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Abstract. There are two formalisms for simulating spatially homogeneous chemical
system; the deterministic approach, usually based on differential equations (reaction

rate equations) and the stochastic approach which is based on a single differential-
difference equation (the master equation). The stochastic approach has a firmer
physical basis than the deterministic approach, but the master equation is often
mathematically intractable. Thus, a method was proposed to make exact numeri-
cal calculations within the framework of the stochastic formulation without having
to deal with the master equation directly. However, its drawback remains in great
amount of computer time that is often required to simulate a desired amount of
system time. A novel method that we propose is Deterministic Abstract Rewrit-
ing System on Multisets (DARMS), which is a deterministic approach based on
an approximate procedure of an exact stochastic method. DARMS can produce
significant gains in simulation speed with acceptable losses in accuracy. DARMS
is a class of P Systems in which reaction rules are applied in parallel and deter-
ministically. The feasibility and utility of DARMS are demonstrated by applying
it to the Oregonator, which is a well-known model of the Belousov-Zhabotinskii
(BZ) reaction. We also consider 1-dimensional and 2-dimensional cellular automata
composed of DARMS and confirm that it can exhibit typical pattern formations of
the BZ reaction. Since DARMS is a deterministic approach, it ignores the inherent
fluctuations and correlations in chemical reactions; they are not so significant in

spatially homogeneous chemical reactions but significant in bio-chemical systems.
Thus, we also propose a stochastic approach, Stochastic ARMS (SARMS); SARMS
is not an exact stochastic approach, but an approximate procedure of the exact
stochastic method.
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1 INTRODUCTION

There are two formalisms for describing the time behavior of spatially homogeneous
chemical reactions: the deterministic approach regards the time evolution as a wholly
predictable process which is governed by a set of coupled reaction rate equations
(RRE), while the stochastic approach regards the time evolution as a kind of random
process which is governed by the chemical master equation (CME).

Gillespie [11, 12] proposed a stochastic method of simulating chemical kine-
tics, which has a firmer physical basis than the deterministic formulation. Since
the stochastic master equation is often mathematically intractable, a Monte Carlo
procedure is used to simulate the time evolution of the given chemical system. Un-
like conventional stochastic methods used for numerically solving the deterministic
reaction-rate equation, the Gillespie method never approximates infinitesimal time
increments dt by finite time steps. So the Gillespie method is an exact method
for simulating chemical reactions, but it requires a great amount of computer time.
Therefore, an approximate procedure is needed that in some circumstances can pro-
duce significant gains in simulation speed with acceptable losses in accuracy; such
a procedure is, for instance, the “τ -leap” method.

In what concerns the relationship between P systems and stochastic methods,
the dynamical probabilistic P systems [23] have been proposed, where probabilities
are associated with the rules and these values vary during the evolution of the
system [3], according to the concept of Mass Action Law. Also Gillespie’s τ -leap
method has been introduced in P systems[3].

Manca proposed a biologically inspired procedure, Metabolic-P Algorithm

(MPA) [17], that can be employed to simulate the dynamics of many biological
systems. The MPA can be embedded in the P systems [21] framework in the form
of an MP system [2].

The first version of the MPA and classical version of the MP systems are inspired
by the Mass Action Law, where kinetic rates (rate constants) are used to partition
the mass between the rules of the system. Then the concept of kinetic rate is
generalized into the time-varying reaction maps, where functions are defined over
the state of the system instead of merely using constants [2]. Furthermore, the
formalism of the MPA is extended to MP Graphs, which allow us to analyze an MP
system as a stoichiometric network [18].

2 ABSTRACT REWRITING SYSTEM ON MULTISETS, ARMS

ARMS was proposed in [24] as an abstract model of chemical reactions, Artifi-

cial Chemistry (AC), in the context of the Artificial Life1. In this framework, we
computationally characterized the Edge of Chaos [25] through investigating the re-
lationship between ARMS and Cellular Automata, we showed how (computational)
living things emerge from the chemical evolution and how do they evolve by using

1 [5] is a comprehensive review of the Artificial Chemistry, including ARMS.
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an ARMS with membranes; we applied this evolutional system to solve a simple
mathematical problem [26]. Furthermore, we proposed a model of evolutional dy-
namics for the proto-enzyme through a evolutional reaction network modeled by an
ARMS, where repeated auto-catalytic reaction networks emerged and were catas-
trophically destroyed [29]2. Beyond the Artificial Life, ARMS has been used in
various fields, such as ecology [28], medical science [31]3, environment engineer-
ing [15, 16] and so on.

Apart from AC, ARMS has been considered as an expression of the CME, which
is a stochastic expression of the RRE. We rigidly proved that an ARMS can be
regarded as a CME, and through continuous approximation, the deterministic RRE,
which is denoted by a set of ordinal differential equations, can be obtained from
an ARMS [27]. We have used ARMS for modeling bio-chemical systems, we have
modeled bio-chemical systems such as the P53 signaling networks [30], and Belouzov-

Zhabotinskii (BZ) reaction [27, 34, 35, 31]. Since ARMS is based on the RRE, it is
related to the probabilistic P systems [21], MA [17] and MP systems [2].

Basically, an ARMS is a construct Γ = (A,w,R), where A is an alphabet, w is
a multiset present in the initial configuration of the system, and R is the set of
multiset rewriting rules.

Let A be an alphabet (a finite set of abstract symbols). A multiset over A is
a mapping M : A 7→ N, where N is the set of natural numbers; 0, 1, 2,. . . . For each
ai ∈ A, M(ai) is the multiplicity of ai in M , we also denote M(ai) as [ai].

We denote by A# the set of all multisets over A, with the empty multiset, ∅,
defined by ∅(a) = 0 for all a ∈ A.

A multiset M : A 7→ N, for A = {a1, . . . , an} is represented by the state vector
w = (M(a1),M(a2), . . . ,M(an)), w. The union of two multisets M1,M2 : A 7→ N is
the addition of vectors w1 and w2 that represent the multisets M1,M2, respectively.
If M1(a) ≤ M2(a) for all a ∈ A, then we say that multiset M1 is included in multiset
M2 and we write M1 ⊆ M2.

A reaction rule r over A can be defined as a couple of multisets, (s, u), with
s, u ∈ A#. A set of reaction rules is expressed as R. A rule r = (s, u) is also
represented as r = s → u. Given a multiset w ⊆ s, the application of a rule
r = s → u to the multiset w produces a multiset w′ such that w′ = w− s+ u. Note
that s and u can also be zero vector (empty).

The reaction vector, νji denotes the change of the number of ai molecules pro-
duced by one reaction of rule rj.

Chemical Kinetics. A living system is a huge bio-chemical system and it is
not easy to understand the whole reaction mechanism, but a plenty of bio-chemical
experimental data, such as reaction rates, will give us hints to expose the mechanism.

2 [6] also reported this type of behavior by using a replicator system.
3 In this paper, we address the modeling of inflammatory response caused by external

injury.
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Chemical kinetics is the study of reaction rates in chemical reactions and has
been described by the reaction rate equation (RRE), which is a set of coupled ordi-
nary differential equations. RRE links the reaction rate to the concentration of each
reactant and describes the time evolution as a continuous deterministic process.

For a generic chemical reaction A+ B → C, the RRE is expressed as

d[c]

dt
= v = k[A][B],

where [X] (X is A or B) denotes the concentration of X (usually in mol/litre),
and k is a rate constant. A rate constant is not really a constant but includes
everything that affects the reaction rate besides concentration, such as temperature,
ionic strength or surface area of the absorbent, etc. Usually (and in this paper), the
reaction rate v is expressed in mol/sec.

2.1 ARMS with Chemical Kinetics

We modify the ARMS for modeling chemical kinetics and this enables us to use
experimentally obtained reaction rates directly, similarly to the derivation of the
Gillespie’s “τ -leap method” [13].

In order to handle experimental data, we employ multisets with real multiplic-
ities; such a multiset X : A 7→ R for A = {a1, . . . , an} is represented by the state
vector x = (X(a1), X(a2), . . . , X(an)). X(ai) denotes the molar concentration of
specie ai.

Let us assume that there are N ≥ 1 molecular species {a1, . . . , an}, ai ∈ A that
interact through reaction rules R = {r1, . . . , rm}. As the time evolution of x un-
folds from a certain initial state, let us suppose the state transition of the system to
be recorded by marking on a time axis the successive instants t1, t2, . . . as X(tj) (j =
1, 2, . . .). We specify the dynamical state of x(t) ≡ (X(a1(t), X(a2(t)), . . . ,
X(aN(t))), where X(ai(t)) is the molar concentration of ai specie at time t, t ∈ R.

Chemical Kinetics. We assume that all chemical reactions take place in a well-
stirred reactor; this assumption is required due to the strong dependence of the
reaction rate on the concentration of the reagent species.

We define the function fj, called the propensity function for rj ∈ R by

fj(x) = cjhj, (1)

where cj denotes the average probability that a particular combination of rj reactant
molecules will react in the next infinitesimal time interval dt and hj is the number
of possible combinations of the species of rj in dt.

fjx(t)dt means that the probability that reaction rj will occur in the next in-
finitesimal time interval [t, t+ dt), (j = 1, . . . , m).

The time evolution of x(t) is a jump Markov process on the N -dimensional
non-negative lattice. In this case, an ARMS has a macroscopically infinitesimal
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time scale, ∆, where reaction rules can be applied several times simultaneously, yet
since the stoichiometrical change of the state during ∆ is small enough, none of the
propensity functions changes appreciably.

The parameter ∆ corresponds to τ (small time interval) in the Gillespie’s me-
thod [13] and it satisfies the Leap Condition given below; an amount ∆ that spans
a very large number of applying every reaction rules still satisfies the Leap Condition.

Leap Condition: We require ∆ to be small enough that the change in the state
during [t, t + ∆] will be so small that no propensity function will suffer an ap-
preciable (i.e., macroscopically noninfinitesimal) change in its value.

We also assume that the number of applications of each reaction rule in ∆ obeys

〈P(fj(x),∆〉 = fj(x)∆ ≫ 1(∀j = 1, . . . , m), (2)

where P(fj(x),∆) is the Poisson random variable, which indicates the number of
reactions that occur in ∆.

Here, let us consider the probability function Q, defined by Q(z1, . . . , zk|∆,x, t),
which means the probability, given X(t) = x, that in the time interval [t, t + δ)
exactly zj times of rule applications or rj will occur, for each j = 1, . . . , m. Q is
evidently the joint probability density function of the M integer random variables,
Zj(∆,x, t) means the number of times, given X(t)=x, that reaction rule rj will
apply in the time interval [t, t+∆) (j = 1, . . . , m).

If the equation (2) is satisfied, the Poisson random numbers will be practically
indistinguishable from normal random numbers, which are uncorrelated statistically
independent normal random variables with mean 0 and variance 1.

Then the jump Markov process can be approximated by the continuous Markov
process defined by the standard form of chemical Langevin equation (CLE).

λi =
m∑

j=1

zjνij =
m∑

j=1

fjνji =
m∑

j=1

[fj(x)∆ + (fj(x)∆)
1

2nj]νji =

m∑

j=1

νjifj(x)∆ +
m∑

j=1

νjif
1

2

j (x)nj∆
1

2 , (3)

where nj is temporally uncorrelated statistically independent normal random vari-
able. Since Zj(∆,x, t) = P(fj(x,∆)), it is equal to fj(x)∆, by the equation (2).

In case fj(x)∆ → ∞, (2) implies that in the part fj(x)∆ + (fj(x∆)
1

2nj of the
equation (3) the second term becomes negligibly small compared to the first term
and λi in the limit (fj(x)∆ → ∞), because

λi =
m∑

j=1

zjνji =
m∑

j=1

[fj(x)∆]νji =

m∑

j=1

νjifj(x)∆. (4)



534 M. Umeki, Y. Suzuki

This is the Euler formula (piecewise linear approximation) for numerically solving
the RRE. It shows how to derive the continuous and deterministic RRE of traditional
chemical kinetics from the stochastic method. Since νjifj(x) represents the stoichio-
metric change in the next infinitesimal time, it can be regarded as the reaction rate
of rj, vj , and we obtain:

λi =
m∑

j=1

νjifj(x)∆ ≡
m∑

j=1

vj(x)∆. (5)

In the Gillespie τ leap method, the number of applications of each rule within
τ is randomly generated according to the Poisson or Normal distribution and λi is
calculated.

In the ARMS, λi is calculated by using the reaction rate given by the equa-
tion (5). As in the numerically solving an ordinary differential equation of the form
dX/dt = f(X) by the Euler method, a leap down the stepwise time axis by ∆ ac-
cording to X(t+∆) = X(t)+f(X(t))∆ will produce errors whenever the function f
changes during that ∆ increment.

It is well-known that the second-order Runge-Kutta procedure can reduce these
errors; use the simple Euler method to estimate the “midpoint” value of X during
∆, and then calculate the actual increment in X by evaluating the slope function f
at that estimated midpoint. The midpoint value can be obtained from the expected
state change λ as x + λ

2
. In the Gillespie’s τ leap method, this procedure is used

and it shows that this procedure can reduce numerical errors [13].

2.2 Algorithm of DARMS

In Deterministic Abstract Rewriting System on multisets (DARMS) [34], reaction
rules are applied in maximally parallel and deterministic way. Hence, the DARMS
accommodates P Systems, while it has background in theoretical chemistry.

Step 0 (Initialization). The time t is set to 0 and the set of vectors V = (δ1, δ2,
. . . , δN) (j = 1, 2, . . . , m), expressing the stoichiometric change of each species,
are initialized. Then all inputs of the system are assigned to their respective
variables,

• X(a1), X(a2), . . . , X(aN) are set to the initial quantities of species;

• k1, . . . , km to set m rate constants corresponding to the m reactions;

• tstop to the ending instant of simulation;

• set the value of ∆.

Step 1 (Calculation of state change vector Λt). According to reaction rules,
stoichiometric change of each specie λi is calculated as well as the state change
vector; Λt = (λ1, λ2, . . . , λN) is calculated, where λi =

∑m
j=1 νjivjx(t)∆.
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Step 2 (System update and branching). The quantity of each species and t is
updated, by using Λt and ∆:

x(t) = x(t−∆) + Λt−∆,

t := t+∆.

If t ≥ tstop or if there are no reactions left in the reactor, the simulation is stopped
and the results are sent to the output stream. Otherwise, the simulation returns
to Step 1.

3 THE OREGONATOR

The Belouzov-Zhabotinskii (BZ) reaction displays a remarkable repertoire of exotic
behavior, including periodic and chaotic temporal oscillations, multiple stable sta-
tionary states, temporally and spatially periodic expanding target patterns, rotating
multi-armed spiral waves [9].

A simple abstract chemical scheme of BZ reaction has been proposed by Pri-
gogine and co-workers [20] (in Brussels that is why J.J. Tyson named it “Brussela-
tor”) in the form of the following rules

A
k1→ X : (b1),

B,X
k2→ Y : (b2),

2X, Y
k3→ 3X : (b3),

X
k4→ E : (b4),

because in (b3) is third order in the concentrations of transient intermediates.

(Process A)
B−

r +HOBr +H+ → Br2 +H2O (R1),
HBrO2 +B−

r +H+ → 2HOBr (R2),
BrO

−

3 +B−

r + 2H+ → HBrO2 +HOBr (R3)

(Process B)
2HBrO2 → BrO

−

3 (R4),

BrO
−

3 +HBrO2 +H+ → 2BrO2 +H2O (R5),
BrO2 + Ce(III) +H+ → HBrO2 +Ce(IV ) (R6)

(Process C)
CH2(COOH)2 ⇀↽ (HO)2C = CHCOOH (C1),
(HO)2C = CHCOOH +Br2 → BrCH(COOH)2 +H+ +B−

r (C2),

Table 1. FKN mechanism

The chemical kinetic description of BZ reaction was put forward by Field, Kőrős
(FKN) [7]. FKN (Table 1) can be considered as the best understanding of the process
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by recognizing that there are two different overall processes that can occur in the
system.

The FKN mechanism can be described as three concurrent (and at times com-
peting) processes:

Process A: The three steps reduction of bromate to bromine.

Process B: The introduction of hypobromous acid to compete as a reducing agent
for bromate.

Process C: The reduction of the catalyst formed from Processes A and B.

In Process A, we have the reduction of bromate (BrO
−

3 ) to bromine (Br) by the
reducing agent bromide (Br−). This three-step process makes up (R1) − (R3).
As a result, the bromate is reduced, bromomalonic acid (BrMA) is produced, and
the concentration of bromide eventually falls below some critical level. It is at
this point that Process B begins to dominate Process A: the hypobromous acid
(HBrO2) begins to compete with the bromide to reduce the bromate. Reactions
(R5) and (R6) constitute a two-step autocatalytic sequence. As a result, the amount
of hypobromous acid increases at an accelerating rate and Ce(IV ) is produced.
This causes the solution to change suddenly from red to blue (in the presence of
a ferroin indicator). Then the BrMA and Ce(IV ) react causing the concurrent
oxidation of the organic species and then it causes the solution change from blue to
red (Process C).

Following the conventional notation used in this area, let

X ≡ HBrO2 (hypobromous acid),

Y ≡ B−

r (bromide),

Z ≡ Ce(IV ) (cerium-4),

A ≡ BrO
−

3 (bromate),

B ≡ CH(COOH)2 (organic species),

W ≡ HOBr,

H ≡ H+.

The Oregonator scheme is outlined in Table 2.
Note the correspondence between the Oregonator scheme and the FKN mecha-

nism: (r1) is equivalent to reaction (R2), (r2) is equivalent to reaction (R3), (r3) is
equivalent to reaction (R4), (r4) is equivalent to the autocatalytic sequence given by
(R5) + 2(R6) and can be consolidated into the single reaction, and (r5) represents
the organic species in Process C.

Field, Kőrős (FKN)[7] did not only propose the FKN chemical scheme but they
also incorporated all kinetic data known at that time. These are called the FKN
values4. The FKN rate constants have been successful at reproducing in computer

4 It was later redefined and extended by Barkin et al. [1]
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(Process A)

X, Y,H
k1→ 2W : (r1),

A, Y, 2H
k2→ X,W : (r2),

(Process B)

2X
k3→ A,W,H : (r3),

A,X,H
k4→ 2X, 2Z : (r4),

(Process C)

B,Z
k5→ 0.5Y : (r5).

Table 2. Oregonator

simulations. However, Tyson pointed out that when the FKN values are propagated
into the Oregonator model [8], FKN rate constants seem much too large and pro-
posed “Lo” and “Hi” values [33]. Since then, several contributions were dedicated
to examine its accuracy and confirmed that the “Lo” value is in accordance with ex-
perimental data. Field and Fősterling further refined to the “Lo” value [10]. In this
paper, a combination of Tyson’s ”Lo” [33] and Field-Főrsterling values [10] (TFF
parameter) are used [19]: k1 : 106M−2S−1, k2 : 2M−3S−1, k3 : 2 × 103M−1S−1, k4 :
10M−2S−1, k5 : B × 2× 10−2S−1, where M stands for one molar, and S stands for
a second.
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Fig. 1. DARMS, ∆ = 0.0001: Population dynamics of X , Y , Z, where the vertical axis
illustrates the molar concentration of chemicals (mole) and the horizontal axis illus-
trates the time, where each step is ∆. It shows a typical pattern of oscillations.
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3.1 Simulation of the Oregonator
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Fig. 2. DARMS, ∆ = 0.1: Population dynamics of X , Y , Z, where the vertical axis illus-
trates the molar concentration of chemicals (mole) and the horizontal axis illustrates
the time, where each step is ∆. The amplitudes of oscillations are smaller than the
case when ∆ is smaller than 0.1.

In the Oregonator [8], chemicals A and B are resources and it is assumed that
they are continuously supplied or largely existing in comparison with other chemi-
cals. W is the final product of these reactions and typical oscillations among X,
Y and Z emerge. Reactions of generating X (HbrO2) are triggers of oscillations
and these reactions increase the concentration of Z (C4+

e ) and then high concentra-
tion of Z leads to reactions generating Y (Br); since this reaction required Z, the
concentration of Z is decreased.

We simulate the Oregonator by using the DARMS with the TFF parameter. We
examine each case when ∆ = 0.0001, 0.001, 0.01, 0.1, 1.0. When the values of ∆ are
between 0.0001 and 0.01, the stoichiometric change of species show typical oscil-
lations (Figure 1); these typical oscillations can also be seen through numerical
simulation of the reaction rate equation that are expressed by a set of differen-
tial equations. At ∆ = 0.1, the amplitude of oscillation becomes small, while the
patterns of oscillations were kept the same (Figure 2).

At ∆ = 1.0, the pattern of oscillations becomes different from the typical one,
where the amplitude of oscillation of X and Z becomes small, and the amplitude
of Y declines to nearly zero (Figure 3). The reason is that the value of ∆ becomes
large: since the calculation of the DARMS requires piecewise linear approximation,
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Fig. 3. DARMS, ∆ = 1.0: Population dynamics of X , Y , Z, where the vertical axis illus-
trates the molar concentration of chemicals (mole) and the horizontal axis illustrates
the time, where each step is ∆. The pattern of oscillation is different from the typical
one.

as the ∆ becomes larger, the quality of approximation decreases.

3.2 Simulation of Pattern Formation

In order to simulate pattern formation, we compose cellular automata by using the
DARMS and call it Cellular Automata of Abstract Rewriting System on Multi-
sets (CARMS) [35]. Let us assume that n DARMSes are placed in a grid space.
An n dimensional CARMS is called nD-CARMS. A periodic boundary condition is
assumed. Each of the DARMS in a CARMS is distinguished by lower and upper
suffix; the lower suffix denotes the position of a DARMS in the grid space and the
upper suffix denotes the evolution time. The multiset M of a DARMS is denoted by
the same suffixes of the DARMS. As for the calculation of diffusion, we use conven-
tional explicit scheme of difference method 5 to solve partial differential equation of
diffusion.

We use diffusion constants D obtained by chemical experiments [19]; the diffu-
sion constant (cm2/sec.) of X,DX and Z,DZ are 1.5× 10−5 and DX = 0.9× 10−5.
The size of reactor of the 1D-CARMS is 6 cm, where 50 DARMSes are placed, while

5 In order to improve the quality of the method, we should employ the Crank and
Nicolson method [4]
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in the 2D-CARMS the reactor is a 6 cm × 6cm square, where 50× 50DARMSes are
placed. So, the distance between DARMSes is ∆x = 6

50
cm.

Algorithm of CARMS.

Step 0 (Initialization). The time t is set to 0 and we initialize all DARMSes
referred in Step 0 of the Algorithm of the DARMS.

Step 1 (Calculation of state change). • According to Step 1 and 2 in the al-
gorithm of the DARMS reactions of all DARMSes are calculated and each
state is updated.

• t := t+∆.

Step 2 (Calculation of diffusion). Diffusions are calculated by the following me-
thod and each state is updated.

• – (1D-CARMS)

M t+1
j = Ds∆

(M t
j+1 − 2M t

j +M t
j−1)

(∆x)2
,

where Ds denotes the diffusion constant of species s, and ∆x is the dis-
tance to the neighboring DARMS.

– t := t+ tdiff
• – (2D-CARMS)

M t+1
j,i = Ds∆

(M t
j+1,i − 2M t

j,i +M t
j−1,i)

(∆x)2
+Ds∆

(M t
j,i+1 − 2M t

j,i +M t
j,i−1)

(∆x)2
,

where Ds denotes the diffusion constant of species s, and ∆x is the dis-
tance to the neighboring DARMS.

– t := t+ tdiff
• If t ≥ tstop or if there are no reactions left in the reactor, the simulation
is stopped and the results are sent to the output stream. Otherwise, the
simulation returns to Step 1.

1D-CARMS. We assume that a reactor is homogeneous (well-stirred). However,
if there is a focal excitation point, a traveling chemical wave pattern will appear
from the point. In the chemical experiment of BZ reaction, usually an excitation
point is generated by stinging a sliver stick, which evokes oxidation reaction6.

In order to express the generation of the excitation point the CARMS, we change
the state of the multiset of Dt0

25, where the concentration of X and Y are smaller,

6 Since fine refuses or defects in a reactor also evoke excitation points, well cleansed
new vessel and super-pure water must be used.
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Fig. 4. Traveling wave from the focal excitation point in a 1D-CARMS with ∆ = 0.01,
where thickness of color expresses the molar concentration of Z. In this figure, each
of DARMS is placed horizontally and their time evolution is expressed vertically.

while that of Z is larger. We confirm that a traveling wave emerges from Dt0
25

(Figure 4).

2D-CARMS. A typical type of chemical waves in BZ reaction is a circle wave,
where the chemical wave is evoked from an excitation point. We express the exci-
tation point by changing the state of D25,25 as in the 1D-CARMS (concentration of
X and Y are small, while that of X is large).

Fig. 5. A Cycle wave in 2D CARMS, where thickness of color expresses the molar concen-
tration of Z. There are 50× 50DARMSes.

We confirm that a single wave emerges from the excitation point, as we can see
in a chemical experiment (Figure 5).
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Chemical waves in BZ reaction are non-linear waves. Where more than two
waves collide, they will disappear and when more than two linear waves collide,
they are linearly lapped.

Fig. 6. When two waves collide, they disappear and merge into a single wave; the thickness
of color expresses the molar concentration of Z

We set two excitation points in a 2D-CARMS and generate two cycle waves (left
part of Figure 6); when two waves collide (middle part of Figure 6), their wave fronts
disappear and they are merged into a single wave (right part of Figure 6).

4 DISCUSSION

In the case when ∆ is small enough, the system becomes stochastic. A Stochastic
Abstract Rewriting System on multisets (SARMS) is based on the assumption that
∆ is small enough to apply only one rule between t and t+∆, hence in the case when
∆ is small enough, the SARMS is close to the Gillespie method without τ -leap.

4.1 The Algorithm of SARMS

Step 0 (Initialization). Set the time variable t to zero. Initialize the pseudo-
random sequence generator. Then all inputs of the system are assigned to their
respective variables:

• X(a1), X(a2), . . . , X(aN) are set to the initial quantities of species;

• k1, . . . , km to set m rate constants corresponding to the m reactions;

• tstop to the ending instant of simulation;

• set the value of ∆;

Step 1 (Reaction rate computation). For each reaction rj (j = 1, . . . , m), the
corresponding reaction rate vj is calculated as

vj = kihj
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and

vall =
m∑

j=1

vj

is calculated.

Step 2 (Monte Carlo step). A random number γ having a uniform distribution
in the unit interval [0, vall] is generated. Then a rule to be applied is selected
according to the appropriate probability distribution, by choosing that j such
that;

j−1∑

v=1

vv < γ <
j∑

v=1

vv;

Step 3 (System update and branching). The rule rj selected at the previous
step applied and the system is updated accordingly:

• t := t+∆;

• the population of ai involved in the reaction rj (either as reactants or as
products) is updated according to the stoichiometry of the rule, reaction
rate of rj and ∆.

δai = νijvjx(t)∆,

and x(t) = x(t−∆) + δai .

If t ≥ tstop or if there are no reactions left in the reactor, the simulation is stopped
and the results are sent to the output stream. Otherwise, the simulation returns
to Step 1.

When simulating the Oregonator, the DARMS and SARMS exhibit almost the
same behavior (Figure 7). In the DARMS, since reaction rules are applied in parallel,
the time evolution of the system is faster than the SARMS (Figure 7) and the
frequency of oscillations of DARMS is higher, while the amplitudes are smaller than
that of the SARMS.

Until the ∆ is equal to or smaller than 0.04, SARMS exhibits almost the same
oscillating patterns, however when ∆ is equal to or larger than 0.05, the oscillating
pattern is changed (Figure 8).

4.2 ∆ and Rule Dynamics

We examine now how the value of ∆ affects the time evolution of the system.

DARMS. We examine the derivation of ri for x(t), which is given by Dr1x(t) =
vix(t)∆. In order to investigate the contribution ratio (CR) of ri, we calculate

Cri =
Dri∑m
j=1Drj

.
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Fig. 7. SARMS, ∆ = 0.0001, population changes of X , Y and Z

The schematic pattern of CR shows that the reaction mechanism of the Orego-
nator reflects the FKN mechanism. In the Oregonator, processes A, B and C are
not triggered alternately, where process C(r5) is always triggered and r1 (part of
process A) is also always triggered. Switching from process A to B is not abrupt;
when process A is dominant, the derivation of r4 gradually becomes larger and it
leads the switching between process A and B. On the other hand, switching from
process B to A is abrupt. Even if ∆ is changed, the schematic pattern of CR is
almost the same: however, when ∆ becomes large, Cr3 becomes small. Since the
schematic pattern of CR of ∆ = 0.01 and 0.001 are the same, ∆ = 0.01 can be
considered as the appropriate value for simulating the Oregonator (Figure 9).

SARMS. In order to compare the deterministic modeling (DARMS) and the
stochastic modeling (SARMS), we examine the schematic pattern of probability
of rule selecting (SPP). It should be noted that this schematic pattern does not
indicate derivations but probabilities.

When ∆ is small, the SPP is almost the same as the CR of DARMS. It indicates
that, in simulating the Oregonator, when ∆ is small DARMS and SARMS will show
the same results (Figure 10).

However, when ∆ is large, they show different results (Figure 11). In SARMS,
since the rate constant of r1 (10

6M−2S−1) is extremely larger than others, the prob-
ability of selecting r1 is very large. Thus, if ∆ becomes large, νX1vr1∆ or νY 1vr1∆
surpasses [X] or [Y ] and r1 cannot be applied. So, almost always r1 is selected, but it
cannot be applied, therefore the mechanism of the Oregonator loses its functionality.
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Fig. 8. SARMS ∆=0.05, population changes of X , Y and Z
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Fig. 9. Schematic plot of CR of DARMS, when ∆ = 0.001

Fig. 10. Schematic plot of SPP of SARMS, when ∆ = 0.001
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Fig. 11. Schematic plot of SPP of SARMS, when ∆ = 0.1

4.3 Final Remarks

If Leap Condition is satisfied (∆ is small enough and stoichiometric change is macro-
scopically noninfinitesimal), we can approximate the stoichiometric change deter-
ministically. Thus we do not have to employ a stochastic approach but we can
employ a deterministic approach such as DARMS. DARMS can produce significant
gains in simulation speed with acceptable losses in accuracy.

SARMS combines the stochastic and deterministic approach, hence it will be
suitable for modeling a chemical system with few molecules, such as biochemical
processes in a cell.
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