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Abstract. The contemporary large scale measuring systems in the real-time envi-
ronment make extensive use of histogramming as a tool for the experimental data
quality monitoring. The processing of a large number of data channels requires
a suitable computing power where the graphical processors seem to be well suited.
Histogramming operations run on the central and graphics processing units are dis-
cussed. Results of the performance measurements including various configurations
of the allocation of the histograms in various parts of the memory of used devices
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1 INTRODUCTION

Histogramming is a very popular way to present the data. Due to its usual simplicity
of interpretation and linearity of operations it has a very broad range of applications.
It is also commonly used by the High Energy Physics community to present not only
results of the advanced analyses (see for example [1, 2, 3], and references therein)
but also the details of the on-line status of an experiment in a way that is easy to
interpret, and hence to control. In particular, it is widely applied to test the quality
of the collected experimental data as well as the experiment running conditions and
its performance.

This paper summarises results of the tests concerning the histogramming opera-
tions. These tests made an extensive use of the Graphics Processing Units (GPUs).
They were performed assuming different configurations of the allocation of the his-
tograms in different parts of the physical memory of the used devices. In the follow-
ing, results of the measurements targeted at the feasibility studies of the application
of the GPUs for the data histogramming purposes necessary in the monitoring tasks
are presented.

The paper is organised as follows. In the second section the aim of the present
investigations is formulated. A short overview of the Graphic Processing Unit ar-
chitecture is given in Section 3. The fourth section is devoted to the discussion of
the used set-up configurations and the obtained results. The fifth section discusses
planned investigations and the sixth one concludes and summarises this paper.

2 AIM OF THE MEASUREMENTS

The modern computer architectures of CPUs and GPUs explore parallelism what
allows for an increase of data processing rates in large scale systems with hundreds
of thousands of independent data channels. The representative samples are the
large real time data acquisition systems where the scale of the architecture requires
a dedicated system to monitor quality of the collected data. Contemporary mea-
suring systems operating in the real-time environment make an extensive use of
the information quantisation. In the simplest case, whole information is confined
within a bit showing active/passive state of an information (data) channel. In more
complex cases, the ADC (Analog to Digital Converter) and TDC (Time to Digital
Converter) converters are used. The size of the data delivered by such devices re-
flects their resolution and is typically 8-16 bits long. In the following the channels
generating 8-bit data will be considered.

The development of electronics introduces a possibility to construct systems of
enormous scale consisting of hundreds of thousands of channels that are sampled
with rates of the order of tens of MHz. It has to be stressed that a large number
of channels folded with high throughput requires the multiport, multilevel networks
and leads to the complicated topologies and architectures of the data acquisition
systems. In such conditions an automated monitoring of the equipment perfor-
mance is simply a must. To this end one typically uses dedicated computers, which
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in the simplest case perform histogramming of the monitored quantities and typ-
ically compare the obtained results with the reference histograms. Such reference
histograms are usually created during the measurements performed in the period
of stable and carefully controlled running conditions of the controlled system. In
a properly designed system all the information channels should be monitored. How-
ever, it should be noted that it is not required that all the input data have to be
used for the monitoring purposes. It is natural that a proper, stochastic sampling
of the input data streams delivers sufficient information on the system performance
and quality of data being collected. As a good example one may take the data
acquisition system of ATLAS [4], one of the high energy experiments running at the
Large Hadron Collider (LHC). It assembles the data generated by about 140 millions
of channels and forms event packets with an average size of 1.5 MB, depending on
a number of channels which recorded signal above some threshold. Information from
such packets, apart from the physics analysis, can also be used in the data quality
monitoring system to verify whether each channel is alive and produces appropriate
data.

The generalised architecture of a system targeted at the data quality monitoring
is presented in Figure 1. Basically, the system consists of the sensors (information
channels) attached to the system via the sensor dedicated interface cards, the col-
lection nodes, a network and the monitoring nodes. The data collection nodes read
out information delivered by the sensors using the interface cards. Then, the data
are selected and packed into the packets which in turn are sent to the monitor-
ing nodes through the network. The monitoring nodes process the incoming data,
performing all the requested operations, on the best effort basis. Eventually, a sta-
tistically significant picture of activity of all channels of the monitored system is
built. The computing power needed to carry out such a task could be delivered
in the form of classical CPUs or currently much more attractive, by the General
Purpose GPUs (GPGPUs). Earlier attempts to evaluate the applicability of the
classical CPU resources for the monitoring purposes showed that due to a large
scale of the considered system some of the external resources located in the re-
mote processing farms may prove to be necessary to perform the desired task [5].
Moreover, it has been demonstrated that the access to such remote farms could be
granted within the framework of the interactive grid project [6] providing that the
network throughput to the grid farms has enough capacity to handle the demanding
traffic.

Even though the histogramming is a simple operation, in the case of a large
number of sequentially analysed channels it requires high performance computing.
Processing parallelisation at the input data level seems to strongly enhance the
monitoring efficiency. The SIMD (Single Instruction Multiple Data) architectures
perform the same instruction on the streams of data in a single cycle. Since the
histogramming for each monitored channel requires updating of a content of a his-
togram bin then the use of SIMD architecture should lead to the increase of the
histogramming speed by a factor reflecting the number of channels being moni-
tored in parallel. The SIMD architectures, implemented as SIMT (Single Instruc-
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Figure 1. A sketch of a large scale data quality monitoring system

tion Multiple Threads) in the CUDA! context, are successfully used in graphics
processors which aim is to perform large scale, complex calculations on large vol-
ume data samples. Therefore, it is expected that their application in the large,
real-time data acquisition systems will lead to a substantial increase of the perfor-
mance.

Histogramming with GPU cards was subject of a number of former research.
Podlozhnyuk presents in [7] two implementations using the histograms of different
size: one uses the 64-bin and the other one the 256-bin histograms. Both these
implementations are included in the CUDA software development kit. In [8] Shams
and Kennedy discuss the algorithm which can be used on large volume data-sets and
for thousands of bins. Their methods target the data-mining applications, reading
32-bit values on input in contrast to Podlozhnyuk’s 8-bit input values. Another
CUDA implementation can be found in [9] where the computations of the original
and a new histogram distribution is presented. Authors of [10] introduce two novel
histogramming methods targeted at GPUs. Both methods outperform the existing
ones and increase the performance predictability. The authors explore and discuss
the algorithmic design choices for both methods, and they identify and evaluate
performance limitations.

In this paper the performance increase of the monitoring system running on
a cluster node equipped with GPU cards was estimated. The performed measure-
ments and analyses addressed the following:

e what the performance gain of running the histogramming on a GPU comparing
to the CPU is

! The acronym CUDA stands for Compute Unified Device Architecture.
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e what computation model (memory model, etc.) is the most suited one for this
kind of calculations

e what maximal data processing bandwidth can be achieved.

The stress was put on the experiments local to a monitoring node. This means that
the data source was located in that node and that the performed measurements
considered only the computing GPU/CPU and the memory data flow factors.

3 GPU ARCHITECTURE OVERVIEW

Architecture of a typical CUDA-capable GPU is organized into an array of highly
threaded streaming multiprocessors (SMs). Each SM has a number of streaming pro-
cessors (SPs) that share the control logic and instruction cache. Naturally, a general
purpose GPU application includes both the CPU and the GPU codes. Serial code
is executed in a host (CPU) thread and the parallel one, known as the kernel, is
executed in many device (GPU) threads. Each kernel is executed on one device.
Multiple kernels can be concurrently run on a device. The computation on a GPU
is distributed onto a grid of blocks of threads. Each block contains the same number
of threads and is identified within a grid by the two-dimensional block-ID. In turn,
each thread within a block can be identified by its ID for an easy indexing of the data
being processed. A block is organised as a three-dimensional array of threads. The
block and grid dimensions, which are collectively known as the execution configura-
tion, can be set at the run-time and are typically based on the size and dimensions
of the data to be processed [11].

Each block is executed by one streaming multiprocessor. Several concurrent
blocks can reside on a single SM depending on the blocks’ memory requirements and
the SM’s memory resources. The blocks can be executed in any order, concurrently
or sequentially. The threads within a block are grouped into warps. At any time
a multi-processor executes a single warp. All threads (typically 32) of a warp execute
the same instruction but operate on different data (in case of conditional statements
all the threads in a warp execute all branches. However, those threads which do not
follow the branch execute an equivalent of a null operation).

CUDA threads may access, during their execution, the data allocated in various
memory spaces. Each thread has a private local memory. Each thread block has
the shared memory visible to all threads of the block and with the same lifetime
as the block. All threads have access to the same global memory. There exist also
two additional read-only memory spaces accessible by all threads: the constant and
texture memory spaces.

The device’s DRAM, the global memory, is un-cached. Access to the global
memory has a high latency (of the order of 400-600 clock cycles), which makes
the reading from and writing to the global memory particularly expensive. The
throughput of the global memory access depends on the access pattern. When
certain requirements are met by the threads in a warp, the access to the global
memory by multiple threads can be combined into a single transaction for contiguous
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memory locations. This is known as the memory coalescing. Non-coalesced memory
accesses can severely affect the performance of an application and should be avoided
where possible [12]. A coalescing global memory access is perhaps the single most
important consideration in the CUDA code optimisation. It may even be worthwhile
to reorganise the data prior to the execution of a kernel in order to ensure the
coalesced access.

Local memory is called so not because of its physical location but because its
scope is local to a thread. In fact, the local memory is off-chip. Local memory is used
only to hold automatic variables. Access time to the local memory is comparable
with that to the global one. The read-only texture memory is cached. Therefore,
a texture fetch costs one device memory read only on a cache miss. The texture
cache is optimized for 2D spatial locality, so the threads of the same warp that read
the texture addresses that are close together will achieve the best performance.

The constant memory space is cached. As a result, a read operation from the
constant memory costs one memory read from the device memory only on a cache
miss. Accesses to different addresses by threads within a warp are serialized, thus
the cost scales linearly with the number of unique addresses read by all the threads
within a warp. Such a constant cache is the most efficient when the threads in the
same warp access only a few distinct locations. If all the threads access the same
location then the constant memory can be as fast as a register.

Shared memory is located on the chip. So, it has much higher bandwidth and
lower latency than the local and global memory (provided there are no bank con-
flicts between the threads). Access time to the shared memory is comparable with
the register access time [11]. To achieve a high memory bandwidth for concurrent
accesses, the shared memory is divided into equally sized memory modules (banks)
that can be accessed simultaneously. Therefore, any memory load or store of n ad-
dresses that span n distinct memory banks can be serviced simultaneously, yielding
an effective bandwidth that is n times as high as the bandwidth of a single bank.
However, if the multiple addresses of a memory request map to the same memory
bank then the accesses are serialized. The hardware splits a memory request that
has bank conflicts into as many separate conflict-free requests as necessary. As
a consequence the effective bandwidth is decreased by a factor equal to the number
of separate memory requests. To minimise the bank conflicts, it is important to
understand how the memory addresses are mapped onto the memory banks and
how to optimally schedule the memory requests [12].

A typical CUDA implementation consists of the following stages [13]:

memory allocation on the device;

data transfer from the host to the device;
device memory initialisation if required;
execution configuration determination;

kernel(s) execution. The result is stored in the device memory;

AN ol i

data transfer from the device to the host.



288 J. Chwastowski, K. Koreyl, J. Plazek, P. Poznariski

One of the keys to a good performance is to keep the streaming multiprocessors
on the device as busy as possible. The efficiency of the application can be improved
if one minimises the data transfer between the host and the device. The data should
be kept on the device as long as possible. Programs that run multiple kernels on
the same data should favour leaving of the data on the device between the kernel
calls rather than transferring intermediate results to the host and then sending them
back to the device for subsequent calculations. Thus, the 5™ step outlined above
can be run several times without a need to transfer the data between the device and
the host.

The other way to improve the performance is to use the pinned RAM (or page-
locked) memory. The pinned_ RAM memory has an important property: the operat-
ing system guarantees that it will never swap this memory out to a disk, which en-
sures its residence in the physical memory. Knowing the physical address of a buffer,
the GPU can then use the direct memory access (DMA) to copy the data to or from
the host [14]. However, the pinned_ RAM memory should not be overused. Its
excessive use can reduce the overall system performance because the pinned RAM
memory is a scarce resource. Furthermore, by reducing the amount of physical mem-
ory available to the operating system for paging, reserving too much pinned RAM
memory reduces the overall system performance [12].

The use of the pinned_ RAM memory has several benefits [11]:

e for some devices the transfers between the pinned_ RAM host memory and the
device memory can be performed concurrently with kernel execution;

e on some devices, the pinned_RAM host memory can be mapped onto the address
space of the device, thus eliminating the need to perform a copy operation to or
from the device memory;

e on systems with a front-side bus, the bandwidth of the transfer between the
host memory and the device memory is higher if the host memory is allocated
as the pinned_ RAM and even higher if, in addition, it is allocated as the write-
combining.

4 EXPERIMENT AND RESULTS

To quantify the increase of histogramming performance a number of measurements
recording the data processing rate or time in configurations aimed to explore possible
advantages of locating raw data chunks and histograms within different types of
memory available in a computer system were carried out. The raw data acquired
from external sensors — typically some measuring devices, for example a set of the
8-bit ADCs’ readouts — arrive to the computing node equipped with the graphics
card via the network interface. Next, they are copied to the main computer memory
(RAM) where they can be kept or alternatively can be further transferred to the
graphics card.

The former option requires that the memory pages, which were allocated in
order to store the input data cannot be swapped out and become inaccessible when



Selected Issues on Histograming on GPUs 289

the threads running on the graphics card issue a request to read in these data.
The advantages and disadvantages of pinned RAM were previously discussed (see
Section 3 for details).

The other option is to subsequently transfer the input data from RAM to the
common global memory of the graphics card to which all the GPU running threads
have the access.

A sketch of the memory configuration considered in the discussed tests is pre-
sented in Figure 2.
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Figure 2. Memory banks involved in storing the input data and histograms

In the performed tests the data from each input channel had the values within
the range of 0 to 255 thus fitting into a single byte. Moreover, it was assumed that
all the input channels are sampled at the same moment and that the set of values
obtained in this way forms an event. The data in the event are organised such that
a value connected to a given channel has a constant address within an event. These
addresses are consecutive. In other words every channel can be addressed using its
offset defined with respect to the beginning of the event. The input data packet
consists of a number of events with the same structure and with the same number
of input channels.

For the above outlined data organisation the software architecture was designed
to perform the histogramming task. Each channel present in the input data stream
and undergoing the histogramming procedure was assigned a single thread. The
number of active channels was stored in the packet header. During the header analy-
sis it was decoded by the processing node to activate the required number of threads.
The number of active channels was also sent to the threads. This allowed a proper,
according to the input data size, configuration of the threads and unambiguous as-
sociation of a thread and the monitored data channel. An additional assumption
was that the histogram bin occupies four bytes of the memory (a 32 bit word),
giving a possibility to store up to 232 — 1 occurrences of a measurement of a given
value without transferring any intermediate results to the host memory. The above
implies that 1kB of memory is required to store a histogram consisting of 256 bins.
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The histograms built during the input data analysis can be located either in
the GPU global memory next to the input data or in the shared memory which
is assigned to each block of threads created at the graphics card. As discussed
earlier (see Section 3) the advantage of the latter solution manifests in the much
shorter memory access time. Therefore, in order to avoid extensive cycle losses the
histograms were stored in the GPU shared memory.

To further minimise the clock cycles loss (leading to increase of the execution
time), now induced by an access of a thread to the shared memory, the resulting
histograms were located using the rules required to profit from the bank organisation.
Usually, there are 32 banks allowing the 32 threads forming a warp to access the
memory in parallel (concurrently) if each thread accesses a location belonging to
a different memory bank.

In the carried out tests the histogramming performance was measured for both
cases:

e with the threads building histograms in separate memory banks (banked),

e when the banking structure was not used and the histograms were located in
a continuous address space of the shared memory (non-banked).

As the testbed a computing node of the Zeus cluster owned by Academic Com-
puter Centre CYFRONET AGH, Krakéw, Poland was used. The Zeus cluster node
is the HP ProLiant SL390 server equipped with two 6-cores Xeon E5645 CPUs
(which sums up to 12-core CPU placed on a single motherboard) running at 2.4 GHz,
the L2-cache size is 12 MB and there is 99 GB of RAM. In addition, the node houses
also the Tesla M-class M2090 GPU Computing Modules. The graphics card con-
tains eight devices running at 1.3 MHz, each having 5.6 GB of global memory. In
each device there are sixteen multiprocessors, processing blocks of threads with 32
threads per warp and 48 kB of shared memory per block. The maximum number of
threads per block is 1024 and the maximum number of threads per multiprocessor
is 1536.

The requirement that each thread accesses the data from a different memory
bank limits the number of histograms in the shared memory to 32 (Figure 3). Such
organisation uses only 32kB of shared memory leaving 16 kB for other purposes —
such as storing information useful to determine basic statistical quantities. This
space can also be used to keep the overflows and underflows for channels producing
values from outside of the 0-255 range (possible only in the case of analysis of longer
than a byte channel readings). Organisation with histograms in continuous memory
allows the allocation of 48 histograms in 48 kB of shared memory.

In the first runs the time needed to histogram 100 events of input data as
function of the number of the monitored channels was measured. Basic idea behind
this measurement was the exploration of the banking organisation of the GPU shared
memory and that of the way the CUDA scheduler submits large number of threads
on limited hardware resources. Four tests were performed. During the tests four
input data sets of randomly generated values were used. These sets were stored at
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Figure 3. Layout of the histogram placement in the banking (left) and non-banking (right)
configurations (see text)

the CPU RAM. Two of the generated sets were further modified in order to explore
possible memory access conflicts in the case when the banking organisation of the
shared memory was not used. In these selected data samples all odd numbered input
channels in all 100 events were set to the same value — in the present case they were
zeroed.
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Figure 4. The step-like structure reflects operation of the CUDA scheduler assigning blocks
of threads (32 threads for banked and 48 for notbanked cases) to 16 multiprocessors.
The height of steps corresponds to processing time which increases when threads
are serialised due to memory conflicts (notbanked) comparing to the lack of conflicts
case (banked).
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The measured histogramming times are presented in Figure 4. They were cal-
culated using the number of clock ticks recorded by each thread during the kernel
processing. The measured time includes the zeroing of the shared memory used to
store the histograms, the histogramming of the monitored channels of 100 events
and copying resulting histograms to the GPU global memory where the CPU pro-
gram can access them and copy to the host computer RAM for further processing —
for example for displaying of the obtained results.

The processing time increases with increasing number of threads (increasing
number of the monitored data channels) for both types of the used memory con-
figurations and four data sets. All curves exhibit a characteristic step-like shape.
These steps reflect the way the CUDA scheduler assigns the threads for execution.
The length of the steps reflects the internal organisation of the shared memory of
the GPU card.

The scheduler, having 16 multiprocessors at its disposal, keeps assigning increas-
ing number of blocks to free multiprocessors. When all the 16 multiprocessors will
become busy with data processing the scheduler will queue any new request until at
least one of the multiprocessors finishes its work and becomes idle. As all the mul-
tiprocessors run the same kernel they will finish at the same clock cycle. From this
moment on the scheduler has again 16 multiprocessors at its disposal and another
16 requests can be assigned for processing at the same moment. Since in the case of
the same kernel execution the processing time on multiprocessors is constant then
the steps are of the same height.

The length of the steps reflects internal organization of shared memory for stor-
ing histograms. In the tests using the memory banking one multiprocessor is as-
signed one block containing 32 threads. Hence, 16 multiprocessors running in par-
allel can process 32 - 16 = 512 threads at the same time. When they finish another
batch of 512 threads can start their execution. The processing time for the case
with banking is the same for random data and for half data zeroed as when using
the banking any memory conflicts are encountered.

The lack of the dependence of the histograming time on the data contents allows
predicting the total processing time and retrieval of the results in a certain moment
of time. This feature can be used in a large scale system to plan the load balancing
and to avoid an extensive queuing which can grow proportionally to the processing
time related to the contents of the processed data.

In the case of the continuous memory allocation the number of threads per block
is set to 48 to use all the available space in the block shared memory. The scheduler
can start 16 free multiprocessors processing in parallel 16 - 48 = 768 threads (what
is reflected by wider steps — see Figure 4). On the other hand the processing time is
longer (larger height of each step) when compared to the banked architecture case.
This is a consequence of the presence of conflict situations observed for randomly
generated data. In such a case more than one thread tries to modify the histogram
bin located in the same bank — such requests have to be serialized. This is con-
firmed in the case when half of the data is set to zero inducing in such a way much
pronounced influence of the conflicts on the measured processing time — see Figure 4.
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Figure 5. The processing rates for three cases of histograms located in the GPU memory
(banked, notbanked, pinned RAM) show a large memory transfer overhead for
a small number of channels (small amount of data transfers). Increasing number of
channels (the data size) improves the rates until the saturation sets in — see text.
The initially constant CPU processing rate drops slightly for larger amount of the
data sent for processing.

The comparison of the data processing rates for the three cases of the discussed
memory configurations is presented in Figure 5. The rate is calculated based on the
total time needed to send the data to the graphics card, to execute the histogram-
ming kernel and to retrieve the resulting histograms from the device (GPU) global
memory to RAM. For comparison, the results of the measurement performed for
the histogramming task running on the CPU are also shown (marked with purple
curve). In this case the test data were located in the computing node RAM next to
the histograms.

The superiority of the CPU run histogramming process for a relatively small
number of channels is related to the lack of data copying processes necessary when
the GPU is involved. The initial low performance for the GPU cases increases
with increasing number of the monitored channels and eventually tends to saturate.
This saturation is observed because the data transfer overhead between the host
node RAM and the GPU global memory becomes negligible when compared to
the processing time of a large number of channels. Since in both, the banked and
notbanked, cases the data transferred to the global GPU memory are used then one
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may conclude from Figure 5 that the banking allows reaching considerably higher
performances.

Indeed, the banked and notbanked configurations start to be more efficient than
the CPU one if the number of channels exceeds about 2000 and 3 500, respectively.
A possibility to run in parallel 786 threads and that of an instant start of the
processing of a new batch of events helps to cross the 45 MB/s boundary which
seems to limit the CPU performance in the discussed case.

A stable but very poor performance seen for the pinned RAM case (Figure 5)
when the input data are located in the CPU RAM confirms earlier studies.
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Figure 6. Increasing load on the GPU threads by sending larger number of events for pro-
cessing helps to reach higher throughput. With the number of channels needed
to activate 16 multiprocessors, the banked case doubles performance of the not-
banked having only 2/3 of the number of channels for the notbanked case (for
a large number of events).

The four placements of the histograms (memory configurations) were used in
tests with variable number of events in the packet. Figure 6 shows results of the
measurements. The observed trends agree qualitatively with the expectations. After
an initial increase the processing rate tends to saturate with increasing number of
events in a packet.

Increasing the number of events in a packet leads to a larger occupation of the
GPU with histogramming operations. This reduces the relative contribution of the
data transfers between the CPU and the device global memory as discussed above.
Again, the poorest performance is measured in the pinned RAM case. The his-
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togramming task executed by the CPU improves when compared to the 100-events
long packets (confront Figure 5). A large number of events demanding a long ac-
tivity of the GPU processors allows the banked organisation to outperform other
architectures. Its throughput almost doubles the one observed in the not-banked
case where the memory access conflicts imply the limit of about 140 MB/s. The
measurements were taken for the number of channels corresponding to full occupa-
tion of 16 multiprocessors of a single device.

5 SUMMARY AND OUTLOOK

Feasibility studies and performance testing of the histogramming were carried out
using a single GPU device. The aim of our measurements was to identify differences
and applicability of different memory organizations of the GPU for channel moni-
toring in a large scale systems. We did not attempt to find the best technology (like
multi-core CPU, FPGA) for histogramming. The investigations were performed us-
ing different memory configurations (the histograms were allocated in various parts
of the physical memory) as well as different 8 bit physics data scenarios. As a refer-
ence we compared our measurements to the results obtained in the case of running
the same calculations on a CPU without any optimizations.

Earlier studies indicated that in case of manipulating large amounts of data
and relatively simple GPU calculations the main bottleneck becomes the RAM to
GPU memory bandwidth. Therefore our results, presented in this note, reflect total
histogramming time which includes tranferring data from the CPU RAM to the
global memory of the GPU, running the histogramming kernel, collecting separate
histograms in the GPU global memory and their transfer to the CPU RAM (where
applicable).

For different memory configurations all the obtained dependencies show a similar
step-wise behaviour, which reflects the maximum number of threads that can be run
on a single multi processor of the used GPU. It also turned out that the histogram-
ming was the slowest in the so-called notbanked_halfzero case (confront Section 4 for
details). For a relatively low number of the histogrammed channels the best results
were obtained in the case where the operations were run on a CPU. If the number
of monitored channels exceeded about 2500 then the largest throughput was seen
in the case of the banked memory configuration.

In case of the histograming performed by the CPU the low performance resulted
from the data organization used in our tests. As the main focus of our studies was
on large scale systems, the CPU memory was filled with blocks of measurements
taken on a given sample for different channels. Therefore the caching mechanism
of the CPU was not usable as the consecutive samples from the same channels
were separated by thousands of bytes exceeding the size of the L1 cache. Ana-
lysis of adjacent samples from different channels required reloading corresponding
histograms into L1 cache and the long access time to RAM degraded the CPU
performance.
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The processing rate as the function of a number of events in an input data packet
showed characteristic behavior. After an initial increase the rate tends to flatten off
with increasing number of events per packet. The best results were obtained in the
banked memory configuration case.

Since the establishing of guidelines for building a universal architecture for the
physics experiments data monitoring is our ultimate goal, we plan to perform further
research in a number of areas.

First area concerns the input data scenarios. We plan to test processing of
various data formats or various data types. Among them are values larger than
8 bits where we envisage more complex histogram structures with underflow and
overflow entries.

A thorough benchmarking is the second area of our planned investigations. We
expect to profit very much from it by identifying the bottlenecks and eventually
delivering a proposal of a single computing node hardware architecture. We plan to
test both the whole data flow and the processing chain on a processing unit consisting
of a network device, multi-core CPU and the GPU device(s). We already anticipate
that the network device with 1 Gbps throughput will be one of the main limiting
factors. Therefore, we would like to test different network standards, among them
10 Gigabit Ethernet and others. Provided that it will be possible to provide much
more data via the network device that GPU will be able to process, we would like to
benchmark a hybrid GPU+CPU processing on the computing node. Such a scenario
seems to be very promising from the cost-effectiveness perspective. A cheap node,
consisting of a GPU and CPU, processing the data may perform equally well as
a node equipped with a high-end GPU when its CPU is idle.

The clustering of the processing nodes is another field of our interest. Here,
main stress will be put on the load balancing related issues. In addition to the
performance issues of the cluster architectures, the problems connected to the cluster
configuration as well as those related to the reconfiguration will serve as a subject
of our future research.

Obtaining results in all the aforementioned areas will allow to formulate the
architectural guidelines for building a network of the processing (monitoring) nodes.
The guidelines should encompass the aspects of a single node architecture as well as
those of the federation of such nodes and network infrastructure. Data processing
requirements and its cost are the crucial factors to be considered.
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