is differences from the ideal count of inequalities
Result: Equivalent distribution of inequalities among processors
Data: Sgeng is a stack of pairs (rank, number of excess inequalities)
Sgreev 18 a stack of pairs (rank, number of missing inequalities)
for int v < 0 to processor count p do
if d[i] > 1 then
| push the pair (¢,d[i]) onto Ssend
else if d[i] < 0 then
| push the pair (i, —d[i]) onto Sgreey
end
end
Sort both Sgeng and Sgeey in ascending order by number of inequalities

while Sseq # 0 and Sgee, # 0 do
s < reference to the top of Sseng

r < reference to the top of Sgecy
while number of inequalities in both s and r is > 0 do

if s.rank = rank of this processor then
| send an inequality to processor r.rank

else if r.rank = rank of this processor then
| receive an inequality from processor s.rank
end
--global_counts[s.rank]
++global_counts[r.rank]
--s.number of inequalities
--r.number of inequalities
end
if s.number of inequalities = 0 then
| pop the top off Sseng
end
if r.number of inequalities = 0 then
| pop the top off Sgeey
end

end
clear Sgend
clear Speey

Algorithm 5: Inequality equidistribution algorithm
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overhead of O(s) messages of length r. It should, however, be insignificant compared
to the computational work O(rs?) of creating new inequalities for the next iteration
of FME. Favorably, both the communication and computation loads are equally
distributed over the processors.

Input: global counts of inequalities n; and ng
Result: All p processors having a complete set of inequalities of a category

if n; < ny then

broadcast local ngq) inequalities to all p

receive n, — nﬁ‘” inequalities from other processors

forall n; — n'? inequalities e do

forall local n&q) inequalities ¢’ do
| generate a new inequality (e, e’) as per step 6 (elimination)
end
end

else

(a)
2

broadcast local nsy"” inequalities to all p

receive ny — ngD inequalities from other processors

forall ny — nl? inequalities e do
forall local ngﬁ inequalities ¢’ do
| generate a new inequality (e, e’) as per step 6 (elimination)
end
end

end
Algorithm 6: Parallel inequality generation algorithm

2.2.6 Back Substitution

The bounds computed in all nodes have to be taken into account during the back
substitution algorithm. Therefore we extended the back substitution algorithm with
an all-to-all broadcast of the bounds at every stage. The global bounds are infinite
only if all local bounds are infinite. The resulting extended back substitution is
expressed in Algorithm 7.

3 IMPLEMENTATION
3.1 Reading Inequalities

Ouly the root process (whose rank = 0) reads the input file by calling DoRead from
the sequential solver. After the first line is read it broadcasts the number of inequal-
ities and unknowns to all other nodes and they compute how many inequalities to
expect from the root:
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Input: local upper and lower bounds Bf ... BL | and BY ... BY |
Output: vector z satisfying the recorded bounds
Data: L;> and U;" are Boolean values indicating whether the i*" lower
bound or upper bound is —oo or 400 respectively
b? and b, denote lower and upper from processor ¢
fori<1tom—1do
by, < local BE(zy,. .., ;)
by « local BY (x4, ..., ;)
perform an all-to-all broadcast of 4-tuple (b, by, L; >, U;")
by, 4= maxi<e<p(b})
by 4= min<q<, ()
if L;° = true in all p processors then
| L;*° « true
end
if Uitfo = true in all p processors then
| U™ <+ true
end
x; < a value chosen from the interval [by,, by]
end
return z

Algorithm 7: Parallel bounds broadcast back substitution algorithm

remainder = inequalities mod processors,

inequalities ) .
\‘qJ + 1 if rank < remainder,
processors
inequalities per node =
inequalities .
_— otherwise.
processors

The root node then keeps some inequalities and distributes the rest among the other
nodes.

3.2 Redistributing Categories

Prior to redistribution of the categories an all-to-all broadcast in the form of
MPI_Allgather is performed so that all nodes know how many inequalities of all
categories are present in every node. The numbers are also summed up to compute
the global counts.

Afterwards, all three categories are equally redistributed by Algorithm 5. Nodes
that have no inequalities after initial redistribution do not participate in the first
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iteration of the algorithm and pass through to the next iteration where there will
be enough inequalities.

3.2.1 Broadcast of a Category

The elected data distribution strategy necessitates a broadcast of the smaller set of
inequalities. We experimented with three methods that accomplish this (they are
discussed in detail later):

e by matching sends and receives: Every node knows how many inequalities are
present in all nodes, thus it can issue an exact number of matching sends and
receives of individual inequalities. This is very space efficient because no tem-
porary buffer is needed. However, the network utilization is poor because only
one network link is active while sending. For large counts of small inequalities
this approach is also inefficient because of the overhead incurred by each send
or receive operation.

e by one all-to-all broadcast: The opposite of the previous approach is having
a temporary buffer that can hold all inequalities from all nodes. Such a buffer
allows the category distribution to be accomplished using just one all-to-all
broadcast in the form of MPI_Allgather. Network utilization is optimal but this
requires an amount of memory so large that it could cause an out of memory
error and subsequent termination of the program, particularly during the last
iterations of the algorithm.

e by multiple broadcasts: Accumulating all local inequalities into a temporary
buffer and performing a MPI_Bcast from each node needs extra memory (max-
imal local inequality count X inequality size) and time to copy the data, but, as
explained in Section 3.4, still very efficiently utilizes the network. The number
of broadcasts depends on the number of processors rather than on the amount
of inequalities, this is especially advantageous with inequality counts of ~ 10°
and more.

The temporary buffer does not need to be initialized so all we need is so-called
scoped array. Then we accumulate the inequalities using std::copy, which for
std::valarray boils down to the most efficient bitwise copy. After the broad-
cast the inequalities are constructed directly in the category container using the
emplace_back method of std: :vector.

We chose this method because it is a reasonable compromise between space and
network usage and performs consistently well.

3.3 Gathering Bounds

The all-to-all broadcast of local bounds computed in all nodes by Algorithm 7 occurs
for each unknown. An MPI_Allgather routine gathers all the values into an array
of 4-tuples where the first two members are the numeric bounds and the second two
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Boolean values indicating whether the bounds are infinite, i.e. whether the numeric
values are actually meaningful. A logical AND of the Boolean values is computed to
detect infinite global bounds. The maximal lower bound and minimal upper bound
are then found, taking only finite values into account.

3.4 Optimisation of the Communication Efficiency

When some data needs to be broadcast to all processes, there are several available
approaches. The simplest way to broadcast inequalities is to perform a sequence of
matching MPI_Send and MPI_Recv operations in all processes. A better solution is
offered by the MPI_Bcast routine, implemented using a more efficient, tree based
algorithm [21], which ensures better utilization of the communication network, as
more network links are used every step of the broadcast. We take advantage of this
MPI feature when broadcasting the smaller set of inequalities before the elimination
step.

4 EVALUATION
4.1 Testing Configuration

4.1.1 Input Data for Testing

The input systems were randomly generated by our generator. The inputs are
labeled dense and sparse, i.e. the proportion of zero coefficients is 12.5 % and 87.5 %,
respectively. The solvers use the float data type for all the computation (if our
aim is an integer solution, the required changes are discussed in Section 1.2.2). We
used different systems of inequalities for various measurements to better accentuate
the diverse hardware characteristics of the nodes of the cluster computer.

For the testing of related solvers, we use the following system:

—r + 2y < 3,
T+ y>3, (7)
20 — y <.

4.1.2 Software Configuration

The solvers were compiled using the predefined CMake build type “Release”, which
comprises -03 -DNDEBUG compiler flags. In addition to that, C++11 support is
enabled using the switch -std=c++11. The validity of results is always verified
by re-substitution of the results into the original inequality system. We use the
following tools or compilers:

o CMake 2.8 or newer (tested with version 2.8.11.2),

e C++11 compliant compiler (tested on g++ 4.7.3 and 4.8.1),
e MPI-1 compatible MPI implementation (tested on OpenMPI 1.6.4).
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4.1.3 Hardware Configuration

The performance tests were carried out on various subsets of the University’s com-
puting cluster “Star”, composed of

e 6 x IBM BladeCenter LS21, Type 7971, Model 6AG, each with

2 x AMD Opteron 2218 2.6 GHz dual-core CPU (4 cores in total),
8 GB RAM PC2-5300 CL5 ECC DDR2 SDRAM VLP RDIMM,
1x73GB 10k rpm SAS HDD,

— 2 x Gigabit Ethernet,

— 1 x Cisco InfiniBand 4 x HCA (2 x 10 Gbps ports);

e 6 x IBM BladeCenter LS22, Type 7901, Model 62G, each with

2 x AMD Opteron 6C Model 2435 2.6 GHz/6MB L3 (12 cores in total),
26 GB RAM PC2-6400 CL6 ECC DDR2 800 VLP RDIMM,

1 x 146 GB 10k rpm SAS HDD,

— 2 x Gigabit Ethernet,

— 1 x Cisco InfiniBand 4 x HCA (2 x 10 Gbps ports);

e Supermicro SuperServer 6027TR-DTQRF Dual Node, each node with

2 x 6-core Intel Xeon E5-2630 2.30 GHz/15 MB L3 (24-cores in total),
32GB RAM P(C3-12800 Dual Rank ECC DDR3 SDRAM,

1 x Western Digital RE4 Enterprise 1.0 TB SATA-II,

— Intel 1350 Dual-Port GbE,

— Mellanox ConnectX-3 QDR Infiniband 56 Gbps Controller.

4.1.4 Metrics

The most important performance metrics of a parallel algorithm, as found in [22],
are parallel time, speed-up and efficiency. Parallel time T'(n,p), where n is the
problem size and p is the processor count, is defined as the total time between start
of computation and the moment when the last processor finishes. This includes both
computation and communication time. Parallel speed-up is then defined as

where SU(n) denotes the sequential upper bound on run time. The ideal linear
speed-up p is rarely achieved in practice. The speed-up per processor, or parallel
efficiency is then defined as

S(n,p)

E(n,p) = )
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When measuring the performance of a parallel program, speed-up is obtained simply
as the elapsed time of the sequential version divided by the elapsed time of the par-
allel program. Similarly, parallel efficiency is obtained as parallel speed-up divided
by number of processors.

4.2 Results

4.2.1 24 Processor Nodes

When measured exclusively on the 24 processor nodes, the impact of communication
network was negligible. On the other hand, Hyper-Threading, Intel’s proprietary
simultaneous multi-threading implementation has significant influence on parallel
speed-up. In this super-scalar architecture, each physical processor core has two
logical cores that share the arithmetic logic unit, the caches and the memory bus.
This does not provide true parallel processing, because a logical core can operate
only when the other logical core is stalled, which occurs only due to a cache miss,
branch misprediction or data dependency. There are two 6-core Hyper-Threaded
Intel Xeon processors present in one node, but only 12 cores are physical out of the
24 that the operating system sees.

Graph in Figure 1 shows the parallel speed-up steadily increasing when more
processors are added except in the 24 and 48 processor cases for all systems, the
speed-up is lower than expected when the Hyper-Threading cores become active.
Parallel efficiency is plotted in graph in Figure 2. The poor speed-up of Hyper-
Threading is apparent in the results compiled in Table 1. The solver scales reason-
ably well up to 12 processes, with more the efficiency drops under 40 %.

4.2.2 12 Processor Nodes

The 12 processor nodes do not have Hyper-Threading and are only partially influ-
enced by the used communication network. Parallel speed-up is pictured in graph in
Figure 3, where only the 52 x 4 system behaves differently when utilizing InfiniBand.
Efficiency is plotted in graph in Figure 4 and overall results are listed in Table 2.
The scalability on 12 processor nodes is data dependent — the 24 x 5 and 150 x 7
systems improve even with large process counts but using more than 36 processes
is wasteful for the 52 x 4 system.

4.2.3 Impact of Communication Network

The impact of communication network is best illustrated when using only the 4-pro-
cessor nodes, where there is more inter-node communication than with the 12-pro-
cessor nodes. As can be seen from graphs in Figures 5 and 6, the InfiniBand net-
work significantly improves parallel speed-up and therefore efficiency. The impact
of InfiniBand is apparent for 2 nodes (8 processors) and increases when more nodes
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Dense 24 x 5 Sparse 150 x 7
p Time [ms] Speed-Up Efficiency p Time [ms] Speed-Up Efficiency
1 44977 1.00 1.00 1 37262 1.00 1.00
2 22041 2.04 1.02 2 18230 2.04 1.02
4 11672 3.85 0.96 4 9961 3.74 0.94
8 8819 5.10 0.64 8 7737 4.82 0.60
12 5770 7.79 0.65 12 5261 7.08 0.59
24 5528 8.14 0.34 24 4976 7.49 0.31
36 3286 13.69 0.38 36 2813 13.25 0.37
48 2896 15.53 0.32 48 2528 14.74 0.31
Dense 20 x 5 Sparse 200 x 10
p Time [ms] Speed-Up Efficiency p Time [ms|] Speed-Up Efficiency
1 29113 1.00 1.00 1 12356 1.00 1.00
2 14627 1.99 1.00 2 6461 1.91 0.96
4 7549 3.86 0.96 4 3267 3.78 0.95
8 6047 4.81 0.60 8 2545 4.85 0.61
12 3290 8.85 0.74 12 1537 8.04 0.67
24 3223 9.03 0.38 24 1393 8.87 0.37
36 2093 13.91 0.39 36 887 13.92 0.39
48 1673 17.40 0.36 48 800 15.44 0.32
Table 1. Results on 24 processor nodes
I I I I
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Figure 3. Parallel speed-up on 12 processor nodes
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Figure 4. Parallel efficiency on 12 processor nodes

are used. When fully utilizing all 6 nodes, the efficiency almost doubles with a large
sparse system of inequalities and more than triples for a smaller dense system. Ta-
ble 5 shows the exact results.

4.2.4 Comparison with Theoretical Expectations

The run time complexity analysis implies the worst-case scenario where % new in-
equalities are generated in each iteration. Table 3 illustrates the theoretical growth
rate of the inequality count each iteration i. However, as shown by Table 4, ran-
domly generated inputs result in more acceptable numbers. The counts are orders
of magnitude lower, especially for sparse systems.

4.2.5 CPU Profiler

The following table lists the five most significant functions in the sequential solver.
The operator delete() is mostly executed when all the destructors are called at
the end of the program, its influence on the computation itself is not significant.
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Dense 24 x 5

Sparse 150 x 7

p Time [ms] Speed-Up Efficiency

p Time [ms] Speed-Up Efficiency

1 40998 1.00 1.00 1 53 648 1.00 1.00
2 22814 1.80 0.90 2 29 347 1.83 0.91
4 13889 2.95 0.74 4 17108 3.14 0.78
8 9558 4.29 0.54 8 11542 4.65 0.58
12 7342 5.58 0.47 12 9013 5.95 0.50
24 3964 10.34 0.43 24 6483 8.28 0.34
36 3231 12.69 0.35 36 4212 12.74 0.35
48 2290 17.90 0.37 48 4138 12.97 0.27
60 2118 19.36 0.32 60 3575 15.01 0.25
72 2259 18.15 0.25 72 3588 14.95 0.21
Dense 54 x 4 Ethernet Dense 54 x 4 InfiniBand
p Time [ms] Speed-Up Efficiency p Time [ms] Speed-Up Efficiency
1 16 664 1.00 1.00 1 16 664 1.00 1.00
2 8950 1.86 0.93 2 9026 1.85 0.92
4 5068 3.29 0.82 4 5019 3.32 0.83
8 3449 4.83 0.60 8 3602 4.63 0.58
12 3305 5.04 0.42 12 3332 5.00 0.42
24 2758 6.04 0.25 24 1921 8.67 0.36
36 2155 7.73 0.21 36 1574 10.59 0.29
48 3062 5.44 0.11 48 1506 11.06 0.23
60 2740 6.08 0.10 60 1432 11.63 0.19
72 3833 4.35 0.06 72 1510 11.03 0.15
Table 2. Results on 12 processor nodes
7 Inequality Counts
1 10 20 24 30 40 50
2 25 100 144 225 400 625
3 156 2 500 5184 12656 40000 97 656
4 6104 | 1562500 | 6718464 | 4.0 x 107 | 4.0 x 10% | 2.4 x 10°
5| 9313226 | 6.1 x 101 | 1.1 x 10'3 | 4.0 x 10 | 4.0 x 10'6 | 1.4 x 108
6 22x108 [ 9.3x10% | 3.2x10% | 4.0 x 102 | 4.0 x 10%7 | 5.0 x 10%
7] 1.1x10% | 22x10% | 2.5 x 107 | 4.0 x 10°° | 4.0 x 10%* | 6.4 x 107
Table 3. Inequality counts in the theoretical worst-case scenario
Dense Systems Sparse Systems
i Inequality Counts i’ Inequality Counts
1 10 20 24 1 150 200
2 21 44 95 6 623 448 562
3 110 343 894 || 7 | 482642693 1041
4 2625 27423 88253 8 28778
5 | 1412964 | 184967954 | 609 292 552 9 70737891

Table 4. Actual inequality counts in randomly generated instances
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Sparse 200 x 10 Ethernet Sparse 200 x 10 InfiniBand

p Time [ms] Speed-Up Efficiency p Time [ms] Speed-Up Efficiency
1 21415 1.00 1.00 1 2 415 1.00 1.00
4 9821 2.18 0.55 4 1 126 2.11 0.53
8 6271 3.41 0.43 8 4214 5.08 0.64
12 5420 3.95 0.33 12 3579 5.98 0.50
16 4561 4.69 0.29 16 2815 7.61 0.48
20 3942 5.43 0.27 20 2514 8.52 0.43
24 3836 5.08 0.23 24 2298 9.32 0.39

Dense 16 x 5 Ethernet Dense 16 x 5 InfiniBand

P Time [ms] Speed-Up Efficiency p Time [ms] Speed-Up Efficiency
1 16 662 1.00 1.00 1 16 662 1.00 1.00
4 7154 2.33 0.58 4 6834 2.44 0.61
8 4796 3.47 0.43 8 3030 5.50 0.69
12 4674 3.57 0.30 12 3207 5.20 0.43
16 3917 4.25 0.27 16 2113 7.88 0.49
20 3745 4.45 0.22 20 1856 8.98 0.45
24 5556 3.00 0.12 24 1834 9.09 0.38

Table 5. Impact of communication network

operator delete() | 32.57%
SequentialInequalitySolver<>::Eliminate() | 16.17%
operator new() | 13.40%

tcmalloc: :CentralFreelist: :ReleaseToSpans() | 10.15%
SequentialIlnequalitySolver<>::Solve() 9.24%

We profiled the MPI solver in the same manner and the most significant MPI
routine only amounted to 0.45 % of overall execution time.

4.3 Comparison to Other Solvers

The following two solutions (mentioned in Section 1.5) focused mainly on symbolic
computation, the next two solutions are numerically oriented. As far as we know,
all used implementations of solvers are strictly sequential.

4.3.1 Maple

Solving systems of linear inequalities in Maple is available through its SolveTools:
Solving the system (7) gives the following answer:

{1 <z,2<8/3},{y<3/2+1/2z,—x+3 <y},
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{r <13/3,8/3 <a},{y<3/2+1/2x,-5+2x < y}].

Increasing the size of the input system has a significant impact on running time —
producing an analytical answer to a small 5 X 5 system takes 33 seconds:

time[real] (LinearMultivariateSystem({
-9%a+9%b-8xc+6xd-e <= 1000000,
-3*a+b+bxc+4xd+0*e <= 1000000,
4xa-10*b+4*c-6*%d-2xe <= 1000000,
T*a-10%b-10%c+0*d+8%e <= 1000000,
Txa+4*xb+dxc+8*d-Txe <= -1000000},

[a, b, ¢, d, e]));

33.291

Our sequential solver numerically solves this system in a mere 159 ps. Maple
fails to solve larger systems — solving a system of 10 inequalities with 5 unknowns in
Maple 13 results in an obscure error in intermediate computations after 45 seconds.

4.3.2 Maxima

Maxima can perform Fourier-Motzkin elimination using fourier_elim, but it aims
for exact symbolic representation of the solution set.
Solving system (7) in Maxima results in the following output:

1‘*§ *EVI*E *EVx*—y+51< <E\/
—379—3 _3ay_3 - 2 73 yvy 3

1 11
\/[:L'1,y2]v[x3y,3<y,y<2]\/[w2,y3,2<y,y<3]\/

y 51 11
v [max(?) y,2y —3) <z,x < 2+2,3 <yy < 3}
The focus on symbolic computation has a significant drawback — larger systems of
inequalities cannot be solved at all. Solving e.g. a system of 10 inequalities with
5 unknowns in Maxima 5.31.2 results in stack overflow error after 5 minutes of
computation. In contrast, the resulting solver finds the answer to the same system
in about 0.03 seconds.

4.3.3 FM-Eliminator

When we use this code instead of the block elimination, it is incapable of solving
even small 16 x 5 systems in 5 minutes time. Our implementation was able to solve
the same systems within seconds.
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4.34 R

Despite the multi-platform support in R for other operations, package editrules
(for purely sequential FME) is available only for Windows. When compared to our
solver, this solution requests more memory — solving 16 X 5 systems fails most of
the time. When the size of the system allows it to fit in the RAM, this solution and
ours present comparable performances. No back substitution is performed and the
final result of eliminate is often a large amount of inequalities with one coefficient,
the bounds are not computed.

5 CONCLUSION

In this paper, we analyze each step of FME then we delve into parallelization strate-
gies of FME. With emphasis on reusing the functionality present in the sequential
solver, we carefully design an MPI-based parallel version and give an explanation of
used optimizations.

The results are compared to theoretical expectations and show that we succeeded
in achieving reasonable speed-up and efficiency with randomly generated data sets
in the parallel solver.

6 FUTURE WORKS

Possible future improvements to this work would include designing and implementing
an optimized vector representation, capable of both efficient arithmetic operations
and of utilizing a custom memory allocation strategy. The memory allocator should
take into account that large numbers of tiny vectors are allocated in later phases
of FME. Another possible enhancement would be the implementation of type traits
for arbitrary precision arithmetic data types, ideally for GNU multi-precision library
integer, rational and floating point types.
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