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Abstract. Because of their inherent large-scale parallelism, membrane comput-
ing models can be fully exploited only through the use of a parallel computing
platform. We have fully implemented such a computing platform based on recon-
figurable hardware that is intended to support the efficient execution of membrane
computing models. This computing platform is the first of its type to implement
parallelism at both the system and region levels. In this paper, we describe how our
computing platform implements the core features of membrane computing models
in hardware, and present a theoretical performance analysis of the algorithm it exe-
cutes in hardware. The performance analysis suggests that the computing platform
can significantly outperform sequential implementations of membrane computing as
well as Petreska and Teuscher’s hardware implementation, the only other complete
hardware implementation of membrane computing in existence.
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1 INTRODUCTION

Membrane computing [6] investigates models of computation inspired by structural
and functional properties of biological cells. Because of their inherent large-scale
parallelism, membrane computing models can be fully exploited only through the
use of a parallel computing platform. We have fully implemented such a computing
platform based on reconfigurable hardware that is intended to support the efficient
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execution of membrane computing models. This computing platform is the first
of its type to implement parallelism at both the system and region levels. In this
paper, we describe how our computing platform implements the core features of
membrane computing models in hardware, and present a theoretical performance
analysis of the algorithm it executes in hardware. In a companion paper [5], we show
how the software elements of the computing platform tailor the hardware elements
according to the specific properties of the P system to be executed, and present an
empirical analysis which demonstrates that the computing platform achieves very
good performance while making economical use of hardware resources.

2 BACKGROUND

2.1 Membrane Computing Models

Membrane computing models are models of computation inspired by structural and
functional properties of biological cells, especially properties that arise because of
the presence and activity of biological membranes. We call membrane computing
models P system models and their instances P systems.

So far our research has focused on one P system model. This model, which we
call the core P system model, includes all the fundamental features of a P system
model plus two common additional features (catalysts and reaction rule priorities).
A P system that instantiates the core P system model is defined as a construct

Π = (V, T, C, µ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm)),

where

• V is an alphabet that contains labels for all the types of objects in the system;

• T ⊆ V is the output alphabet, which contains labels for all the types of objects
that are relevant to the determination of the system output;

• C ⊆ V − T is the alphabet that contains labels for all the types of catalysts,
which are the types of objects whose multiplicities cannot change through the
application of a reaction rule;

• µ is a hierarchical membrane structure consisting of m membranes, with the
membranes (and hence the regions defined by the membranes) injectively la-
belled by the elements of a given set H of m labels (in this paper, H =
{1, 2, . . . , m});

• each wi, 1 ≤ i ≤ m, is a string over V that represents the multiset of objects

contained in region i of µ in the initial configuration of the system;

• each Ri, 1 ≤ i ≤ m, is a finite set of reaction rules over V associated with the
region i of µ;

• a reaction rule is a pair (r, p), written in the form r → p, where r is a string
over V representing a multiset of reactant objects and p is a string over {ahere, aout,
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ain | a ∈ V } representing a multiset of product objects, each of which either
(a) stays in the region to which the rule is associated (the subscript ‘here’ is
usually omitted), (b) travels ‘out’ into the region that immediately contains the
region to which the rule is associated, or (c) travels ‘in’ to one of the regions
that is immediately contained by the region to which the rule is associated; and

• each ρi is a partial-order relation over Ri which defines the relative priorities of

the reaction rules in Ri.

Several P system models have been developed that extend in various ways the
core P system model. Examples of additional features found in these extended
models include: structured (i.e., non-atomic) objects, membrane creation and disso-
lution, special inter-region communication rules (e.g., symport and antiport rules),
membrane permeability, and electronic charge for objects and membranes [6].

2.2 Existing Implementations of Membrane Computing

Because of their inherent parallelism, it is not possible to truly implement P systems
on sequential computing platforms. Nevertheless, software packages exist which
enable to simulate in a sequential manner the execution of P systems (e.g., see [4]).

To fully benefit from the membrane computing paradigm, developers of P system
models require a computing platform that is able to exploit the large-scale paral-
lelism of the models. Such a computing platform might include multiple software-
programmed microprocessors. For example, Ciobanu and Guo [1] have developed
a software-based parallel implementation of a P system model that is designed to be
executed on a cluster of computers. Alternatively, a hardware-based computing plat-
form might be used. For example, Petreska and Teuscher [7] have developed a full
implementation on reconfigurable hardware of a particular class of P systems, while
other researchers have designed digital circuits for particular aspects of P systems
(e.g., see [2] and [3]).

Petreska and Teuscher’s hardware implementation has demonstrated the feasi-
bility of implementing some of the fundamental features of P systems in hardware.
Nevertheless, it has a serious limitation: it does not implement parallelism at the re-
gion level (i.e., the reaction rules in a region are applied sequentially). This is a major
limitation for two reasons. First, having two levels of parallelism (at both the system
and region levels) is a key feature of the membrane computing paradigm. Second,
without implementing both levels of parallelism, it is not possible to exploit the per-
formance advantages of the membrane computing paradigm. Indeed, as the ratio
of reaction rules to regions increases, the performance of Petreska and Teuscher’s
implementation tends towards that of a sequential implementation. Achieving paral-
lelism at the region level requires the implementation of a scheme for the resolution
of hardware resource conflicts that arise because different reaction rules may con-
sume or produce the same types of objects in the same region at the same time. It
is difficult to efficiently implement such a scheme, and this is probably why Petreska
and Teuscher did not attempt to do so.
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2.3 Reconfigurable Hardware

Because of the performance compromise associated with the use of software-pro-
grammed microprocessors, alternative computing methods based on the direct use
of hardware are often required. One such method is to use an application-specific
integrated circuit (ASIC). ASICs are specially designed for a specific application.
Therefore, they can achieve a higher performance than software-programmed micro-
processors when executing the algorithm for which they were designed. However,
with this higher performance comes a reduction in the flexibility of the computing
method – as the implemented algorithm is fabricated on a silicon chip, it cannot be
altered without creating another chip. Another method of overcoming the perfor-
mance compromise associated with the use of software-programmedmicroprocessors
is to use reconfigurable hardware. Unlike ASICs, reconfigurable hardware can be
modified. Therefore, by using reconfigurable hardware, it is possible to improve the
performance of the software-based method while retaining much of its flexibility.
A field-programmable gate array (FPGA) is a type of reconfigurable hardware de-
vice. An FPGA consists of a matrix of logic blocks which are connected by means of
a network of wires. The logic blocks at the periphery of the device can also perform
I/O operations. The functionality of the logic blocks can be modified by loading
configuration data from a host computer (a standard PC that is connected to the
FPGA by a PCI bus). In this way, any custom digital circuit can be mapped onto
the FPGA, thereby enabling the FPGA to execute a variety of applications.

3 DESCRIPTION OF THE HARDWARE IMPLEMENTATION

The research described in this paper contributes the first computing platform based
on reconfigurable hardware to implement parallelism at both the system and region
levels. We call the computing platform Reconfig-P. To the best of our knowledge,
other than Petreska and Teuscher’s implementation, Reconfig-P is the only com-
plete hardware-based computing platform for membrane computing applications in
existence.

Reconfig-P is able to execute P systems that instantiate the core P system model.
It consists of a source code generator (written in Java) and an FPGA. The source
code generator analyses the specification of the input P system, and then generates
Handel-C source code that implements a customised hardware representation for
the P system. Handel-C is a high-level hardware specification language. Having
a syntax similar to that of the C programming language, Handel-C allows hardware
representations to be specified at a very abstract level (without the structure of the
hardware circuit being described in any way), and therefore eases the process of
creating customised hardware representations.

In the following section, we describe how Reconfig-P implements the core fea-
tures of P system models in hardware. In [5], we describe how the source code
generator produces Handel-C source code for these features given the specific pro-
perties of the input P system.
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3.1 Hardware Implementation of Core P System Features

P systems can differ significantly with respect to size, structure and information
content. Reconfig-P takes advantage of this fact by configuring the FPGA according
to the specific requirements of the P system to be executed.

Although P systems can differ significantly, there are certain core features com-
mon to all P systems. These include (a) regions and their containment relationships,
(b) mutisets of objects, (c) application of reaction rules, and (d) synchronisation of
the application of reaction rules. This section describes how these core features are
implemented in hardware in Reconfig-P.

3.1.1 Regions and Their Containment Relationships

As the evolution of a P system is essentially a matter of the modification of the
contents of regions according to certain rules, regions do not need to be explicitly
represented in hardware. Instead, a region is represented in hardware implicitly via
its contents. The only inter-region containment relationships that it is important
to represent are those between regions between which it is possible for objects to
traverse through the application of a reaction rule. These containment relationships
are represented implicitly by ensuring that each reaction rule with an ‘in’ or ‘out’
target directive has, for each region to/from which it sends/receives objects, access
to the multiset of objects in that region.

3.1.2 Multisets of Objects

Because the multiplicity values of objects in a region can be accessed by multiple
reaction rules simultaneously, the hardware elements that store them should support
concurrent accesses. Therefore a multiset is implemented as an array of registers
(see Figure 1). Because it is infeasible to predict which types of objects may become
available in which regions during the evolution of a P system, the array of registers
that represents the multiset of objects in a region contains one register for every
type of object in the alphabet of the P system. A common bitwidth is used for all
object types (the default width is 8 bits).

Using registers can be expensive if a large amount of data needs to be stored.
However, because in the hardware design each register corresponds to the multi-
plicity of a type of object in a region (rather than an individual object), for most
P systems only a relatively small amount of data needs to be stored.

3.1.3 Reaction Rules

A reaction rule is implemented as a processing unit. This processing unit is rep-
resented in Handel-C as a potentially infinite while loop that contains code that
specifies the processing associated with the application of the reaction rule. If a re-
action rule operates on the multiplicity value for a particular object type in a par-
ticular region, then the section of the code for its corresponding processing unit that
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Fig. 1. A multiset of objects is implemented as an array of registers

accomplishes this operation contains a reference to the array element representing
that multiplicity value.

In a transition of a P system, all the reaction rules in the system complete one
instance of execution, which consists of two phases. In the first phase, called the
preparation phase, objects are assigned to the reaction rules that require them as
reactants or catalysts. That is, for each reaction rule in each region, the number
of instances of the reaction rule that can be applied is determined. In the second
phase, called the updating phase, each applicable reaction rule updates one or more
multisets of objects according to its definition and the number of instances of the
reaction rule that can be applied.

The rest of this section describes the processing performed by the processing
units for reaction rules during the preparation and updating phases.

Preparation Phase. In the preparation phase, each reaction rule attempts to
obtain as many of each of its required types of object as possible so as to maximise
the number of instances of the reaction rule that can be applied in the updating
phase. Therefore, implementing the preparation phase involves calculating for each
reaction rule r the value max-instancesr, which is the maximum number of instances
of r that can be applied in the current transition of the P system given (a) the
current state of the multiset of objects in its region and (b) the relative priorities
and requirements of the other reaction rules in its region. The processing unit
corresponding to r performs the calculation.

To calculate max-instancesr, the processing unit for a reaction rule r first cal-
culates for each of its required object types (using integer division) the ratio of the
number of available objects of that type in the region of r to the number of objects of
that type needed to apply one instance of r. This is done in one clock cycle. It then
calculates max-instancesr, which is equal to the minimum ratio calculated in the
previous step. The operation of determining the minimum ratio can be represented
as a binary tree in which each node corresponds to the execution of a binary MIN
operation and executing the MIN operation at the root node gives the value of the
minimum ratio. This tree has log

2
n levels, where n is the sum of the number of re-

actants and the number of catalysts in the definition of r. The processing unit for r
evaluates max-instancesr by first executing in parallel all the MIN operations at the
bottom (leaf) level of the tree, then executing in parallel all the MIN operations at
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Fig. 2. An illustration of how the structural aspects of a P system are represented as high-
level hardware components. (The multiset replication coordinator and extra array
elements for object type b in Region 3 are included only if the space-oriented conflict
resolution strategy is used.)

the next level up, and so on, until finally it executes the MIN operation at the root
node to obtain the value of max-instancesr. Therefore, calculating max-instancesr
takes log

2
n clock cycles.

If two reaction rules attempt to obtain objects of the same type, then their
corresponding processing units execute the relevant operation one after the other
according to their relative priorities. (It is assumed that reaction rules that attempt
to obtain objects of the same type have been assigned relative priorities.) Other-
wise, the processing units for different reaction rules execute in parallel. Therefore
the number of clock cycles taken to complete the preparation phase for the entire
P system is the maximum number of clock cycles taken by an individual rule pro-
cessing unit, out of all the rule processing units in the P system, to complete its own
preparation phase.

Updating Phase. At the start of the updating phase, the processing unit for
a reaction rule r inspects the value of max-instancesr to determine whether r is ap-
plicable in the current transition. If max-instancesr = 0, r is inapplicable; otherwise
r is applicable. As it takes zero clock cycles to evaluate a conditional expression in
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Handel-C, determining the applicability of r takes zero clock cycles. The applica-
bility status of r is recorded in the isApplicableFlag of r (see Figure 3). Once
the applicability status of each reaction rule has been determined and recorded, the
processing unit that coordinates the execution of reaction rules (see Section 3.1.4) is
able to determine whether the P system should halt or continue the updating phase.
Assume that the P system should continue the updating phase. If r is inapplicable,
the processing unit for r simply waits for the next transition. If r is applicable, it
moves on to the next step of its updating phase.

In the next step of the updating phase, every instance of every applicable reaction
rule is applied. This is implemented by having the processing unit for each applicable
reaction rule r bring about the combined effect of the execution of the instances of r.
That is, the processing unit decreases/increases certain multiplicity values in certain
multiset arrays according to the type, amount and source/destination of the objects
consumed/produced by the instances of the reaction rule. For example, in Figure 2,
in the next transition of the P system represented at the top of the figure, the
processing unit R2 would decrease by 2 the value stored in the register corresponding
to object type a in the multiset array for Region 2, and increase by 2 the value stored
in the register corresponding to object type b in the multiset array for Region 1.

If a reaction rule includes ‘in’ target directives, the definition of a P system calls
for nondeterministic targeting of objects if there are multiple child regions. Such
nondeterministic targeting can be approximated through the use of pseudorandom
numbers. Therefore, the hardware design associates a random number generator to
each processing unit for a reaction rule that might produce objects in multiple child
regions of its own region. When such a processing unit needs to select a destination
child region, it invokes its random number generator to obtain a number which
identifies the child region to be selected. For example, the processing unit R1 in
Figure 2 invokes its random number generator to determine whether to produce
b objects in Region 2 or in Region 3.

Processing units for reaction rules that do not manipulate any multiplicity val-
ues in common execute in parallel during the updating phase. This is not necessarily
the case for processing units for reaction rules that do manipulate at least one mul-
tiplicity value in common, since without further measures being taken, the parallel
execution of such processing units would lead to situations where multiple processing
units write to the same register at the same time. Section 3.2 describes two alterna-
tive conflict resolution strategies that Reconfig-P makes available for the prevention
of such situations, and shows the extent to which each strategy allows conflicting
rule processing units to execute in parallel during the updating phase. The num-
ber of clock cycles taken to complete the updating phase depends on the conflict
resolution strategy that is adopted.

3.1.4 Synchronisation of Reaction Rules

Figure 3 illustrates the synchronisation of rule processing units involved in the exe-
cution of a transition of a P system.
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The synchronisation of rule processing units is controlled by three sentinels –
preparationSentinel, applicableSentinel and updatingSentinel – and corre-
sponding flags associated with each rule processing unit – preparationComplete-

Flag, updatingCompleteFlag and isApplicableFlag. The sentinels and flags are
implemented as 1-bit registers. The flags of a given type are stored in a single
array.

The flags preparationCompleteFlag, isApplicableFlag and updatingCom-

pleteFlag for a rule processing units are used to indicate whether the rule process-
ing unit has completed its preparation phase, is applicable, and has completed its
updating phase, respectively. The value of each sentinel is the result of performing
the AND or OR function to the values of all its corresponding flags. The value of
preparationSentinel indicates whether all rule processing units in the P system
have completed their respective preparation phases. The value of applicableSen-
tinel indicates whether at least one rule processing unit is applicable (i.e., whether
the P system should continue execution). And the value of updatingSentinel

indicates whether all applicable rule processing units in the P system have com-
pleted their respective updating phases (and hence whether the P system is ready
to proceed to the next transition).

The management of synchronisation is the responsibility of the rule application

coordinator, a processing unit that executes in parallel with the rule processing units
(see Figure 2). The rule application coordinator monitors the conditions relevant to
synchronisation at each clock cycle.

For P systems with a large number of reaction rules it might be advantageous
to decompose each assignment statement that implements the updating of a sen-
tinel value into multiple assignment statements of reduced logical depth. Therefore
Reconfig-P incorporates a logic depth reduction feature. It decomposes an assign-
ment statement with n operands into multiple assignment statements, each of which
has at most x ≤ n operands. If as many of these assignment statements as possible
contain x operands, then the original assignment statement is replaced by ⌈logx n⌉
assignment statements. The user sets the value of x in order to obtain the best
results.

3.2 Conflict Resolution in the Updating Phase

As mentioned in Section 3.1.3, a conflict occurs in the updating phase when multiple
rule processing units write to the same register at the same time. This occurs if
the rule processing units consume or produce the same type of object in the same
region in the same transition. As mentioned in Section 2.2, Petreska and Teuscher’s
hardware implementation avoids the conflict problem by totally sacrificing the pa-
rallelism that gives rise to the problem. This is an undesirable strategy, because it
hinders performance significantly.

Reconfig-P implements two alternative conflict resolution strategies: the time-

oriented strategy and the space-oriented strategy. The time-oriented strategy con-
sumes time, whereas the space-oriented strategy consumes space. Therefore, the
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Fig. 3. An illustration of the synchronisation performed by Reconfig-P to accomplish
a transition of a P system

best strategy to use depends on whether it is more important to optimise space or
time usage. The user selects the strategy to be used.

Both strategies involve determining in software before run-time all of the po-
tential conflicts that might occur between reaction rules, and then generating the
hardware circuit for the P system in such a way that all rule processing units can
execute independently without any possibility of writing to the same register at the
same time. The task of determining the resource conflicts has a time complexity of
Θ(nrno), where nr is the number of reaction rules in the P system, and no is the
number of object types in the alphabet of the P system. Therefore it has a negligi-
ble impact on performance. Note that, since the circuit for the P system need be
generated only once, the task is performed only once.
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In both strategies, potential conflicts are determined through the construction
of a conflict matrix. Each row of a conflict matrix for a P system is a quadruple
(p, q, r, s), where p is an object type in the alphabet of the P system, q is a region
in the P system, r is the set of reaction rules whose application results in the
consumption and/or production of objects of type p in q, and s – called the conflict
degree of (p, q) – is the size of r. There is a row for every pair (p, q).

We now describe how the updating phase occurs when (a) the time-oriented
strategy is used, and (b) the space-oriented strategy is used.

3.2.1 Time-Oriented Conflict Resolution

In the time-oriented conflict resolution strategy, if two rule processing units need to
update the multiplicity value for the same type of object in the same region, then
they do so one after the other (the order in which they do so is not important and
so is chosen arbitrarily).

Table 1 illustrates the time-oriented strategy. In the table, ‘u(p, q)’ denotes the
operation of updating the multiplicity value of object type p in region q.

The correct interleaving of the various conflicting operations of the rule pro-
cessing units is determined by means of an analysis of the conflict matrix for the
P system before run-time. That is, the Handel-C source code that is generated for
the P system specifies the interleaving directly. This is achieved by inserting the
appropriate number of single-clock-cycle delay statements in the appropriate places
in the source code for the rule processing units. For example, the code in the pro-
cessing unit for r3

1
that updates the multiplicity value of object type a in Region 2

is preceded by two delay statements, whereas the corresponding code for object
type b in Region 3 is not preceded by any delay statements. For the general case,
take a quadruple (p, q, r, s) from the conflict matrix for a P system. Assume that the
reaction rules r1, r2, . . . , rn ∈ r are ordered (for the purpose of conflict resolution)
according to the natural ordering of their subscripts. Then the number of delay
statements to be inserted immediately before the code in the processing unit for the
reaction rule ri ∈ r that updates the multiplicity value of object type p in region q

is equal to i− 1.
As Table 1 illustrates, the number of clock cycles taken to update the multiplicity

value for object type p in region q of a P system is equivalent to the conflict degree
of (p, q), which is recorded in the conflict matrix for the P system.

Let k be the highest conflict degree in the conflict matrix for a P system. Then
the updating phase for the P system takes k clock cycles to complete when the
time-oriented conflict resolution strategy is used.

3.2.2 Space-Oriented Conflict Resolution

In the space-oriented conflict resolution strategy, if n reaction rules need to update
the multiplicity value for the same type of object in the same region, then n copies
are made of the register that stores that multiplicity value. The processing units for
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Clock
cycle r11 r21 r22 r31 r32 r41

1

u(a, 2),
u(b, 1),
u(c, 1)
end

u(f, 2) u(b, 2),
u(e, 2)

u(b, 3) u(c, 3),
u(e, 3)
end

u(d, 4),
u(e, 2)

2
u(a, 2)
end

u(f, 2)
end

u(b, 2)
end

3
u(a, 2)
end

Table 1. How the processing units for the reaction rules in the P system in Figure 4

execute during the updating phase of the current transition if the time-oriented
conflict resolution strategy is used

the conflicting reaction rules are assigned one copy register each, and in the updating
phase write to their respective copy registers (see Figure 2 for an example). Once
all of the rule processing units have completed writing to their registers, processing
units called multiset replication coordinators (each of which is associated with one
object type in one region and runs in parallel with the other processing units in
Reconfig-P) read the values that have been stored in the copy registers, and set the
original registers in the relevant multiset arrays accordingly (again see Figure 2).
This step takes one clock cycle to complete. However, for P systems with a large
number of object copies, it may be beneficial to perform logic depth reduction (see
Section 3.1.4). Table 2 illustrates the space-oriented strategy.

4 THEORETICAL PERFORMANCE ANALYSIS

In this section, we analyse the time complexity of the parallel algorithm executed in
hardware by Reconfig-P (in both the time-oriented and space-oriented modes), and
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Clock
cycle r1

1
r2
1

r2
2

r3
1

r3
2

r4
1

1

u(a, 2),
u(b, 1),
u(c, 1)
end

u(f, 2),
u(a, 2)
end

u(b, 2),
u(e, 2)

u(f, 2)
end

u(b, 3),
u(e, 3)
end

u(d, 4),
u(e, 2),
u(b, 2)
end

2
Multiset replication coordinators update original registers in relevant
multiset arrays

Table 2. How the processing units for the reaction rules in the P system in Figure 4
execute during the updating phase of the current transition if the space-oriented
conflict resolution strategy is used

compare its time complexity with the time complexity of the sequential algorithm
used in sequential implementations of membrane computing. The results of the
analysis demonstrate the performance advantages of the parallelism implemented
by Reconfig-P.

In the analysis, operations that have a negligible time complexity are not consi-
dered. More specifically, the simplifying assumption is made that the total execution
time for an algorithm is the sum of the execution times for the preparation phase and
the updating phase and any associated synchronisation operations. All execution
times are measured in clock cycles.

4.1 Definitions

In our analysis, M = {m1, m2, . . . , mn} denotes the set of membranes in the P
system. V = {o1, o2, . . . , ov} denotes the alphabet of the P system. Rmx

=
{r1,mx

, r2,mx
, . . . , rkmx

,mx
} denotes the set of reaction rules in the region defined

by membrane mx. ry,mx
denotes the yth reaction rule in the region defined by

membrane mx. The superscript ‘a’ in ray,mx
indicates that ry,mx

is applicable.
nR(ry,mx

), nC(ry,mx
) and nP(ry,mx

) denote the number of reactant, catalyst and prod-
uct object types in reaction rule ry,mx

, respectively. MUPDATE

mx
: V −→ Rmx

denotes
the function that maps each object type in the region defined by membrane mx

to the set of reaction rules that might update its multiplicity. Maxn
i=1

xi denotes
the function that returns the maximum value in the set {x1, x2, . . . , xn}. Finally,
e denotes the time taken to execute one transition of a P system. This time is
composed of the separate times taken to execute the preparation phase (p), the
updating phase (u) and (in the parallel algorithm) synchronisation operations (s).
Synchronisation operations include updates of the sentinels preparationSentinel
and updatingSentinel, as well as operations related to the coordination of multiset
replication.
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4.2 Analysis of the Sequential Algorithm

In the sequential algorithm used in sequential implementations of membrane com-
puting, all reaction rules in all regions are executed one after the other. Let pSEQ(r)
be the number of clock cycles for a reaction rule r to execute its preparation phase
and uSEQ(r) the number of clock cycles for it to execute its updating phase. Then
the number of clock cycles eSEQ taken to execute one transition of the P system is
given by

eSEQ =
n
∑

i=1

kmi
∑

j=1

=

{

pSEQ(rj,mi
), if rj,mi

is not applicable,
pSEQ(rj,mi

) + uSEQ(rj,mi
), if rj,mi

is applicable.

The preparation phase for a reaction rule involves a series of calculations of the
minimum of a pair of ratios of multiplicity values for reactants and catalysts (see
Section 3.1.3). The updating phase for a reaction rule involves updating the multi-
plicity value for each of the reactant and product object types in the definition of
the rule (again see Section 3.1.3). To facilitate a comparison with the parallel algo-
rithm executed by Reconfig-P, we make two assumptions regarding the sequential
algorithm. First, we assume that it takes one clock cycle to calculate the minimum
of a pair of ratios of multiplicity values. Second, we assume that it takes one clock
cycle to update the multiplicity value of an object type. Therefore we have

pSEQ(ry,mx
) = nR(ry,mx

) + nC(ry,mx
)− 1

and

uSEQ(ray,mx
) = nR(ray,mx

) + nP(ray,mx
).

4.3 Analysis of the Parallel Algorithm

The number of clock cycles ePAR taken to execute a transition of the P system when
the parallel algorithm executed by Reconfig-P is used is the sum of (a) the number of
clock cycles taken by the longest preparation phase execution in the whole P system,
(b) the number of clock cycles taken by the longest updating phase execution in
the whole P system, and (c) the number of clock cycles taken by synchronisation
operations:

ePAR = Maxn
i=1

Max
kmi

j=1p
PAR(rj,mi

) +Maxn
i=1

Max
kmi

j=1u
PAR(raj,mi

) + sPAR.

Preparation Phase. As stated in Section 3.1.3, the preparation phase for a reac-
tion rule involves log2n steps of applying in parallel distinct MIN calculations, where
n is the number of reactant/catalyst object types in the rule. If a reaction rule con-
flicts with other reaction rules, it has to wait for all conflicting reaction rules with
higher priority to complete execution of their respective preparation phases before
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it can begin executing its preparation phase. Therefore, the number of clock cycles
taken by a reaction rule to complete its preparation phase is given by

pPAR(ry,mx
) =



















∑y
s=1 log2(n

R(rs,mx
) + nC(rs,mx

)),
if rs,mx

has an assigned priority,
log

2
(nR(ry,mx

) + nC(ry,mx
)),

if ry,mx
does not have an assigned priority.

(It is assumed that reaction rules with assigned priorities are labelled in the order
that reflects their priority ordering.)

Updating Phase. In the updating phase, reaction rules update multiplicity values
of object types in parallel.

Let MUPDATE

mx
: V −→ Rmx

represent the conflicts that exist in the updating
phase in the region mx. MUPDATE

mx
maps an object type o ∈ V in mx to the set of

reaction rules that might access the multiplicity value for that object type during
the updating phase (each of these reaction rules is associated with either mx, the
parent region of mx, or a child region of mx). The size of the set which is the value
of the function is called the conflict degree for the object type o in mx.

As mentioned in Section 3.2.1, if the time-oriented conflict resolution strategy
is used, the number of clock cycles taken to complete the updating phase is equal
to the highest conflict degree in the conflict matrix for the P system. As mentioned
in Section 3.2.2, if the space-oriented conflict resolution strategy is used, only one
clock cycle is needed to complete the updating phase. Therefore

Maxn
i=1

Max
kmi

j=1u
PAR(raj,mi

) =























Maxn
i=1

Maxv
j=1

∣

∣

∣MUPDATE

mi
(oj)

∣

∣

∣ ,

if the time-oriented strategy is used,
1,

if the space-oriented strategy is used.

No matter which conflict resolution strategy is used, synchronisation operations
need to be performed. The first synchronisation operation that consumes clock cyc-
les is the updating of preparationSentinel that occurs once all reaction rules in
the P system have completed their respective preparation phases. As explained in
Section 3.1.4, this involves the execution of logx ⌈

∑n
i=1

|Rmi
|⌉ Handel-C assignment

statements. The first of these assignment statements makes use of a signal (instead
of a register), and therefore consumes zero clock cycles. Each of the other assign-
ment statements takes one clock cycle to execute. Therefore, the total number of
clock cycles consumed in this step is logx ⌈

∑n
i=1

|Rmi
|⌉ − 1. The second synchroni-

sation operation that consumes clock cycles is the updating of updatingSentinel
that occurs once all reaction rules in the P system have completed their respective
updating phases. This operation is identical in form to the operation of updating
preparationSentinel, and so consumes logx ⌈

∑n
i=1

|Rmi
|⌉ − 1 clock cycles. Fi-

nally, when the space-oriented conflict resolution strategy is used, coordination of
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multiset replication needs to be performed at the end of the updating phase (see
Section 3.2.2). Coordinating multiset replication for all regions takes one clock cyc-
le. Therefore, summing the number of clock cycles taken by each synchronisation
operation, we have

sPAR =

{

2(logx ⌈
∑n

i=1
|Rmi

|⌉ − 1), if the time-oriented strategy is used,
2(logx ⌈

∑n
i=1

|Rmi
|⌉ − 1) + 1, if the space-oriented strategy is used.

4.4 Comparison of the Algorithms

Number of clock cycles per transition
Sequential 1-level 2-level 2-level

Regions Rules k a parallelism parallelism parallelism
(%) (time- (space-

oriented) oriented)

Horizontal cascading

10 50 3 30 470 25 10 9
10 50 3 70 630 28 10 9
50 250 3 30 2 350 27 12 11
50 250 3 70 3 150 30 12 11

100 500 3 30 4 700 27 12 11
100 500 3 70 6 300 30 12 11

Vertical cascading

10 50 3 30 470 25 10 9
10 50 3 70 630 28 10 9
10 250 15 30 2 350 186 36 23
10 250 15 70 3 150 351 36 23
10 500 30 30 4 700 606 66 38
10 500 30 70 6 300 1 206 66 38

Table 3. An illustration of the time complexity results

Table 3 illustrates the relative theoretical performances of (a) the sequential al-
gorithm, (b) an algorithm that implements parallelism only at the system level (as
in Petreska and Teuscher’s implementation), (c) the parallel algorithm executed by
Reconfig-P when the time-oriented conflict resolution strategy is used, and (d) the
parallel algorithm executed by Reconfig-P when the space-oriented conflict resolu-
tion strategy is used. Larger and larger P systems are derived from one initial basic
P system using either horizontal or vertical cascading. In horizontal cascading, more
and more regions are added, but the number of reaction rules per region is held con-
stant. In vertical cascading, the number of reaction rules per region increases, but
the number of regions is held constant. The following assumptions, deemed to rep-
resent the average case, are made: (a) there are 20 object types; (b) each reaction
rule has four reactant object types, four catalyst object types and four product
object types; (c) there are conflicts on 20% of the object types in the preparation
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phase; and (d) there are conflicts on 60% of the object types in the updating phase.
Assumption (d) gives rise to a k value for each P system, which is the highest con-
flict degree in the conflict matrix for the P system. P systems are also assigned an
arbitrary a value, which is the percentage of reaction rules that are applicable in
a transition on average.
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Fig. 5. A graph of the theoretical performance data in Table 3

A graph of the theoretical performance data in Table 3 is shown in Figure 5.
The graph clearly demonstrates the superior speed of the algorithm executed by
Reconfig-P over both the sequential algorithm and the algorithm with one level of
parallelism. When horizontal cascading is applied, the algorithm shows exceptional
scalability in both the time-oriented and space-oriented modes. When the k value
is small and reaction rules are evenly distributed across regions, the algorithm is
more effective in time-oriented mode than in space-oriented mode because it uses
less space while achieving similar speeds. When vertical cascading is applied, the
algorithm is significantly faster than the algorithm with one level of parallelism. The
algorithm is faster in space-oriented mode than in time-oriented mode. The main
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reason is that, whereas increasing the k value reduces the degree of parallelism in
the updating phase when the time-oriented conflict resolution strategy is used, this
is not the case when the space-oriented conflict resolution strategy is used.

5 CONCLUSION

The hardware implementation of membrane computing presented in this paper is
the first to achieve parallelism at both the system and region levels. Unlike Petreska
and Teuscher’s implementation, it tackles the resource conflict problem associated
with the updating phase of a P system transition, and is therefore able to achieve
parallelism at the region level.

The theoretical performance results presented in Section 4 suggest that the hard-
ware implementation can significantly outperform sequential implementations of
membrane computing as well as Petreska and Teuscher’s implementation. However,
the theoretical performance data are measured in clock cycles per transition, whereas
the performance metric of ultimate interest is the amount of real time elapsed per
transition. To measure this metric, an empirical performance analysis is required.
In [5], we present such an analysis, which shows that the hardware implementation
achieves very good performance. Also in [5], we present an empirical analysis of the
hardware resource usage of the implementation. The extent to which the implemen-
tation consumes hardware resources is important, because it determines the largest
P systems that can be executed on a given hardware platform. The results of this
analysis show that the implementation makes economical use of hardware resources.

In the next phase of this research, we intend to develop strategies for the im-
plementation in hardware of P system features not covered by the core P system
model, and to investigate the use of our hardware implementation for the execution
of real-world applications.
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