
Computing and Informatics, Vol. 27, 2008, 515–528

SOME APPLICATIONS OF SPIKING
NEURAL P SYSTEMS

Mihai Ionescu

Research Group on Mathematical Linguistics

Universitat Rovira i Virgili

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

e-mail: armandmihai.ionescu@urv.cat

Dragoş Sburlan

Ovidius University

Faculty of Mathematics and Informatics

Constantza, Romania

e-mail: dsburlan@univ-ovidius.ro

Revised manuscript received 3 December 2007

Abstract. In this paper we investigate some applications of spiking neural P sys-
tems regarding their capability to solve some classical computer science problems.
In this respect versatility of such systems is studied to simulate a well known parallel
computational model, namely the Boolean circuits. In addition, another notorious
application – sorting – is considered within this framework.

Keywords: SN P systems, Boolean circuits, sorting

1 INTRODUCTION

Spiking neural P systems (shortly called SN P systems) are a class of computing
models introduced in [9]. They are using ideas from neural computing, the area
currently under intensive investigation, with the focus on spiking neurons (see e.g. [4,
12, 13]).



516 M. Ionescu, D. Sburlan

The new models are based on the tissue-like and neural-like P systems struc-
ture to which various features were added. Details can be found at the membrane
computing website ([21]). For an introduction in the area we refer to [16].

In short, an SN P system consists of a set of neurons placed in the nodes of
a graph and sending signals (spikes) along synapses (edges of the graph), under the
control of firing rules. Forgetting rules, which remove spikes from neurons, are also
used. Hence, the spikes are moved and created, destroyed, but never modified (there
is only one type of objects in the system).

A generalization of the original model was considered in [15, 3] where rules of
the form E/ac → ap; d where introduced. The meaning is that when using the rule,
c spikes are consumed and p spikes are produced. Because p can be 0 or greater
than 0, we obtain at the same time a generalization of both spiking and forgetting
rules. Unlike the original model of SN P systems, in [10], parallelism inside a neuron
was introduced. By that we mean that when a rule E/ac → a; d can be applied (the
contents of a neuron is described by the regular expression E), then we apply it as
many times as possible in that neuron.

Based on the above features, we investigate their power to simulate Boolean
gates and circuits. We also introduce here a modality to sort natural numbers
(given as number of spikes) with SN P systems in the initial version.

2 PREREQUISITES

In this section we first introduce the definition of SN P systems which we will
use during our endeavor, together with some explanations on the exhaustive use
of the rules. Then, we recall (some) basic notions on Boolean functions and cir-
cuits.

2.1 SN P Systems

A spiking neural P system (in short, an SN P system) of degree m ≥ 1 is a construct
of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

• ni ≥ 0 is the initial number of spikes contained by the neuron;

• Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over O, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that as ∈ L(E) for no rule

E/ac → a; d of type (1) from Ri;



Some Applications of Spiking Neural P Systems 517

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn, for 1 ≤ i ≤ m (synapses);

4. out ∈ {1, 2, . . . , m} indicates the output neuron.

The rules of type (1) are firing (also called spiking) rules, and the rules of
type (2) are called forgetting rules. The first ones are applied as follows: if the
neuron contains k spikes, ak ∈ L(E) and k ≥ c, then the rule E/ac → a; d can
be applied, and this means that c spikes are consumed, only k − c remain in the
neuron, the neuron is fired, and it produces one spike after d time units (a global
clock is assumed, marking the time for the whole system, hence the functioning of
the system is synchronized). If d = 0, then the spike is emitted immediately, if
d = 1, then the spike is emitted in the next step, and so on. In the case d ≥ 1, if the
rule is used in step t, then in steps t, t+ 1, t+ 2, . . . , t+ d− 1 the neuron is closed,
and it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
sends a spike along it, then the spike is lost). In step t + d, the neuron spikes and
becomes open again, hence can receive spikes (which can be used in step t+ d+ 1).
A spike emitted by a neuron σi is replicated and goes to all neurons σj such that
(i, j) ∈ syn.

The forgetting rules are applied as follows: if the neuron contains exactly
s spikes, then the rule as → λ can be used, and this means that all s spikes are
removed from the neuron.

In each time unit, in each neuron which can use a rule we have to use a rule,
either a firing or a forgetting one. Because two firing rules E1/a

c1 → a; d1 and
E2/a

c2 → a; d2 can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules
can be applied in a neuron, and then one of them is chosen non-deterministically.
Note, however, that we cannot interchange a firing rule with a forgetting rule, as
all pairs of rules E/ac → a; d and as → λ have disjoint domains, in the sense that
as /∈ L(E).

The initial configuration of the system is described by the numbers n1, n2, . . . , nm

of spikes present in each neuron. Starting from the initial configuration and applying
the rules, we can define transitions among configurations. A transition between two
configurations C1, C2 is denoted by C1 =⇒ C2. Any sequence of transitions starting
in the initial configuration is called a computation. A computation halts if it reaches
a configuration where all neurons are open and no rule can be used.

With any computation, halting or not, we associate a spike train, a sequence
of digits 0 and 1, with 1 appearing in positions 1 ≤ t1 < t2 < . . . , indicating the
steps when the output neuron sends a spike out of the system (we also say that the
system itself spikes at that time). With any spike train containing at least two spikes
we associate a result, in the form of the number t2 − t1; we say that this number
is computed by Π. By definition, if the spike train contains only one occurrence
of 1, then we say that we have computed the number zero. The set of all numbers
computed in this way by Π is denoted by N2(Π) (the subscript indicates that we
only consider the distance between the first two spikes of any computation). Then,
by Spik2Pm(rulek, consq, forgr) we denote the family of all sets N2(Π) computed
as above by spiking neural P systems with at most m ≥ 1 neurons, using at most



518 M. Ionescu, D. Sburlan

k ≥ 1 rules in each neuron, with all spiking rules E/ac → a; t having c ≤ q, and all
forgetting rules as → λ having s ≤ r. When one of the parameters m, k, q, r is not
bounded, it is replaced by ∗.

A rule of the type E/ac → ap; d is called an extended rule, and is applied as
follows: if neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule can fire,
and its application means consuming (removing) c spikes (thus only k − c remain
in σi) and producing p spikes, which will exit the neuron after d steps.

In this paper, we use SN P systems of the form introduced above, but using
the rules in the exhaustive way. Namely, if a rule E/ac → ap; d is associated with
aZneuron σi which contains k spikes, then the rule is enabled (we also say fired) if
and only if ak ∈ L(E). Using the rule means the following. Assume that k = sc+ r,
for some s ≥ 1 (this means that we must have k ≥ c) and 0 ≤ r < c (the remainder
of dividing k by c). Then sc spikes are consumed, r spikes remain in the neuron σi,
and sp spikes are produced and sent to the neurons σj such that (i, j) ∈ syn (as
usual, this means that the sp spikes are replicated and exactly sp spikes are sent to
each of the neurons σj). In the case of the output neuron, sp spikes are also sent to
the environment. Of course, if neuron σi has no synapse leaving from it, then the
produced spikes are lost.

We stress two important features of this model. First, it is important to note
that only one rule is chosen and applied, the remaining spikes cannot evolve by
another rule. For instance, even if a rule a(aa)∗/a → a; 0 exists, it cannot be used
for the spike remaining unused after applying the rule a(aa)∗/a2 → a; 0. Second,
the covering of the neuron is checked only for enabling the rule, not step by step
during its application. For instance, the rule a5/a2 → a; 0 has the same effect as
a(aa)∗/a2 → a; 0 in the case of a neuron containing exactly 5 spikes: the rule is
enabled, 4 spikes are consumed, 2 are produced; both applications of the rule are
concomitant, not one after the other, hence all of them have the same enabling
circumstances.

If several rules of a neuron are enabled at the same time, one of them is non-
deterministically chosen and applied. The computations proceed as in the SN P sys-
tems with usual rules, and a spike train is associated with each computation by
writing 0 for a step when no spike exits the system and 1 within a step when one
or more spikes exit the system. Then, a number is associated – and said to be
generated/computed by the respective computation – with a spike train containing
at least two occurrences of the digit 1, in the form of the steps elapsed between the
first two occurrences of 1 in the spike train. Number 0 is computed by computations
whose spike trains contain only one occurrence of 1.

2.2 Boolean Functions and Circuits

An n-ary Boolean function is a function f{true, false}n 7→ {true, false}. ¬ (nega-
tion) is a unary Boolean function (the other unary functions are: constant func-
tions and identity function). We say that Boolean expression ϕ with variables
x1, . . . , xn expresses the n-ary Boolean function f if, for any n-tuple of truth values



Some Applications of Spiking Neural P Systems 519

t = (t1, · · · , tn), f(t) is true if T � ϕ, and f(t) is false if T 2 ϕ, where T (x) = ti for
i = 1, . . . , n.

There are three primary Boolean functions that are widely used: the NOT,
AND, and OR functions. The NOT function is a just a negation; the output is the
opposite of the input. The NOT function takes only one input, so it is called a unary
function or operator. The output is true when the input is false, and vice-versa. The
AND function returns true only if all inputs are true; if there is an input which is
false the function returns false. The output of an OR function is true if the first
input is true or the second input is true or the third input is true, etc. (hence, to
return true is enough for one input to be true). Both AND and OR can have any
number of inputs, with a minimum of two.

Any n-ary Boolean function f can be expressed as a Boolean expression ϕf

involving variables x1, . . . , xn.

There is a potentially more economical way than expressions for representing
Boolean functions, namely Boolean circuits. A Boolean circuit is a graph C = (V, E),
where the nodes in V = {1, . . . , n} are called the gates of C. Graph C has a rather
special structure. First, there are no cycles in the graph, so we can assume that
all edges are of the form (i, j), where i < j. All nodes in the graph have the “in-
degree” (number of incoming edges) equal to 0, 1, or 2. Also, each gate i ∈ V has
a sort s(i) associated with it, where s(i) ∈ {true, false,∨,∧,¬} ∪ {x1, x2, . . . }. If
s(i) ∈ {true, false} ∪ {x1, x2, . . . }, then the in-degree of i is 0, that is, i must have
no incoming edges. Gates with no incoming edges are called the inputs of C. If
s(i) = ¬, then i has “in-degree” one. If s(i) ∈ {∨,∧}, then the in-degree of i must
be two. Finally, node n (the largest numbered gate in the circuit, which necessarily
has no outgoing edges) is called the output gate of the circuit.

This concludes our definition of the syntax of circuits. The semantics of circuits
specifies a truth value for each appropriate truth assignment. We let X(C) be the
set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X |
s(i) = x for some gate i of C}). We say that a truth assignment T is appropriate for
C if it is defined for all variables in X(C). Given such a T , the truth value of gate

i ∈ V , T (i), is defined, by induction on i, as follows: If s(i) = true then T (i) = true,
and similarly if s(i) = false. If s(i) ∈ X, then T (i) = T (s(i)). If now s(i) = ¬,
there is a unique gate j < i such that (j, i) ∈ E. By induction, we know T (j), and
then T (i) is true if T (j) = false, and vice-versa. If s(i) = ∨, then there are two
edges (j, i) and (j ′, i) entering i. T (i) is then true if and only if at least one of T (j),
T (j ′) is true. If s(i) = ∧, then T (i) is true if and only if both T (j) and T (j ′) are
true, where (j, i) and (j ′, i) are the incoming edges. Finally, the value of the circuit,
T (C), is T (n), where n is the output gate.

3 SIMULATING LOGICAL GATES AND CIRCUITS

In this section we show how SN P systems can simulate logical gates. We consider
that input is given in one neuron while the output will be collected from the output



520 M. Ionescu, D. Sburlan

neuron of the system. Boolean value 1 is encoded in the spiking system by two
spikes, hence a2, while 0 is encoded as one spike.

We collect the result as follows. If the output neuron fires two spikes in the
second step of the computation, then the Boolean value computed by the system
is 1 (hence true). If it fires only one spike, then the result is 0 (false).

3.1 Simulating Logical Gates

Lemma 3.1. Boolean AND gate can be simulated by SN P systems using one
neuron and no delay on the rules, in one step.

Proof. We construct the SN P system (formed by only one neuron):

ΠAND = ({a}, σ1 = (0, {a2 → a; 0, a3 → a; 0, a4/a2 → a; 0}), ∅, 1).

The functioning of the system is rather simple (remember that the rules are
used in an exhaustive way). Suppose in neuron 1 we introduce three spikes. This
means we compute the logical AND between 1 and 0 (or 0 and 1). The only rule
the system can use is a3 → a; 0 and one spike (hence the correct result - 0 in this
case) is sent to the environment.

If 4 spikes are introduced in neuron 1 (the case 11), the output neuron will fire
using the rule a4/a2 → a; 0, and will send two spikes in the environment. The system
with the input 00 behaves similarly to the 01 or 10 cases. We have shown how the
system we have constructed gives the right answer in one computational step and
gets back to its initial configuration for a further use, if necessary. 2

We want to emphasize here that no “extended” rule was used. Of course, a rule
a4 → a2 can substitute, with the same effect, the rule we have preferred above
(namely a4/a2 → a; 0) but, in simulating Boolean gates, we have tried to minimize
the use of such rules. An extended rule is used only once in simulating Boolean
gates, more precisely in the simulation of OR gate.

If in the system above, in the output neuron, we change only the rule a3 → a; 0
(with the rule a3 → a2; 0) we obtain the OR gate.

Lemma 3.2. Boolean OR gate can be simulated by SN P systems using one neuron
and no delay on the rules, in one step.

We now pass to the simulation of logical gate NOT.

Lemma 3.3. Boolean NOT gate can be simulated by SN P systems using two
neurons, no delay on the rules, in two steps.

Proof. We first want to stress that in simulating this gate we did not use any
extended rules. The case when such rules are used is left to the reader.

Let us construct the following SN P system:

ΠNOT = ({a}, σ1, σ2, {(1, 2), (2, 1)}, 1),



Some Applications of Spiking Neural P Systems 521

and:

• σ1 = (a, {a2/a → a; 0, a3 → a; 0}),

• σ2 = (0, {a/a → a; 0, a2/a2 → a; 0}).

Let us emphasize that in order to simulate Boolean gate NOT, in the initial con-
figuration, neuron 1 contains 1 spike, which, once used to correctly simulate the
gate, has to be present again in the neuron such that the system returns to its
initial configuration. This is done with the help of neuron 2 which in step 2 of the
computation refills neuron 1 with one spike.

The system is given in its initial configuration in Figure 1. This gives us the
opportunity to introduce the way we graphically represent a SN P system: as a di-
rected graph, with the neurons as nodes and the synapses indicated by arrows. Each
neuron has inside its specific rules and the spikes present in the initial configuration.

If the input in the Boolean gate is 1, then two spikes are placed in neuron 1.
Having three spikes inside (two from the input, and one initially present inside)
neuron 1 can use only rule a3 → a; 0, thus sending one spike to the environment
(hence Boolean 0 – the correct result – is obtained), and one spike to neuron 2. The
latter one will send the spike back, in the second step of the computation by using
rule a/a → a; 0, and the system regains its initial configuration.

'
&

$
%

'
&

$
%
� -

?

a
a2/a → a; 0
a3 → a; 0

a/a → a; 0
a2/a2 → a; 0

1 2

Fig. 1. An SN P system simulating the NOT gate

If the input in the Boolean gate is 0, hence one spike is introduced in neuron 1,
it uses the rule a2/a → a; 0, two spikes are sent to the environment (and the result
of the computation is 1), and to neuron 2 in the same time. In the second step
of the computation neuron 2 uses the rule a2/a2 → a; 0, consumes the two spikes
present inside, and sends one back to neuron 1. The system recovers its initial
configuration. 2

After showing how SN P systems can simulate logical gates, we pass to the
simulation of circuits.

3.2 Simulating Circuits

Next, we are presenting an example of how to construct a SN P system to simulate
a Boolean circuit designed to evaluate a Boolean function. Of course, in our goal
we are using the systems ΠAND, ΠOR, and ΠNOT constructed before, to which we
add extra neurons to synchronize the system for a correct output.



522 M. Ionescu, D. Sburlan

We start with the same example considered in [1] and [11], namely the function
f : {0, 1}4 → {0, 1} given by the formula

f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ ¬(x3 ∧ x4).

The circuit corresponding to the above formula as well as the spiking system
assigned to it are depicted in Figure 2.

�
�

A
A

x1 x2 x3 x4

c1 c2

c4

c3

�� �
?

AND AND

SYNC
NOT

OR

�� � �� �
�� ��� �� �� ��-�

? ?

w�

Fig. 2. Boolean circuit and the spiking system

In order for the system that simulates the circuit to output the correct result
it is necessary for each sub-system (that simulates the gates AND, OR, and NOT)
to receive the input from the above gate(s) at the same time. To this aim, we have
to add synchronization neurons, initially empty with a single rule inside (a → a; 0).
Note that in Figure 2 we have added such a neuron in order for the output of the
first AND gate to enter gate OR at the same time with the output of NOT gate (at
the end of the second step of the computation).

Having the overall image of the functioning of the system, let us give some
more details on the simulation of the above formula. For that we construct the
SN P system

ΠC = (Π
(1)
AND,Π

(2)
AND,Π

(3)
NOT ,Π

(4)
OR)

formed by the sub-SN P systems for each gate, and we obtain the unique result as
follows:

1. for every gate of the circuit with inputs from the input gates we have a SN P sys-
tem to simulate it. The input is given in neuron labeled 1 of each gate;

2. for each gate which has at least one input coming as an output of a previous
gate we construct a SN P system to simulate it by “constructing” a synapse
between the output neuron of the gate from which the signal (spike) comes and
the input neuron of the system that simulates the new gate.



Some Applications of Spiking Neural P Systems 523

Note that if synchronization is needed the new synapse is constructed from the
output neuron of the output gate to the synchronization neuron and from here
another synapse is constructed to the input of the new gate in the circuit.

For the above formula and the circuit depicted in Figure 2 we will have:

• Π
(1)
AND computes the first AND gate (x1 ∧ x2) with inputs x1 and x2.

• Π
(2)
AND computes the second AND gate (x3 ∧ x4) with inputs x3 and x4; these

two P systems, Π
(1)
AND and Π

(2)
AND, act in parallel.

• Π
(3)
NOT computes NOT gate ¬(x3∧x4) with input (x3∧x4). While Π

(3)
NOT is work-

ing, the output value of the first AND gate passes through the synchronization
neuron.

• The input enters in the first neuron of OR gate, and SN P system Π
(4)
OR completes

its task. The result of the computation for OR gate (which is the result of the
global P system), is sent into the environment of the whole system.

Generalizing the previous observations the following result holds:

Theorem 3.1. Every Boolean circuit α, whose underlying graph structure is a root-
ed tree, can be simulated by a SN P system, Πα, in linear time. Πα is constructed
from SN P systems of type ΠAND, ΠOR and ΠNOT , by reproducing in the architecture
of the neural structure, the structure of the tree associated to the circuit.

4 A SORTING ALGORITHM

We pass now to a different problem SN P systems can solve, namely to sort n natural
numbers, this time not using the rules in the exhaustive way, but as in the original
definition of such systems.

We first exemplify our sorting procedure through an example. Let us presume
we want to sort the natural numbers 1, 4, and 2, given in this order. For that we
construct the following system given only in its pictorial format below.

We encode natural numbers in the number of spikes (1 – one spike, 4 – four
spikes, 2 – two spikes) which we input in the first line of the system (hence in the
neurons labeled i1, i2, an i3). It can be noticed that the neurons in the first layer of
the structure are having the same rule inside (a∗/a → a; 0) and outgoing synapses to
all the neurons in the second layer of the structure (the ones denoted s1, s2, and s3).
Neuron labeled s1 has outgoing synapses with all neurons in the third layer of the
system, only one spiking rule inside (a3 → a; 0, where 3 is the number of numbers
that have to be sorted), and two deletion rules (a2 → λ, and a → λ). For the other
neurons in the second layer, the exponent of the firing rule decreases one by one as
well as the synapses with the neurons from the third layer of the system.

In the initial configuration of the system we have one spike in neuron i1, four
spikes in neuron i2 and two spikes in neuron i3. In the first step of the computation,



524 M. Ionescu, D. Sburlan

one spike from each neuron is consumed and sent to neurons from the second layer
of the system. Each of them receives the same number of spikes, namely 3.

In the second step of the computation, neuron labeled s1 consumes all three
spikes previously received and fires to neurons o1, o2 and o3. Hence, each neuron
from the output layer has one spike inside. The other neurons from the second layer
delete the three spikes they have received. In the same time neurons i2 and i3 fire
again sending 2 spikes (one each) to all neurons from the second layer.

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

?9 9 q z?

z

?
�

? z z? q ?

i1 i2 i3

s1 s2 s3

o1 o2 o3

a∗/a → a; 0 a∗/a → a; 0 a∗/a → a; 0

a3 → a; 0
a2 → λ
a → λ

a2 → a; 0
a3 → λ
a → λ

a → a; 0
a2 → λ
a3 → λ

Fig. 3. Sorting three natural numbers

In the third step of the computation, neuron s2 fires only to neurons o2 and o3
(so, they will have one more spike inside, hence 2, while o1 remains with only one
spike), the other spikes from neurons s1 and s3 being deleted. In the same time
neuron i2 refills the neurons in the second layer of the system with one spike, which
will be consumed in the fourth step of the computation by neuron s3 and sent to
the output neuron o3. The last step of the computation is equivalent to the fourth
step of the computation and another spike is sent to neuron o3.

So, in the last step of the computation there are: 1 spike in the neuron o1,
2 spikes in the neuron o2, and 4 spikes in the neuron o3.

We pass now to the general case, constructing the system in the pictorial form
indicated in Figure 4.

The functioning of the system is similar to the one described in the example
above. We introduce n natural numbers encoded as spikes, one in each neuron from
the first layer of the structure (denoted by ij, with 1 ≤ j ≤ n). As long as they
are not empty they consume a spike at each step, and send n spikes, one to each
neuron from the second layer of the structure (denoted by si, with 1 ≤ i ≤ n). The
latter neurons have n different thresholds (decreasing one by one from n – neuron
labeled s1, to 1 – neuron labeled sn), and have n different number of synapses with



Some Applications of Spiking Neural P Systems 525

the neurons from the third layer of the structure. The latter ones contain the result
of the computation.

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

?9 9 q z? z ?
�

? z z? q ?

i1 i2 in

s1 s2 sn

o1 o2 on

a∗/a → a; 0 a∗/a → a; 0 a∗/a → a; 0

an → a; 0
ai → λ

where 1 ≤ i ≤ n − 1

an−1 → a; 0
aj → λ

with 1 ≤ j ≤ n

and j 6= n − 1

a → a; 0
ak → λ

where 2 ≤ k ≤ n

...

...

...

Fig. 4. Sorting n natural numbers

Theorem 4.1. SN P systems can sort a vector of natural numbers (in t + 1 com-
putational steps, where t is the maximum natural number in the vector) where each
number is given as number of spikes introduced in the neural structure.

Based on the above construction, the time complexity (measured usually as the
number of configurations reached during the computation) is O(T ), where T is the
magnitude of the numbers to be sorted. Although the time complexity is better than
the “classical”, sequential algorithm, in this case one can notice that the construction
presented depends on the number of numbers to be sorted.

5 FINAL REMARKS

Spiking neural P systems are a versatile formal model of computation that can be
used for designing efficient parallel algorithms for solving known computer science
problems. Here we firstly studied the ability of SN P systems to simulate Boolean
circuits since, apart for being a well known computational model, there exist many
“fast” algorithms solving various problems in this framework. In addition, this simu-
lation, enriched with some “memory modules” (given in the form of some SN P sub-
systems), may constitute an alternative proof of the computational completeness of
the model.



526 M. Ionescu, D. Sburlan

Another issue studied here regards the sorting of a vector of natural numbers
using SN P systems. In this case, due to its parallel features, the obtained time
complexity for the proposed algorithm overcomes the classical sequential ones.

Several open problems arose during our research. For instance, in case of Boolean
circuits the simulation is done for such circuits whose underlying graphs have rooted
tree structures, therefore a constraint that need further investigations.

In what regards the sorting algorithm, the presented construction depends on
the magnitude of the numbers to be sorted. We conjecture that this inconvenience
might be eliminated. Also, we conjecture that further improvements concerning
time complexity can be made.

Acknowledgements

The work of the authors was supported as follows. M. Ionescu: fellowship “For-
mación de Profesorado Universitario” from the Spanish Ministry of Education, Cul-
ture and Sport, and Dragoş Sburlan: CEEX grant (2-CEx06-11-97/19.09.06), Ro-
manian Ministry of Education and Research.

REFERENCES

[1] Ceterchi, R.—Sburlan, D.: Simulating Boolean Circuits with P Systems. LNCS,
2933, 2004, pp. 104–122.

[2] Chen, H.—Freund, R.—Ionescu, M.—Păun, Gh.—Pérez-Jiménez, M. J.:
On String Languages Generated by Spiking Neural P Systems. In [5], Vol. 1,
pp. 169–194.

[3] Chen, H.—Ishdorj, T.-O.—Păun, Gh.—Pérez-Jiménez, M. J.: Spiking Neural
P Systems with Extended Rules. In [5], Vol. 1, pp. 241–265.

[4] Gerstner, W.—Kistler, W.: Spiking Neuron Models. Single Neurons, Popula-
tions, Plasticity. Cambridge Univ. Press, 2002.

[5] Gutiérrez-Naranjo, M.A. et al. (Eds.): Proceedings of Fourth Brainstorming
Week on Membrane Computing. Febr. 2006, Fenix Editora, Sevilla, 2006.

[6] Ibarra, O.H.—Păun, A—Păun, Gh.—Rodŕıguez-Patón, A.—Sosik, P.—

Woodworth, S.: Normal Forms for Spiking Neural P Systems. In [5], Vol. 2,
pp. 105–136, and Theoretical Computer Science, Vol. 372, 2007, Nos. 2–3,
pp. 196–217.

[7] Ibarra, O.H.—Woodworth, S.: Characterizations of Some Restricted Spiking
Neural P Systems. In Pre-proceedings of Seventh Workshop on Membrane Comput-
ing, WMC7, Leiden, The Netherlands, July 2006, pp. 387–396.

[8] Ibarra, O.H.—Woodworth, S.—Yu, F.—Păun, A.: On Spiking Neural P Sys-
tems and Partially Blind Counter Machines. In Proceedings of Fifth Unconventional

Computation Conference, UC2006, York, UK, September 2006, pp. 123–135.

[9] Ionescu, M.—Păun, Gh.—Yokomori, T.: Spiking Neural P Systems. Funda-
menta Informaticae, Vol. 71, 2006, Nos. 2–3, pp. 279–308.



Some Applications of Spiking Neural P Systems 527

[10] Ionescu, M.—Păun, Gh.—Yokomori, T.: Spiking Neural P Systems with an Ex-

haustive Use of Rules. International Journal of Unconventional Computing, Vol. 3,
2007, pp. 135–153.

[11] Ionescu, M.—Ishdorj, T.-O.: Boolean Circuits and a DNA Algorithm in Mem-

brane Computing. LNCS, 3850, pp. 272–291.

[12] Maass, W.: Computing with Spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, Vol. 8, 2002, No. 1, pp. 32–36.

[13] Maass, W.—Bishop, C. (Eds.): Pulsed Neural Networks. MIT Press, Cambridge,
1999.

[14] Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

[15] Păun, A.—Păun, Gh.: Small Universal Spiking Neural P Systems. In [5], Vol. 2,
pp. 213–234, and BioSystems, Vol. 90, 2007, No. 1, pp. 48–60.

[16] Păun, Gh.: Membrane Computing – An Introduction. Springer, Berlin, 2002.

[17] Păun, Gh.: Languages in Membrane Computing. Some Details for Spiking Neural
P systems. LNCS, 4036, 2006, pp. 20–35.

[18] Păun, Gh.—Pérez-Jiménez, M. J.—Rozenberg, G.: Spike Trains in Spiking
Neural P Systems. Intern. J. Found. Computer Sci., Vol. 17, 2006, No. 4, pp. 975–1002.

[19] Păun, Gh.—Pérez-Jiménez, M. J.—Rozenberg, G.: Infinite Spike Trains in
Spiking Neural P Systems. Submitted 2005.

[20] Rozenberg, G.—Salomaa, A. (Eds.): Handbook of Formal Languages. 3 Volumes.
Springer-Verlag, Berlin, 1997.

[21] P Systems Web Site. Availaible on: http://psystems.disco.unimib.it.

Mihai Ionesu graduated in 2003 the Faculty of Mathematics
and Computer Science at the University of Bucharest. Then he
obtained the Diploma de Estudios Avanzados (DEA) as a stu-
dent in the 3rd International Ph.D. School in Formal Languages
and Applications of the Research Group on Mathematical Lin-
guistics at Rovira i Virgili University, Tarragona, Spain. Cur-
rently he is in the process of defending his Ph.D. thesis with the
title “Membrane Computing: Traces, Neural Inspired Models,
Controls” at the same university. During his research activity
he made several research visits to research centers from Japan

(Waseda University), Italy(Microsoft Reseach – University of Trento Centre for Compu-
tational and Systems Biology) or UK (University of Cambridge, Computer Laboratory).
More information is available at http://www.mistad.ro/mihai/.



528 M. Ionescu, D. Sburlan

Dragoş Sburlan After graduating in 2000 the Faculty of

Mathematics and Informatics at the Ovidius University of Con-
stantza, Romania, he joined the Department of Informatics and
Numerical Methods at the same university as a Research Assis-
tant. By 2002 he became Teaching Assistant and later on, in
2007, Lecturer at the same university. Meanwhile, he received
in 2002 his Diploma (M. Sc.) in “Computational Mathematics
and Modern Computer Technologies” at the Ovidius University;
between 2002 and 2006 he attended the Doctoral Program “Lo-
gica, Computacion e Inteligencia Artificial” at the University of

Seville, Spain, and by 2004 he obtained the Advanced Studies Diploma (DEA). In 2006, he
received the (European) Ph.D. degree with Magna Cum Laude (with the thesis being co-
supervised by Dr. Gheorghe Paun and Prof. Dr. Mario Perez Jimenez) in computer science,
at the University of Seville. In 2005, he followed a research stage at Leiden Institute of
Advanced Computer Science, The Netherlands, under the supervision of Dr. Grzegorz
Rozenberg, and in 2006 a research visit at Computer and Automation Research Institute,
Hungary, under the supervision of Dr. Erzsébet Csuhaj-Varjú. His research interests in-
clude: theory of formal languages and automata, theory of computation and complexity,
bio-inspired computing (membrane computing, DNA computing), and software modeling.
More information is available at http://www.univ-ovidius.ro/math.


