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Abstract. The current methodology for designing highly efficient technological
systems needs to choose the best combination of the parameters that affect the per-
formance. In this paper we propose a promising optimization algorithm, referred
to as the Multilevel Ant Stigmergy Algorithm (MASA), which exploits stigmergy
in order to optimize multi-parameter functions. We evaluate the performance of
the MASA and Differential Evolution – one of the leading stochastic method for
numerical optimization – in terms of their applicability as numerical optimization
techniques. The comparison is performed using several widely used benchmark
functions with added noise.
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1 INTRODUCTION

Stigmergy is a method of communication in decentralized systems in which the in-
dividual parts of the system communicate with one another by modifying their local
environment. It was first observed in nature as a class of mechanisms that mediate
animal-animal interactions (e.g., ant trails, termite nest building, ant corpse gather-
ing) [27]. The term stigmergy (from the Greek stigma = sting, and ergon = to work)
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was originally defined by the French entomologist Pierre-Paul Grassé in his pioneer-
ing studies on the reconstruction of termite nests [9]. He defined it as: “Stimula-

tion of workers by the performance they have achieved.” Stigmergy provides a new
paradigm for developing decentralized, complex applications such as autonomous
and collective robotics [12], communication in computer networks [22], multi-agent
systems [10], optimization algorithms [4], etc. In this paper we introduce a new
stigmergy-based approach to the numerical optimization problem.

Numerical optimization, as described by Nocedal and Wright [19], is important
in decision science and in the analysis of physical systems. An important step in
optimization is the identification of some objective, i.e., a quantitative measure of
the performance of the system. This objective can be any quantity or combination
of quantities that can be represented by a single number. The objective depends on
certain characteristics of the system called parameters, which are often restricted or
constrained in some way. Furthermore, the parameters can have either continuous
or discrete values. Our goal is to find values of the parameters that optimize the
objective. Depending on the types of parameters, we distinguish between continuous

optimization [19] and discrete optimization [3].
There is no universal optimization algorithm to solve such an optimization prob-

lem. Many of the problems arising in real-life applications are NP-hard. Hence, one
usually solves large instances with the use of approximate methods that return
near-optimal solutions in a relatively short time. Algorithms of this type are called
heuristics. The upgrade of a heuristic is a metaheuristic: a set of algorithmic con-
cepts that can be used to define a heuristic method applicable to a wider set of
different problems. A particularly successful metaheuristic based on stigmergy is
observed in colonies of real ants [4]. Ants communicate with one another by laying
down pheromone along their trails, so one can say that an ant colony is a stig-
mergic system. An ant-colony metaheuristic is normally used for solving discrete,
combinatorial optimization problems. A direct application of this metaheuristic for
solving real-parameter optimization problem is difficult. The first algorithm de-
signed for continuous function optimization was continuous ant-colony optimization
(CACO) [1] which comprises two levels: global and local. CACO uses the ant-colony
framework to perform local searches, whereas global search is handled by a genetic
algorithm. Up to now, there are few other adaptations of ant-colony algorithm to
continuous optimization problems: continuous interacting ant colony (CIAC) [6],
ant-colony optimization for continuous and mixed-variable (eACO) [24], improved
ant-colony algorithm [2], etc. In this paper we will show a new, successful implemen-
tation of an ant-colony metaheuristic on a numerical, multi-parameter optimization
problem that is often solved by algorithms for continuous optimization.

The rest of the paper is organized as follows. Following a brief explanation of the
transformation approach from continuous to discrete form of multi-parameter prob-
lem in Section 2, the Ant Stigmergy Algorithm is defined in Section 3. In Section 4,
the multilevel approach is explained. The Multilevel Ant Stigmergy Algorithm is
described in Section 5, followed by experiments in Section 6, and the conclusions in
Section 7.
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Fig. 1. Search graph representation

2 A MULTI-PARAMETER PROBLEM

Multi-parameter optimization is the process of finding the point in the parameter
space P = {p1, p2, . . . , pD} where a cost function f(P ) is minimized according to
the feasible set Ω of parameters pi, i = 1, 2, . . . , D, that satisfy the constraints.
Very often this cost function contains information about the problem target and the
constraints that the solution has to meet (constrained optimization). Optimizing
a multi-parameter function is usually a continuous problem.

Because of the nature of ant-based algorithms we first had to put the continuous
multi-parameter problem into discrete form. More precisely, if a parameter pi has
a range from Li to Ui and the discrete step is ∆i then a discrete parameter pi has
⌈Ui−Li

∆i
⌉+ 1 discrete values.

Now that we have the problem discrete we need to find a way to use our ants to
find a solution. Generally, ant-based algorithms solve different problems with the
use of a graphical representation. In our case we decided to use a search graph.

2.1 Graph Representation

A search graph is defined as a connected, directed, non-weighted, acyclic graph.
It is also rooted and ordered. We translate all the discrete parameter values into
a search graph. For this purpose we define a search graph G = (V, E) with a set
of vertices V =

⋃D
d=1 Vd, Vd = {v〈d,1〉, . . . , v〈d,nd〉} and set of edges between the
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vertices E =
⋃D

d=1Ed, Ed = {e〈d−1,i〉,〈d,j〉 = (v〈d−1,i〉, v〈d,j〉) |v〈d−1,i〉 ∈ Vd−1 ∧ v〈d,j〉 ∈
Vd}, where D represents the length of the longest path in the search graph, which
equals the number of parameters, and nd represents the number of discrete values
of a parameter pd.

In Figure 1 we see that v〈1,1〉 represents the first discrete value of the first pa-
rameter and v〈1,2〉 represents the second discrete value, and so on. Every vertex at
distance d− 1 is connected to all the vertices at distance d. With this search graph
we have covered the whole solution space of the discrete multi-parameter problem.
For example, if we start in the start vertex (d = 0) and follow the search graph to
the ending vertex (d = D) we always get a path of length D. This path consists
of D vertices and each vertex belongs to one of the parameters. So what we have
here is one possible solution of the multi-parameter function. In this way we can
create any solution from the solution space of a discrete problem. The efficiency of
the path depends on how good is the result obtained by these (found on the path)
parameter values. We call this “translated problem” – the problem of finding the
cheapest path. This type of solution creation is very suited to the ant-based ap-
proach. One more thing that we have to do is to define two values for each vertex.
In our case each vertex has two different types of attributes: one is a constant and
represents the discrete parameter value, while the other is a variable and represents
the amount of pheromone, τ . On this kind of search graph we ran our optimization
algorithm – the so-called Ant Stigmergy Algorithm (ASA).

3 THE ANT STIGMERGY ALGORITHM

The basic concept, as can be seen from the previous section, is as follows: first,
we translate the multi-parameter problem into a search graph and then use an
optimization technique to find the cheapest path in the constructed graph; this
path consists of the values of the optimized parameters. In our case we use an
ant stigmergy optimization algorithm, the routes of which can be found in the ant-
colony optimization (ACO) method [5]. The ASA consists of three main phases:
initialization, optimization and local search.

3.1 Initialization

Let us start with initialization. Here we translate the parameters of the problem into
a search graph. This way we translate the multi-parameter problem into a problem
of finding the cheapest path. Figure 1 shows how this is done. We can see that
for each parameter pd, d = 1, . . . , D, parameter value v〈d,i〉, i = 1, . . . , nd, nd = |pd|,
represents one vertex in a search graph, and each vertex is connected to all the
vertices that belong to the next parameter pd+1. Once we have translated the multi-
parameter problem into one of finding the cheapest path, we can deploy the initial
pheromone values on all the vertices. Now we are ready to proceed to the next
phase.
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3.2 Optimization

Optimization consists of finding the cheapest path. Prior to the actual optimization
an initial amount of pheromone, τ0, is deposited uniformly in all the vertices in the
search graph. There are a number of ants in a colony, all of which begin simultane-
ously from the start vertex. The probability with which they choose the next vertex
depends on the amount of pheromone on the vertices. Ants use a probability rule to
determine which vertex will be chosen next. More specifically, ant α in step d moves
from vertex v〈d−1,i〉 ∈ {v〈d−1,1〉, . . . , v〈d−1,nd−1〉} to vertex v〈d,j〉 ∈ {v〈d,1〉, . . . , v〈d,nd〉}
with the probability given by

probij,α(d) =
τ〈d,j〉∑

1≤k≤nd
τ〈d,k〉

,

where τ〈d,k〉 is the amount of pheromone on vertex v〈d,k〉. The ants repeat this action
until they reach the ending vertex. Then, the gathered parameter values of each
ant (which can be found on its path) are evaluated. Next, each ant returns to the
start vertex and on the way it deposits pheromone in the vertices according to the
evaluation result: the better the result, the more pheromone is deposited in the ver-
tices, and vice versa. After all the ants have returned to the start vertex, a so-called
daemon action is made, which in this case consists of depositing some additional
pheromone on what is currently the best path and also a smaller amount in neigh-
boring vertices. Afterwards, pheromone evaporation from all the vertices occurs,
i.e., the amount of pheromone is decreased by some predetermined percentage, ρ, in
each vertex v〈d,k〉 in the search graph G:

τnew〈d,k〉 = (1− ρ)τold〈d,k〉.

The whole procedure is then repeated until some ending condition is met (e.g., some
predetermined number of iterations).

3.3 Local Search

A local search has become a mandatory addition to any ant-based algorithm [8]. By
using a local search it is usually possible to improve the convergence or improve the
best solution, P ∗, found so far. We use it because our basic search techniques is
oriented more toward finding the best area of the solution space. We can say that
the search is of a broader type, so a local search is used to improve the best solution.
In our case a type of steepest-descent algorithm was used. The pseudo code is as
follows:

P ∗ = {p1, . . . , pi, . . . , pD}
change = T

while change do
change = F
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for i = 1 to D do

if Evaluate({p1, . . . , pi + p
step
i , . . . , pD}) < Evaluate(P ∗) then

change = T

while Evaluate({p1, . . . , pi + p
step
i , . . . , pD}) < Evaluate(P ∗) do

P ∗ = {p1, . . . , pi + p
step
i , . . . , pD}

pi = pi + p
step
i

endwhile

elseif Evaluate({p1, . . . , pi − p
step
i , . . . , pD}) < Evaluate(P ∗) then

change = T

while Evaluate({p1, . . . , pi − p
step
i , . . . , pD}) < Evaluate(P ∗) do

P ∗ = {p1, . . . , pi − p
step
i , . . . , pD}

pi = pi − p
step
i

endwhile

endif

endfor

endwhile

3.4 Algorithm

Finally, the outline of the Ant-Stigmergy Algorithm (ASA) pseudo code is as follows:

searchGraph = Initialization(parameters)
SearchGraphInitialization(initial pheromone amount)
while not current level ending condition do

for all ants do
path = FindPath(searchGraph)
Evaluate(path)

endfor

UpdatePheromone(all ants paths vertices)
DaemonAction(best path)
EvaporatePheromone(all vertices)

endwhile

LocalSearch(best solution)

When we ran the ASA on small search graphs (nd ≪ 100) the results were en-
couraging. But when we tried it on real problems [15] or functions (see Section 6.1),
which generate much larger graphs, it turned out that there the convergence was
slow and the results were poor. Therefore, we decided to apply amultilevel approach.

4 MULTILEVEL APPROACH

We consider the multilevel approach and its potential to aid the solution of opti-
mization problems. The multilevel approach is a simple one, which in its most basic
form involves recursive coarsening to create a hierarchy of approximations to the
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Fig. 2. Multilevel approach on graph structure (the edges are omitted to make the figure
clear)

original problem. An initial solution is found (sometimes for the original problem,
sometimes at the coarsest level) and then iteratively refined at each level. As a ge-
neral solution strategy the multilevel procedure has been in use for many years and
has been applied to many problem areas.

However, with the exception of the graph-partitioning problem [13, 17], multi-
level techniques with conjunction with ant-colony optimization have not been widely
applied to combinatorial optimization problems [29].

The multilevel approach consists of two main phases: coarsening and refinement.
In our case we will concentrate on graph coarsening and refinement (Figure 2), but
it can be used on any other structure.

4.1 Coarsening

Coarsening is done by merging two or more neighboring vertices into a single vertex;
this is done in L iterations (we call them levels ℓ = 0, 1, . . . , L). Let us consider
coarsening from level ℓ to level ℓ+1 at a distance d. Here V ℓ

d = {vℓ〈d,1〉, . . . , vℓ〈d,nℓ

d
〉
} is

a set of vertices at level ℓ and distance d of the search graph G, where 1 ≤ d ≤ D. If
n1
d is the number of vertices at a starting level of coarsening and a distance d, then

for every level ℓ the equation nℓ+1
d = ⌈nℓ

d

sℓ
d

⌉ is true, where sℓd is the number of vertices

at level ℓ, which are merged into one vertex at level ℓ+ 1.
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V ℓ
d = { vℓ〈d,1〉, . . . , v

ℓ
〈d,sℓ

d
〉︸ ︷︷ ︸

SelectOneVertex

, vℓ〈d,sℓ
d
+1〉, . . . , v

ℓ
〈d,2sℓ

d
〉︸ ︷︷ ︸

SelectOneVertex

, . . ., vℓ
〈d,(nℓ+1

d
−1)sℓ

d
+1〉

, . . . , vℓ〈d,nℓ

d
〉

︸ ︷︷ ︸
SelectOneVertex

}
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V ℓ+1
d = { vℓ+1

〈d,1〉, v
ℓ+1
〈d,2〉, . . ., v

ℓ+1

〈d,nℓ+1

d
〉
}

So what we do is we divide V ℓ
d into nℓ+1

d subsets, where V ℓ
d =

⋃nℓ+1

d

k=1V
ℓ
〈d,k〉, ∀i, j ∈

{1, . . . , nℓ+1
d } ∧ i 6=j : V ℓ

〈d,i〉 ∩ V ℓ
〈d,j〉=∅. Each subset is defined as follows:

V ℓ
〈d,1〉 = {vℓ〈d,1〉, . . . , vℓ〈d,sℓ

d
〉},

V ℓ
〈d,2〉 = {vℓ〈d,sℓ

d
+1〉, . . . , v

ℓ
〈d,2sℓ

d
〉},

...

V ℓ

〈d,nℓ+1

d
〉

= {vℓ
〈d,(nℓ+1

d
−1)sℓ

d
+1〉

, . . . , vℓ〈d,nℓ

d
〉}.

Set V ℓ+1
d = {vℓ+1

〈d,1〉, . . . , v
ℓ+1

〈d,nℓ+1

d
〉
} is the set of vertices at distance d at level ℓ + 1,

where vℓ+1
〈d,k〉 ∈ V ℓ

〈d,k〉 is selected on some predetermined principle. For example,

random pick, the most left/right/centered vertex in the subset, etc.
The outline of the coarsening pseudo code from V ℓ

d to V ℓ+1
d is as follows:

for k = 1 to nℓ+1
d do

vℓ+1
〈d,k〉 = SelectOneVertex(V ℓ

〈d,k〉)

endfor

4.2 Refinement

Because of the simplicity of the coarsening, the refinement itself is very trivial. Let
us consider refinement from level l to level l − 1 at distance d.

V ℓ−1
d = {vℓ−1

〈d,1〉, . . . , v
ℓ−1

〈d,sℓ−1

d
〉
, vℓ−1

〈d,sℓ−1

d
+1〉

, . . . , vℓ−1

〈d,2sℓ−1

d
〉
, . . ., vℓ−1

〈d,(nℓ

d
−1)sℓ−1

d
+1〉

, . . . , vℓ−1

〈d,nℓ−1

d
〉
}
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V ℓ
d = { vℓ〈d,1〉, v

ℓ
〈d,2〉, . . ., v

ℓ
〈d,nℓ

d
〉
}

The outline of the refinement pseudo code is as follows:

for k = 1 to nℓ
d do

for each vℓ−1
〈d,i〉 ∈ V ℓ−1

〈d,k〉 do

vℓ−1
〈d,i〉 = CopyVariables(vℓ〈d,i〉) // in our case τ ℓ−1

〈d,i〉 = τ ℓ〈d,k〉
endfor

endfor
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Here the variable vertex attributes (in our case the amount of pheromone), as
a result of optimization at level ℓ, are transferred to level ℓ− 1 with the use of the
CopyVariables function. Therefore, each vertex of subset V ℓ−1

〈d,k〉 is assigned with the

same value of variable attributes, which corresponds to vertex vℓ〈d,k〉 that was chosen
in the coarsening from level ℓ − 1 to level ℓ, while the constant vertex attributes
remain the same.

4.3 The Algorithm

Finally, the outline of the multilevel algorithm pseudo code could look like this:

structure[0] = Initialization
for ℓ = 0 to L− 1 do

structure[ℓ+ 1] = Coarsening(structure[ℓ])
endfor

for ℓ = L downto 0 do

Solver(structure[ℓ]) // e.g., optimization algorithm
if ℓ > 0 then

structure[ℓ− 1] = Refinement(structure[ℓ])
endif

endfor

5 THE MULTILEVEL ANT STIGMERGY ALGORITHM

It is now time to merge the previously mentioned algorithms into one. This approach
is called theMultilevel Ant Stigmergy Algorithm (MASA). The MASA consists of five
main phases: initialization, coarsening, optimization, refinement, and local search.
Each phase is exactly the same as described in the previous sections.

The outline of the MASA pseudo code is as follows:

searchGraph[0] = Initialization(parameters)
for ℓ = 0 to L− 1 do

searchGraph[ℓ+ 1] = Coarsening(searchGraph[ℓ])
endfor

SearchGraphInitialization(initial pheromone amount)
for ℓ = L downto 0 do

while not current level ending condition do

for all ants do
path = FindPath(searchGraph[ℓ])
Evaluate(path)

endfor

UpdatePheromone(all ants paths vertices)
DaemonAction(best path)
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EvaporatePheromone(all vertices)
endwhile

if ℓ > 0 then

searchGraph[ℓ− 1] = Refinement(searchGraph[ℓ])
endif

endfor

LocalSearch(best solution)

6 PERFORMANCE EVALUATION

In this section we analyze the performance of the MASA and compare the MASA
to what are currently the best algorithms for solving multi-parameter optimization
problems: differential evolution and its descendant, discrete differential evolution.
The evaluation is performed on a set of numerical benchmark functions.

6.1 Benchmark Functions

For the benchmark functions we have decided to use sphere, fSp, Griewangk, fGr,
Rastrigin, fRt, Rosenbrock, fRb, Krink, fKr and negative Krink, fnK. These functions
have been used in a number of earlier investigations on performance evaluation for
optimization problems, e.g., see [18]. For evaluation purposes we used three different
function dimensions D = |P | = 5, 25, and 50. The function definitions are as follows
(see also Table 1):

fSp(P ) =
D∑

i=1

p2i ,

fGr(P ) =
1

4000

D∑

i=1

(pi − 100)2 −
D∏

i=1

cos(
pi − 100√

i
) + 1,

fRt(P ) =
D∑

i=1

(10 + p2i − 10 cos(2πpi)),

fRb(P ) =
D−1∑

i=1

(100(pi+1 − p2i )
2 + (pi − 1)2),

fKr(P ) =
D∑

i=1

(−37.816415− |pi − 50|+ 40 sin(
5πpi
18

)),

fnK(P ) =
D∑

i=1

(−89.016293+ |pi − 50| − 40 sin(
5πpi
18

)).

The optimization of noisy functions is a common task occurring in various ap-
plications. In some applications the function to be minimized is only known to a low
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Function Li Ui ∆ Minimum value

fSp(P ) −100 100 10−3 fSp(
−→
0 ) = 0

fGr(P ) −600 600 10−2 fGr(
−→
100) = 0

fRt(P ) −5.12 5.12 10−4 fRt(
−→
0 ) = 0

fRb(P ) −50 50 10−3 fRb(
−→
1 ) = 0

fKr(P ) 0 100 10−3 fKr(≈ −−−−→
52.167) ≈ 0

fnK(P ) 0 100 10−3 fnK(≈ −−−−→
99.031) ≈ 0

Table 1. Function constraints and minimum values

precision. For the purpose of simulating this problem we introduce noisy versions
of the benchmark functions that are defined as

f̃(P, s) =
1

s

s∑

i=1

(f(P ) + Gauss(0, 1)),

where s is the number of samples (evaluations with added noise) needed to compute
a noisy function, and Gauss(0, 1) is a Gaussian distribution with a mean of 0 and
a standard deviation of 1. For evaluation purposes we used three different degrees
of sampling s = 10, 50, and 100.

Function D Best Mean Std Avg iter

fSp 5 0 0 0 9 693
fGr 5 0 0.616 10−1 0.598 10−1 11 337
fRt 5 0 0 0 8 875
fRb 5 0.133 10−1 0.282 10−1 0.104 10−1 80 227
fKr 5 0.136 10−5 4.733 3.514 15 741
fnK 5 −0.406 10−3 5.613 5.334 21 610

fSp 25 0.500 10−5 0.920 10−5 0.202 10−5 22 747
fGr 25 0.296 10−4 0.148 10−1 0.140 10−1 30 653
fRt 25 0.119 10−4 0.696 0.911 31 979
fRb 25 9.712 31.340 36.310 466 687
fKr 25 0.980 10−4 3.547 3.955 58 965
fnK 25 −0.159 10−2 4.691 5.996 56 518

fSp 50 0.340 10−2 0.460 10−2 0.839 10−3 27 343
fGr 50 0.142 10−3 0.356 10−2 0.610 10−2 46 228
fRt 50 0.714 10−4 0.663 1.149 55 601
fRb 50 38.844 80.789 46.993 348 816
fKr 50 0.480 10−3 3.828 4.502 87 853

fnK 50 −0.155 10−2 3.224 4.464 86 534

Table 2. Experimental results of the MASA without local search on non-noisy functions

The problem of dealing with noisy functions has been addressed by various
researchers, mainly for evolution strategies [21], evolution programming [7], genetic
algorithms [11], particle swarm optimization [14], and differential evolution [18].
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6.2 Performance of the MASA

We ran the MASA 30 times on each experiment. The number of maximum function
evaluations per experiment N was set to 500 000. The number of ants was 10,
ρ = 0.1, and the coarsening was implemented by merging two vertices into one
(which defines the number of levels L). With regard to the ending condition for
each level, we have two different policies. In the case of non-noisy functions, the
ending condition was set to “no best solution found for the last 50 iterations”, while
in the case of noisy functions we limited the number of evaluations per level to N

L
.

This way we ensure that the algorithm does not stay too long on coarse-grained
graphs, i.e., levels with high ℓ. We must note that during the experimentation we
did not fine-tune the algorithms parameters, but only made a limited number of
experiments to find satisfying settings.

Function D Best Mean Std Avg iter

fSp 5 0 0 0 9 703
fGr 5 0 0.616 10−1 0.598 10−1 11 347
fRt 5 0 0 0 8 885
fRb 5 0.133 10−1 0.280 10−1 0.102 10−1 80 246
fKr 5 0.136 10−5 4.733 3.514 15 751
fnK 5 −0.609 10−3 5.613 5.334 21 626

fSp 25 0 0 0 22 852
fGr 25 0 0.148 10−1 0.140 10−1 30 761
fRt 25 0 0.696 0.911 32 084
fRb 25 0.174 10−1 0.949 2.636 500 000
fKr 25 0.681 10−5 3.547 3.955 59 069
fnK 25 −0.304 10−2 4.690 5.997 56 639

fSp 50 0 0 0 27 562
fGr 50 0 0.328 10−2 0.608 10−2 46 472
fRt 50 0 0.663 1.149 55 824
fRb 50 0.744 10−1 5.126 18.595 500 000
fKr 50 0.136 10−4 3.827 4.502 88 073
fnK 50 −0.609 10−2 3.221 4.465 86 784

Table 3. Experimental results of the MASA with local search on non-noisy functions

The evaluation results of the MASA (with and without local search) on non-
noisy functions are presented in Table 2 and Table 3, where the best and the average
solutions obtained in 30 runs are shown for each experiment. The standard deviation
of the solutions and the average number of function evaluations per experiment are
also included in the table. The global minimum of functions fSp, fGr, fRt, and fRb

is exactly zero, while for fKr and fnK we set constants so that the global minimum
is as close to zero possible, see Table 1.

In Tables 2 and 3 we can see that on almost all functions and dimensions the
MASA found an optimal or near-optimal solution. The only function where it
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performed worse was fRb. The main reason for this is that the first expression
100(pi+1 − p2i )

2 has two global minima at pi = 0 and pi = 1, i = 1, 2, . . . , D, while
the second expression (pi − 1)2 has only one global minimum at pi = 1. The p2i in
the first expression prefers pi = 0 over pi = 1. Since the first expression dominates
over the second, the MASA is at first misled into solution pi = 0, from where it can
slowly move toward the global minimum at pi = 1, i = 1, 2, . . . , D.

Function s Best Mean Std Avg iter

f̃Sp 10 −0.433 0.261 0.314 500 000

f̃Gr 10 0.791 1.646 0.527 500 000

f̃Rt 10 6.113 10.589 2.511 500 000

f̃Rb 10 46.428 527.665 825.313 500 000

f̃Kr 10 78.918 119.566 21.214 500 000

f̃nK 10 132.751 164.080 22.010 500 000

f̃Sp 50 76.441 212.538 91.326 500 000

f̃Gr 50 2.946 5.131 1.235 500 000

f̃Rt 50 22.213 74.578 19.105 500 000

f̃Rb 50 3 051.539 57 664.280 43 795.415 500 000

f̃Kr 50 352.753 425.406 26.116 500 000

f̃nK 50 667.893 764.757 54.007 500 000

f̃Sp 100 1 062.354 2 337.157 761.205 500 000

f̃Gr 100 17.040 32.121 8.081 500 000

f̃Rt 100 114.638 167.781 20.200 500 000

f̃Rb 100 1 270 827 3 740 176 2 279 957 500 000

f̃Kr 100 502.813 671.239 68.903 500 000

f̃nK 100 866.699 1 070.813 80.812 500 000

Table 4. Experimental results of the MASA without local optimization on noisy functions
with D = 50

To evaluate the performance of the MASA on noisy functions we decided to test
it on functions with dimension D = 50. Table 4 shows the results of the MASA
without local search on the noisy functions. One can see that with an increase of
the degree of sampling, s, the results deteriorate noticeably.

6.3 Performance of the DE

The evolutionary algorithm, the particle swarm optimization, and differential evolu-
tion (DE) are very popular numerical optimization procedures. The results reported
in [18, 28] show that DE generally outperforms the other algorithms. Therefore, we
decided to compare the MASA with DE.

Differential evolution is a stochastic, population-based optimization algorithm.
It was introduced by Storn and Price [25] and was developed to optimize the real
(float) parameters of a real-valued function. DE resembles the structure of an evo-
lutionary algorithm, but differs from traditional evolutionary algorithms in its ge-
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Function D Best Mean Std Avg iter

fSp 5 0 0 0 8 785
fGr 5 0 0 0 39 697
fRt 5 0 0 0 18 222
fRb 5 0 0.315 10−7 0.131 10−6 84 646
fKr 5 0.742 10−4 0.742 10−4 0 500 000
fnK 5 0.418 8.100 8.466 500 000

fSp 25 0 0 0 52 230
fGr 25 0 0.986 10−3 0.308 10−2 100 140
fRt 25 0.995 14.307 14.083 500 000
fRb 25 0 0.139 10−1 0.745 10−1 476 097
fKr 25 14.000 209.900 86.522 500 000
fnK 25 19.795 87.365 39.688 500 000

fSp 50 0 0 0 105 560
fGr 50 0 0.493 10−3 0.188 10−2 132 061
fRt 50 11.940 98.290 43.517 500 000
fRb 50 15.188 37.273 14.522 500 000
fKr 50 600.382 921.951 156.130 500 000

fnK 50 97.104 228.734 65.940 500 000

Table 5. Experimental results of the DE on non-noisy functions

neration of new candidate solutions and by its use of a “greedy” selection scheme.
The basic idea of DE is outlined as follows:

population = RndCreate(parameters)
Evaluate(population)
while ending condition do

for each parent from population do

candidates[1..3] = RndSelect(population)
newCandidate = Calculate(candidates[1..3])
BinomialCrossover(parent, newCandidate)
Evaluate(newCandidate)
if (newCandidate better than parent) then

parent = newCandidate
endif

endfor

RndEnumerate(population)
endwhile

The newCandidate is calculated as a weighted sum of three randomly chosen
candidates that are different from the parent. Only then does the parent participate
in the creation of the candidate – the candidate is modified by a crossover with
its parent. Finally, the candidate is evaluated and compared to the parent. The
candidate replaces the parent in the population, only if it is better than the parent.
The described procedure (body of the for loop in the above algorithm) is repeated for
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all the parent individuals from the population. When it is finished the individuals
from the population are randomly enumerated and the procedure is repeated.

Recall that DE is used on continuous problems, while the MASA works on
discrete problems.

The DE has three parameters, which were set to the following values, as proposed
by Krink et al. [18]: the population size was 50, the crossover constant was 0.8, and
the scaling factor was 0.5. We ran the DE on each test function 30 times. The
maximum number of function evaluations per experiment was set to 500 000.

In Table 5 we can see that for fSp and fGr the DE returns near optimal results
for all dimensions; for fRt and fKr it returns near optimal results only for D = 5;
for fRb it returns near optimal results for D < 50; for fnK the DE does not produce
any good results in 500 000 evaluations.

Function s Best Mean Std Avg iter

f̃Sp 10 −0.656 −0.393 0.117 500 000

f̃Gr 10 0.387 10−1 0.436 0.130 500 000

f̃Rt 10 338.419 372.889 16.961 500 000

f̃Rb 10 40.450 66.248 32.114 500 000

f̃Kr 10 1 549.370 1 700.032 72.681 500 000

f̃nK 10 106.612 252.194 92.002 500 000

f̃Sp 50 807.386 1 358.840 463.151 500 000

f̃Gr 50 9.055 13.071 3.079 500 000

f̃Rt 50 409.340 453.605 21.390 500 000

f̃Rb 50 1, 708, 481 4 523 049 2 358 303 500 000

f̃Kr 50 1, 715.753 1 963.043 81.910 500 000

f̃nK 50 634.912 910.486 121.962 500 000

f̃Sp 100 7 057.189 12 035.640 2 571.304 500 000

f̃Gr 100 62.169 108.015 21.525 500 000

f̃Rt 100 439.637 500.555 24.734 500 000

f̃Rb 100 39 842 415 122 003 535 57 879 863 500 000

f̃Kr 100 1 977.308 2 108.498 73.489 500 000

f̃nK 100 954.527 1 165.232 95.198 500 000

Table 6. Experimental results of the DE on noisy functions with D = 50

Table 6 shows the results of the DE on noisy functions. Like in the case of the
MASA, we tested the DE on functions with the dimension D = 50. Here we also
notice a deterioration of the results. The impact of the higher degree of sampling,
s = 50 and s = 100, on the performance of the DE is greater than for the MASA.

A detailed comparison between the presented algorithms will be given in the
next section.
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6.4 Algorithms Convergence Comparison

A convergence comparison of the DE and the MASA on non-noisy functions can be
seen in Figures 3–5, where the graphs show the mean performance of 30 runs for
each function.

Figure 3 shows the functions with D = 5. Here we do not notice any large
performance differences between the algorithms. The algorithms’ average returned
results and convergence are approximately the same. For higher dimensions, D = 25
(Figure 4) and D = 50 (Figure 5), we observe, with the exception of fRb, that the
MASA outperforms the DE.

The convergence comparison of the DE and the MASA on noisy functions with
D = 50 can be seen in Figures 6–8. For a higher degree of sampling, s = 50
(Figure 7) and s = 100 (Figure 8), we observe that the MASA outperforms the DE.
With the MASA one can see a cascading approach toward the optimal solution. The
reason for this is the constant number of function evaluations at each level.

6.5 Comparison to Other Ant Methods

As we mentioned in the introduction, there are few other adaptations of ACO al-
gorithm to real-parameter optimization. Here, the MASA is compared to results
presented by Socha [24]. In order to have comparable results, the same accuracy
level was chosen.

The results presented in Table 7 are based on 30 independent runs of the
MASA and show number of function evaluations to achieve the fixed accuracy
level. The experimental results show that the MASA (without local optimization)
has much higher convergence speed than that of CACO [1] and comparable with
eACO [24].

Test Function∗ D accuracy CACO CIAC eACO MASA

Sphere 6 10−4 22 050 50 000 695 361
Goldstein&Price 2 10−4 5 320 23 391 364 142
Rosenbrock 2 10−3 6 842 11 797 2 905 188
Zakharov 2 10−4 — — 401 448

∗ http://iridia.ulb.ac.be/∼ksocha/extaco04.html

Table 7. Comparison of average number of function evaluations until the accuracy is
reached

6.6 Algorithm Complexity

The algorithm’s complexity is estimated as suggested in [26] by calculating the

following formula T̂2−T1

T0
, where computing time T0 is independent of the function

dimension and is calculated by running the program below:
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Fig. 3. Average minimum of a) sphere, b) Griewangk, c) Rastrigin, d) Rosenbrock, e)

Krink, and f) negative Krink functions with D = 5
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Fig. 4. Average minimum of a) sphere, b) Griewangk, c) Rastrigin, d) Rosenbrock, e)

Krink, and f) negative Krink functions with D = 25
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Fig. 5. Average minimum of a) sphere, b) Griewangk, c) Rastrigin, d) Rosenbrock, e)

Krink, and f) negative Krink functions with D = 50
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Fig. 6. Average minimum of a) sphere, b) Griewangk, c) Rastrigin, d) Rosenbrock, e)

Krink, and f) negative Krink functions with s = 10 and D = 50
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Fig. 7. Average minimum of a) sphere, b) Griewangk, c) Rastrigin, d) Rosenbrock, e)

Krink, and f) negative Krink functions with s = 50 and D = 50
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Fig. 8. Average minimum of a) sphere, b) Griewangk, c) Rastrigin, d) Rosenbrock, e)

Krink, and f) negative Krink functions with s = 100 and D = 50
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for i = 1 to 1 000 000 do

x = (double) 5.55
x = x + x
x = x * x
x = sqrt(x)
x = ln(x)
x = exp(x)
y = x/x

endfor

T1 is the computing time for 200 000 evaluations just for function fRb and T̂2 is the
mean time of five executions, but now considering the complete computing time of
the algorithm for function fRb. The results presented in Table 8 show that MASA
has a higher complexity then the DE, but when dealing with real-world problems
this deficiency becomes insignificant compared to time needed to compute a single
evaluation of cost function [15].

Algorithm T0 [s] T1 [s] T̂2 [s] T̂2−T1

T0

MASA w/o LS 0.2 3.0 44.0 205

DE 0.2 3.0 6.0 15

Table 8. Algorithm complexity (function fRb, D = 50)

7 CONCLUSIONS

In this paper we presented a new method based on stigmergy for solving numerical
(multi-parameter) optimization problems. Stigmergy is a type of collective work
that can be observed in an ant colony.

We proposed a general approach for the translation of a multi-parameter problem
into a search graph representation. Each longest path in the search graph represents
one possible solution, and all longest paths together represent the whole solution
space of the multi-parameter problem. For an efficient search of the solution space
we used a multilevel approach. We call this method the Multilevel Ant Stigmergy
Algorithm.

We evaluated the performance of the Multilevel Ant Stigmergy Algorithm and
Differential Evolution in terms of their applicability as numerical optimization tech-
niques. The comparison is performed with several widely used benchmark func-
tions. It was determined that for lower-dimension functions the performance was
comparable, while for higher dimensions the Multilevel Ant Stigmergy Algorithm
outperformed Differential Evolution in all functions with the exception of one.

Since the optimization of noisy functions is a common problem occurring in
various applications we also evaluated the Multilevel Ant Stigmergy Algorithm and
Differential Evolution on noisy versions of the benchmark functions. For evaluation
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purposes we used three different degrees of sampling: low, middle, and high. We
observed that the impact of the higher degree on the performance of Differential
Evolution is greater than for the Multilevel Ant Stigmergy Algorithm.

Here we would like to mention that we used the Multilevel Ant Stigmergy Algo-
rithm in the computer-assisted design of a universal AC or DC motor rotor/stator
geometry [15]. The efficiency of an electric motor is defined as the ratio of the out-
put power to the input power and depends on various power losses. They include
copper and iron losses, which are significantly affected by the geometry of the rotor
and the stator. The optimization task is to find the geometry parameter values that
would generate the rotor and the stator geometry with minimum power losses. The
average solution obtained with the algorithm was 24.9% better than the solution
recently found using a genetic algorithm [20], and 44.3% better than the expert’s
solution currently in industrial production.

However, even if the Multilevel Ant Stigmergy Algorithm offers good quality
of solution, it still needs considerable computational time (due to time consuming
finite-element method simulation package that takes a couple of minutes per run).
With distributed implementation of the Multilevel Ant Stigmergy Algorithm the
computation time is drastically decreased (from one day to few hours) without any
noticeable loss in solution quality [23].

Following our industrial case studies [15, 16] we can conclude that the Multilevel
Ant Stigmergy Algorithm can be used on any real-world problem that can be put
into discrete form and have corresponding graph representation.
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