
Computing and Informatics, Vol. 28, 2009, 97–113

FUNCTIONAL TESTING OF PROCESSOR CORES
IN FPGA-BASED APPLICATIONS

Mariusz Wegrzyn, Franc Novak, Anton Biasizzo

Computer Systems Department
Jožef Stefan Institute
Jamova cesta 39
1000 Ljubljana, Slovenia
e-mail: {mariusz.wegrzyn, franc.novak, anton.biasizzo}@ijs.si

Michel Renovell

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
161 rue Ada
34392 Montpellier Cedex 5, France
e-mail: renovell@lirmm.fr

Manuscript received 13 November 2007; revised 5 May 2008

Communicated by Elena Gramatová

Abstract. Embedded processor cores, which are widely used in SRAM-based
FPGA applications, are candidates for SEU (Single Event Upset)-induced faults
and need to be tested occasionally during system exploitation. Verifying a proces-
sor core is a difficult task, due to its complexity and the lack of user knowledge about

the core-implementation details. In user applications, processor cores are normally
tested by executing some kind of functional test in which the individual processor’s
instructions are tested with a set of deterministic test patterns, and the results are
then compared with the stored reference values. For practical reasons the number
of test patterns and corresponding results is usually small, which inherently leads
to low fault coverage. In this paper we develop a concept that combines the whole
instruction-set test into a compact test sequence, which can then be repeated with
different input test patterns. This improves the fault coverage considerably with no
additional memory requirements.

98 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

Keywords: Built-in self-test, embedded processor core test, fault injection, fault

modelling, functional test, single-event upset

1 INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are becoming a widely accepted design
style for low- and medium-volume applications and represent a cost-effective alter-
native to traditional fixed-logic ASICs. Their low development costs and inherent
flexibility to change the function performed by the field reconfiguration have resulted
in a rapid growth of this technology.

Testing FPGAs requires different solutions to those applicable for ASICs. Pro-
grammable devices are composed of components such as complex logic blocks with
look-up tables (LUTs), multiplexers and flip-flops, embedded memories, and ded-
icated routing logic. Production-test techniques concentrate on testing the indi-
vidual types of functional blocks and their interconnections. The device is pro-
grammed with a number of test configurations and specific test stimuli are applied
for each test configuration. Since the time spent programming the device with each
configuration is several milliseconds, the goal is to test all the functional blocks
and routing resources with the minimum test configurations. Different approaches
have been proposed for testing FPGA logic blocks [10, 23, 25], FPGA routing re-
sources [7, 18, 21, 22] and detecting delay faults [1, 9]. Since FPGA circuit resources
are not normally 100 % occupied by the design, the defects located in some areas
of the chip that are not used by a particular design may be tolerated. Hence,
a strategy of testing the resources of an FPGA with respect to a specific design
to be implemented on it has been proposed. This type of test is referred to as
an application-oriented test [26, 27].

In this paper we focus on the application-oriented testing of embedded processor
cores implemented in SRAM-based FPGAs, which are relatively sensitive to Single
Event Effects (SEEs). SEEs occur when charged particles hit the silicon, transferring
enough energy to provoke a fault in the system. SEEs can manifest themselves as
permanent or transient faults. The transient effect, also called a Single Event Upset
(SEU), results in bit flips in the memory elements. A number of papers on SEU-
induced errors in microelectronic circuits have been published, among them [12, 13,
17, 19], and fault-tolerance techniques for SRAM-based FPGAs have recently been
published in a book by Kastensmidt et al. [11]. Our goal was to provide a compact
and efficient test solution that is suitable for built-in self-test implementations.

In the following we briefly review the main approaches to the software-based self-
testing of processor cores. Then we describe our approach based on a data-sensitive
path. The approach is illustrated by an experimental case study and evaluated by
simulating faults in the HDL (hardware description language) description of the
processor core. The achieved fault coverage is reported and compared with other
techniques, and in the final section we draw some conclusions.

Functional Testing of Processor Cores in FPGA-Based Applications 99

2 SOFTWARE-BASED TEST TECHNIQUES

FOR PROCESSOR CORES

The testing of a deeply embedded processor core with poor accessibility is nor-
mally based on a built-in self-test rather than on a conventional functional test with
an external ATE because of the communication bottleneck between the processor
core and the ATE. In this approach, both the generation of the test pattern and the
evaluation of the test results are performed by the processor under test.

Two main approaches to software-based self-testing have been reported: struc-
tural and functional. In a structural self-test [4], the test-pattern sequences are
developed for each processor component based on a gate-level netlist of the indi-
vidual core components. Since the gate-level details of processor cores are in most
cases not available to the designer, for reasons relating to the protection of intellec-
tual property, this imposes serious restrictions on the test’s application in practice.
A high-level structural self-test methodology [14, 15] tries to overcome this prob-
lem in the sense that it is based on knowledge of the Instruction Set Architecture
(ISA) of the processor and its Register Transfer (RT) level description. The RT level
description of the functional parts of the processor and their interconnections are
more likely to be available to users (although problems still remain in evaluating the
efficiency of the implemented self-test if the corresponding tools for fault simulation
are not provided for the target processor core).

In a functional self-test the processor cores are tested by executing a sequence
of instructions that exercise the functional behaviour of the processor. The design
of the functional self-test is related to a functional description of the processor’s in-
structions. In earlier implementations, individual processor’s instructions are tested
with a set of deterministic test patterns and the results are compared with the stored
reference values. For practical reasons the number of test patterns and the corre-
sponding number of results is usually small, which inherently leads to a low fault
coverage. In [24], random instruction sequences are generated for testing individual
instructions. Furthermore, the results are compressed by means of a signature anal-
yser incorporated in the functional test software. This approach can be applied both
to manufacture testing and post-manufacture self-testing. Its drawback during self-
testing is the excessively large size of the test code due to the use of a pseudorandom
strategy.

An alternative approach, called the instruction randomization self-test (IRST),
reported in [2], relies on pseudorandom operations and operands of instructions.
The instruction randomization is performed with dedicated hardware, which modi-
fies certain instruction fields such that the instruction remains meaningful and its
operands are randomly permutated. In this way the operation of the processor is
explored in many more situations, which increases the fault coverage. This approach,
however, suffers from the same drawback as in the previous case.

Recent approaches [3, 5, 6] perform the processor test with a compact sequence
of instructions, trying to achieve a high stuck-at fault coverage by the proper selec-
tion of instructions and instruction operands. In [5, 6] the test sequence is generated

100 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

by a genetic algorithm. In this approach the test-program generator produces test
programs by inducing an external instruction library that describes the syntax of
the microprocessor assembly language. The generator utilizes a fault simulator to
evaluate the generated test programs. The test-program generation and evaluation
are performed in consecutive steps of a genetic algorithm until the required fault
coverage is achieved. Different strategies for generating the test sequence for a tar-
get i8051 processor are reported in [5], with the stuck-at fault coverage varying from
about 36 to 91 %. In [6] the approach is generalized using the feedback informa-
tion from a simulator that makes possible an evaluation with respect to particular
coverage metrics. The reported case study is performed on a Sparc V8, a relatively
complex microprocessor with a five-stage pipelined architecture.

The above techniques primarily focus on efficient test-sequence generation. Their
integration into the self-test of an embedded processor core remains an open issue.

3 SENSITIVE-PATH APPROACH

3.1 Basic Principle

In our approach the goal is to generate a compact test sequence that detects per-
manent SEU-induced faults of embedded processor cores in SRAM-based FPGA
circuits. As described in [20], the functional model of such faults differs consider-
ably from the conventional stuck-at fault model due to the fact that SEU-induced
faults affect logic elements implemented by the look-up tables such that the logic
function is arbitrarily changed. While the existing fault simulators do not cover such
a functional fault model, we follow an implicit strategy of test adequacy and statisti-
cal testing [16]. As such we generate a test sequence that allows arbitrary situations
that might occur in practice and consequently detects faults that only appear in
a particular sequence of events. This is accomplished by using a test sequence that
explores the functionality of each individual instruction and is composed in such
a way that it forms a sensitive path, which can be executed more than once, each
time with a different input pattern.

Although we borrow the notion of a sensitive path from the automatic test-
pattern-generation (ATPG) techniques [8], in our case it has a slightly different
meaning. The path sensitization in conventional ATPG techniques for automatic
test generation involves the generation of a path that is sensitive to the presence of
a stuck-at fault and the justification of the values along the path by propagating
signals back to the primary inputs. In our case the fault detection is performed
at the instruction level by a compact test program in which individual processor
instructions are organised in a sequence such that the destination register operand
of instruction i represents the source register operand of instruction i + 1. In the
test sequence, each processor instruction participates at least once (in order to test
the instruction decoder of the processor core). Intuitively we assume that the test
sequence represents a sensitive path if the data flow through it is sensitive to changes
of the input pattern. We pursue the following two goals:

Functional Testing of Processor Cores in FPGA-Based Applications 101

• the faults occurring during the execution of individual instructions in the test
sequence should manifest themselves in the final result,

• the data-sensitive path should provide a way of randomizing the instruction
operands of the test sequence, resulting in increased processor activity and con-
sequently in increased fault coverage.

A data-sensitive path can be achieved by following the two basic principles of
design-for-testability: controllability and observability. Controllability is the ability
to set the values of the inputs of any system component from the primary inputs
of the system. Observability is the ability to observe the values of the outputs
of any system component at the primary outputs of the system. An instruction
of a test sequence can be regarded as a system component. The test sequence is
composed of individual instructions (i.e., system components), which act upon the
data stored in registers and memory cells. An instruction processes the input data
(i.e., the argument) and generates a result that represents the input data of the
next instruction in the test sequence. The input data of the first instruction of
the test sequence represents the system’s primary inputs, while the results of the
test sequence system are the primary outputs. The test sequence is composed in
an incremental way: each time a new instruction is added to the test sequence the
resulting test block is checked for controllability and observability.

3.2 Bijective Property

The controllability and observability principle is only a vague concept that leads
to different implementations of the test sequence with a relatively diverse fault
coverage. Instead of introducing some kind of metrics as a guideline to efficient
solutions, we impose a stricter rule on the test-sequence generation by requiring
that there is a one-to-one, i.e., bijective, correspondence between the input test
pattern and the result. If we apply this rule at the level of sub-sequences of the
instruction sequence we can ensure high controllability and observability within the
whole instruction sequence, which is a prerequisite for achieving high fault coverage.

3.3 Refinements

For some instructions the output data may not be completely sensitive to the changes
of input data and hence the property of a sensitive data path is not preserved. For
example, some part of the register holding the result of the instruction operation
may be cleared or set to all 1’s. Additional data manipulation needs to be performed
(i.e., the input data is stored at another location and logically combined with the
result of the executed instruction).

The execution of some instructions affects the status flags (like, for example, the
zero flag, carry, etc.) In order to detect possible faults in the status information, the
contents of the status register are included in the result of the currently executed

102 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

instruction. This is normally done by XORing the contents of the status register
and the resulting output data.

With such refinements the instruction and additional data manipulation code
represent a bijective block within the test sequence.

For illustration, a part of the test sequence organized in a data-sensitive path is
shown in Figure 1. The destination register operand of an instruction represents the
source register operand of the next instruction in the test sequence. Test sequence
is composed of bijective blocks. A bijective block can be a single instruction if it
exhibits bijective property. If not, some additional data manipulation is required to
obtain a bijective block.

Source

regis ter

operand

Source

register

operand

Dest inat ion

regis ter

operand

Source

regis ter

operand

Instruct ion i+2

Des tination

register

operand

Dest inat ion

regis ter

operand

Instruct ion i

Ins truct ion i+1

Additional data

manipulation

Bijec tive

block

Fig. 1. Test sequence organised in a data-sensitive path with k iterations

Functional Testing of Processor Cores in FPGA-Based Applications 103

3.4 BIST Implementation

A common test strategy aims at minimizing test time and test overhead. In our case
the two goals are to some extent contradictory, as will be shown in the following.

A general test situation can be described by:

• the set of faults F = {f1, f2, . . . , fm};

• the set of available binary tests T = {t1, t2, . . . , tn} where ti corresponds to the
execution of the test sequence with input test pattern i (1 ≤ i ≤ n);

• the set of results R = {r1, r2, . . . , rn} where ri is the result of the execution of
the test ti;

• the test matrix D describing test capabilities of tests T . Each test tj, 1 ≤ j ≤ n

is related to a binary test vector dj = [d0j, d1j , . . . , dmj]. The value dij = 1
denotes that test tj detects fault fi. Conversely, dij = 0 indicates that tj does
not detect fi. Binary test matrix D consists of test vectors D = [d1, d : 2, . . . , dn].
Its dimension is m × n.

The test strategy that minimizes test time is as follows:

begin

test−queue is empty;
remaining−faults is F ;
while remaining−faults is not empty

begin

determine the most hard-to-detect fault fi;
select test tj that detects fault fi;
put tj in the test−queue;
omit all faults detected by tj from remaining−faults;

end

end

The most hard-to-detect fault fi is determined from the test matrix D as the one
detected by the least number of tests. BIST implementation requires memory re-
sources for storing the resulting test queue (i.e., input test patterns), the instruction
test sequence and the test results.

Alternatively, the result of the previous execution of the test sequence can serve
as the input test pattern for the next execution of the test sequence. This is possible
if the consecutive results used as input test patterns form one or more cyclic groups.
The selection of the shortest test-pattern sequence of a cyclic group that achieves
maximum fault coverage is a difficult optimization problem, which we do not address
in this paper. Instead we accept a sub-optimal practical solution by selecting the
initial test pattern that detects the most hard-to-detect faults and execute the test
sequence with k subsequent test patterns striving to achieve the target fault coverage.

104 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

The test strategy that minimizes test resources is as follows:

begin

test−queue is empty;
remaining−faults is F ;
determine the most hard-to-detect fault fi;
select test tj that detects fault fi;
put tj in the test−queue;
omit all faults detected by tj from remaining−faults;
while remaining−faults is not empty

begin

put the result rj of the last test tj in the test−queue;
omit all faults detected by tj from remaining−faults;

end

end

Notice that the above algorithm assumes that it is possible to reach the maxi-
mum fault coverage with test patterns in a given cycle group. Hence only the initial
test pattern, the number of executions of the test sequence and the result are stored.
If this is not the case, test queue is extended over more than one cycle group, and
proportionally more input test patterns and test results need to be stored.

4 ILLUSTRATIVE CASE STUDY

When selecting the processor core for the case study, an important question to ask
is how will the developed solution actually be evaluated? In order to determine
the fault coverage of SEU-induced faults some means of fault injection must be
provided. As an alternative to the statistics-based radiation tests we are looking for
a simulation-based solution. Simulation-based fault injection is made difficult by the
lack of commercial tools that would allow the user to alter the FPGA configuration
once it is translated from the HDL source into the target FPGA platform. However,
one possible solution is to use the debug option to insert faults during the test
program’s execution. This approach is general (i.e., it can be applied for different
processor cores), but it also has some limitations and requires rather a lot of manual
interference. Alternatively, the HDL description can be used to model the system
and simulate its performance as well as the faults within the system.

We evaluated our approach on a Xilinx PicoBlaze processor core for which the
low-level HDL source code is available. The Xilinx PicoBlaze processor is a small
8-bit microprocessor, used mainly for training purposes. It has 1K of program space,
16 8-bit registers, 256 input and 256 output ports, a 64-byte internal scratchpad
RAM and a 31-location stack. Since the Xilinx PicoBlaze processor core is designed
for FPGA implementation its HDL description consists of low-level FPGA functional
blocks that are directly mapped to the FPGA resources. The behaviour of the
system can be viably simulated on any HDL simulator supplied with Xilinx library

Functional Testing of Processor Cores in FPGA-Based Applications 105

primitives. On the other hand, this low-level HDL description allows us to inject
faults and simulate the system responses relatively easily.

4.1 Assumed Fault Modelling and Details of the Fault-Injection Process

The PicoBlaze processor core was mapped into a Virtex family FPGA from Xilinx.
The Virtex’s architecture consists of a regular structure of tiles of configurable logic
blocks (CLB) surrounded by programmable input/output blocks and routing re-
sources. The tile of a configurable logic block is composed of CLB slices, three-state
buffers, input and output multiplexers and a routing matrix. A CLB slice consists
of LUTs, flip-flops and multiplexers. A LUT is merely a static random-access me-
mory that makes it possible to implement individual combinatorial functions. When
programming the FPGA, the configuration memory cells associated with individual
LUTs, flip-flops, CLB configuration cells and interconnections are loaded. In a given
programmed configuration, the LUT’s contents implement the target-function truth
table.

Although the single upset event (SEU) is a transient effect it can manifest it-
self as a permanent fault in a SRAM-based FPGA. This is due to the fact that
the majority of the FPGA SRAM is used for the FPGA configuration matrix and
a single-bit flip in the configuration matrix can modify the FPGA’s functionality. All
the bits in the configuration memory cells described above are potentially sensitive
to SEU-induced faults.

or_LUT1: LUT3

 generic map (INIT => X"FE")

 port map(I0 => logical_result(1),

 I1 => arith_result(1),

or_LUT1: LUT3

 generic map (INIT => X"7E")

 port map(I0 => logical_result(1),

 I1 => arith_result(1),

a) b)

Fault-Free LUT MSB bit of LUT is changed

I2 I1 I0 O I2 I1 I0 O

0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 1 0 1 1 1
1 0 0 1 1 0 0 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 0

c) d)

Fig. 2. a) HDL description of fault-free three-input OR gate, b) most significant bit of the
LUT is changed (X′′FE′′ → X′′7E′′)

The faults in an HDL description of a system are modelled by modifying the
individual functional blocks. For each functional block an HDL model describing

106 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

the behaviour of SEU-induced faults is developed. The HDL model should actually
reflect the change of configuration as a consequence of the SEU effect. The same sys-
tem can be described in HDL in a number of different ways. The two extreme cases
are high-level algorithmic descriptions (irrespective of the target system’s struc-
ture) and RTL (register transfer logic), a level description in which functionality
is described at the level of operations among the actual system components (i.e.,
registers). A high-level description of a core does not provide enough details for
realistic HDL modelling of the SEU-induced faults. On the other hand, soft pro-
cessors like the Xilinx PicoBlaze are developed for FPGA implementation. Their
HDL descriptions reflect the FPGA structure in order to efficiently use the FPGA
resources that allow precise modelling of the faults and their automated fault in-
jection. The basic HDL entities in a description of the Xilinx PicoBlaze processor
core are RAMs, LUTs, multiplexers and flip-flops. SEU-induced faults can alter the
contents of RAMs, LUTs or flip-flops or they can modify the connections between
these functional blocks. Our goal is to detect permanent faults in the configuration
of the processor core. RAM and flip-flop content changes are of a transient na-
ture and can be modified (i.e., restored to a fault-free value) during normal system
operation. These faults are detected with an online functional test, specific to the
target application and hence not the subject of this investigation. An example of
a modelled fault is shown in Figure 2. The HDL description of a LUT implementing
a three-input OR gate is shown in Figure 2 a) and the corresponding truth table, in
Figure 2 c). The implemented logic function is defined by the initialization parame-
ter (INIT). The SEU-induced fault of a LUT typically manifests itself as a change
of one bit of the LUT, thus modifying the Boolean function it implements. Let us
assume that the most significant bit of the LUT has been changed, as shown in
Figure 2 d). The fault can be modelled by changing the initialization parameter
(INIT), as shown in Figure 2 b).

In a similar way the stuck-at faults at the LUT inputs as well as the stuck-at
faults at the LUT output can also be modelled by modifying the contents of the LUT
configuration. An example of a stuck-at-0 fault of input I2 is depicted in Figure 3.
The contents of the LUT in Figure 3(a) are changed by initializing the parameter
(INIT), as shown in Figure 3 b). The truth tables corresponding to the fault-free
LUT and the stuck-at-0 fault of input I2 are shown in Figures 3 c) and d).

The fault injection was implemented in two steps:

• a description of the faults,

• an HDL simulation of the system with generated faults.

The generation of the fault descriptions was implemented as a perl script. All
the instances of the LUT functional blocks are located in the HDL description of the
processor core. For each LUT instance its initialization parameter is investigated
and the list of the initialization parameters describing all the SEU-induced faults as
well as all the stuck-at faults at the LUT inputs and output is generated. For some
LUT instances it is possible that a single bit change of a LUT content manifests

Functional Testing of Processor Cores in FPGA-Based Applications 107

or_LUT1: LUT3
 generic map (INIT => X"FE")
 port map(I0 => logical_result(1),
 I1 => arith_result(1),
 I2 => shift_result(1),
 O => alu_group(1));

or_LUT1: LUT3
 generic map (INIT => X"EE")
 port map(I0 => logical_result(1),
 I1 => arith_result(1),
 I2 => shift_result(1),
 O => alu_group(1));

a) b)

Fault-Free LUT I2 stack-at-0

I2 I1 I0 O I2 I1 I0 O

0 0 0 0

0 0 0 0

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 1 0 1 1 1
1 0 0 1 1 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

 X"FE" X"EE"

c) d)

Fig. 3. a) HDL description of fault-free three-input OR gate, b) input I2 stuck-at 0 fault

(X′′FE′′ → X′′EE′′)

itself as a stuck-at fault. In such a case a duplicated stuck-at fault description is
omitted. During fault simulation the generated “faulty” initialization parameters
were applied one by one to the HDL description of the Xilinx PicoBlaze processor
core. A modified HDL description was used, running the test sequence with different
input patterns and the results were recorded for a later offline evaluation. A Cadence
NC VHDL simulator running on a Sun Fire V240 server was used for the HDL
simulation. The number of injected faults was 1954 and the simulation time for the
total 256 input patterns was about 5 hours.

4.2 Implementation of the PicoBlaze Processor Core Test

A test sequence following the principles described in Section 3 was implemented
and executed for all possible input test patterns. In an early phase, an analysis of
the results showed that the sequence is not completely bijective. By re-running the
test sequence and analysing the data at selected points within the data path we
spotted the non-bijective sub-parts and modified them. For an illustration consider
the subsequence related to the test of the Shift Right Arithmetic (SRA) instruction
shown in Figure 4. Since the least significant bit (LSB) of the register is shifted out
to the carry flag and at the same time the carry flag is shifted in, the most significant
bit (MSB) of the register, the SRA instruction, alone does not preserve the bijective
transformation and is dependent on the previous value of the carry flag. In order to
implement a bijective transformation the carry flag is initialized to the value of the
4th bit of the register, and after the shift operation the “escaped” bit captured in

108 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

the carry flag is combined with the value of the shifted register, thus restoring the
original value of the register.

SRA_TEST : test sc, 10 ; set carry flag to 4th bit of SC reg.
 sra sc ; shift right arithmetic SC register
 addcy sf, 0 ; restore LSB bit of initial register
 xor sc, sf ; combining restored LSB bit with
 ; shifted value without loss of
 ; information into SC register.
 ; (initial value can be restored)

Fig. 4. Test of Shift Right Arithmetic (SRA) instruction

4.3 Experimental Results

For a comparison of the achieved fault coverage, some other programs that exploit
the functionality of the processor core (like in [5]) have been implemented. The
results are given in Table 1.

Test program fibonacci is a conventional implementation of Fibonacci series,
while fibonacci (recursion) is a recursive version which exploits some additional re-
sources (i.e., stack) as can be seen from the increased fault coverage. Both test
programs have low fault coverage because they do not explore the complete set of
processor instructions. Test program random instruction order includes the com-
plete instruction set but controllability and observability have not been respected in
individual implementation steps. The last two test programs are composed following
the data sensitive path approach. In the first, the test sequence was composed in
ad hoc way, while in the last bijective property was strictly respected.

test program Stuck-at faults complete list

934 faults 883 faults 1932 faults 1730 faults

fibonacci 49.9 52.8 33.8 37.7
fibonacci (recursion) 56.0 59.2 43.3 48.4

random instruction order 62.7 66.4 46.8 52.3
data sensitive path (not completely bijective) 72.6 76.8 62.9 70.2
data sensitive path + bijective sub-sequences 88.1 93.2 76.6 85.6

Table 1. Fault coverage (%)

The achieved fault coverage is presented in two column pairs. The first column
pair refers to the fault coverage where only stuck-at faults were injected. The second
column pair presents the complete fault coverage with both stuck-at faults and
functional faults in the LUTs. For each pair, the left-hand column refers to all the
simulated faults (i.e., 934 in the case of the stuck-at faults and 1932 in the case of the
stuck-at faults and the functional faults in the LUTs). The test sequence does not
test some specific types of faults related to input/output operations (e.g., interrupt
driven routines). If we neglect these faults, the fault coverage of the remaining faults

Functional Testing of Processor Cores in FPGA-Based Applications 109

(i.e., 836 in the case of the stuck-at faults and 1730 in the case of the stuck-at faults
and the functional faults in the LUTs) is given in the right-hand column.

The fault coverage for the stuck-at faults is given only for a comparison with
other reported solutions. The main interest is focused on the fault coverage of the
complete list of the injected faults. The initially achieved fault coverage for the
proposed approach was 76.6 %. If we neglect the faults related to the input/output
operations we get an 85.6 % fault coverage. An analysis of the remaining 14.4 % of
the faults that were not detected showed that 4.8 % corresponded to specific fault
situations – their detection requires specific values loaded in given registers plus
specific values of status flags (i.e., zero result, carry) as a result of the execution of
previous instructions. Such faults are difficult to detect with the automatic genera-
tion of functional tests. In our case we managed to detect half of them by simply
interchanging the order of the sub-sequences, the other half required a manual mo-
dification of the test sequence. A total of 5.2 % of the faults proved to be due to the
redundancy of the implemented logic blocks of the processor core. The remaining
4.4 % require an in-depth analysis and are still the subject of an investigation.

64
66

68

70

72

74

76

78
80

82

84

86

88

103 187 58 127 88 252 153 111 79 21 199 41 136 133 72 191 237 263

Input test patterns

F
a
u

lt
c
o
v
e

ra
g

e
(%

)

Fig. 5. Achieved fault coverage during the repeated runs of a test sequence

Comparison of the achieved fault coverage among different test programs ex-
hibits the same trends as in [5]. There is, however, a substantial difference in
modelled faults: in addition to the conventional stuck-at model we also include
functional faults which are more difficult to detect.

As described in Section 3, the test sequence in our approach can be executed with
different test strategies. An example of test strategy that minimizes test resources
is shown in Figure 5. Running the test sequence with the initial input test pattern
103 gives a 68.8 % fault coverage. Repeating the test sequence with the resulting
test pattern 187 increases the fault coverage to 79.9 %. In the next step, with the
resulting pattern 058, the fault coverage increases to 82.7 %, etc. In this particular
case 18 runs of the test sequence were required to reach the 85.6 % fault coverage.

110 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

5 CONCLUSIONS

Our proposed approach of functionally testing processor cores produces compact
test sequences that are suitable for built-in self-test implementations. The test
sequence, organised in a sensitive data path, can be repeated several times, each
time with a different input test pattern, which increases the probability of detecting
faults. A relatively high initial fault coverage can be obtained if the bijective rule
is applied at the level of sub-sequences of the instruction sequence. In some cases,
fault coverage can be improved by interchanging the order of the sub-sequences. The
concept of a data-sensitive path with a bijective property can be formalised, which
opens up the possibility of an automatic test-sequence generation. This remains
the subject of our future work. Modelling the faults in an HDL description and the
corresponding fault-injection process is another issue that can be further elaborated.
In particular, a well-structured HDL description allows an algorithmic identification
of the parts of the code that, when properly modified, model SEU-induced faults.
Again, the fault-injection process can be made automatic for individual classes of
faults. An evaluation case study of a functional test for the PicoBlaze processor
core was performed on a generalised fault model, including both stuck-at faults and
functional faults in LUTs, which are more difficult to detect. The achieved fault
coverage confirms the efficiency of the proposed approach.

Acknowledgements

This work was partially supported by the French-Slovenian bilateral project, con-
tract number BI-FR07-PROTEUS-016.

REFERENCES

[1] Abramovici, M.—Stroud, C.: BIST-based delay fault testing in FPGAs. In Pro-
ceedings of the 8th IEEE International On-Line Testing Workshop, pp. 131–134,
2002.

[2] Batcher, K.—Papachristou, C.: Instruction Randomization Self Test for Pro-
cessor Cores. In Proceedings of the 17th IEEE VLSI Test Symposium, pp. 34–40,
1999.

[3] Chen, L.—Dey, S.: DEFUSE: A Deterministic Functional Self-Test Methodology
for Processors. In Proceedings of the 18th IEEE VLSI Test Symposium, pp. 255–262,

2000.

[4] Chen, L.—Dey, S.: Software-Based Self-Testing Methodology for Processor Cores.
IEEE Transactions on CAD of Integrated Circuits and Systems, Vol. 20, 2001, No. 3,
pp. 369–380.

[5] Corno, F.—Cumani, G.—Sonza Reorda, M.—Squillero, G.: Fully Auto-
matic Test Program Generation for Microprocessor Cores. In Proceedings of the De-
sign Automation & Test in Europe Conference, pp. 1006–1011, 2003.

Functional Testing of Processor Cores in FPGA-Based Applications 111

[6] Corno, F.—Sanches, E.—Sonza Reorda, M.—Squillero, G.: Automatic

Test Program Generation: A Case Study. IEEE Design and Test of Computers,
Vol. 21, 2004, No. 2, pp. 102–109.

[7] Doumar, A.—Ito, H.: Testing the logic cells and interconnect resources for FPGAs.

In Proceedings of the 8th Asian Test Symposium, pp. 369–374, 1999.

[8] Eldred, R.D.: Test Routines Based on Symbolic Logical Statements. Journal of
the ACM, Vol. 6, 1959, No. 1, pp. 33–37.

[9] Harris, I.—Menon, P.—Tessier, R.: BIST-Based Delay Path Testing in FPGA
Architectures. In Proceedings of the International Test Conference, pp. 932–938, 2001.

[10] Huang W.—Lombardi, F.: An Approach to Testing Programmable/Configurable
Field Programmable Gate Arrays. In Proceedings of the 14th IEEE VLSI Test Sym-
posium, pp. 450–455, 1996.

[11] Kastensmidt, F. L.—Carro, L.—Reis, R.: Fault-Tolerance Techniques for
SRAM-based FPGAs. Frontiers in Electronic Testing. Springer, 2006.

[12] Katz, R.—LaBel, K.—Wang, J. J.—Cronquist, B.—Koga, R.— Penzin,

S.—Swift, G.: Radiation Effects on Current Field Programmable Technologies.
IEEE Transactions on Nuclear Science, Vol. 44, 1997, No. 6, pp. 1945–1956.

[13] Katz, R.—Wang, J. J.—Reed, R.—Kleyner, I.—D’Ordine, M.—

McCollum, J.—Cronquist, B.—Howard, J.: The Effects of Architecture and
Process on the Hardness of Programmable Technologies. IEEE Transactions on Nu-
clear Science, Vol. 46, 1999, No. 6, pp. 1736–1743.

[14] Kranitis, N.—Gizopoulos, D.—Paschalis, A.—Zorian, Y.: Instruction-
Based Self-Testing of Processor Cores. In Proceedings of the 20th IEEE VLSI Test
Symposium, pp. 223–228, 2002.

[15] Kranitis, N.—Paschalis, A.—Gizopoulos, D.—Zorian, Y.: Effective Soft-
ware Self-Test Methodology for Processor Cores. In Proceedings of the Design Au-
tomation & Test in Europe Conference, pp. 592–597, 2002.

[16] Kuball, S.—May, J.: Test-Adequacy and Statistical Testing: Combining Different
Properties of a Test-Set. In Proceedings of the 15th International Symposium on
Software Reliability Engineering, pp. 161–172, 2004.

[17] May, T.C.—Woods, M. H.: Alpha-Particle-Induced Soft Errors in Dynamic Memo-
ries. IEEE Transaction on Electron Devices, Vol. 26, 1979, No. 1, pp. 2–9.

[18] Michinishi, H.—Yokohira, T.—Okamoto, T.: A Test Methodology for Inter-
connect Structures of LUT-Based FPGAs. In Proceedings of the 5th Asian Test Sym-
posium, pp. 68–74, 1996.

[19] Petersen, E. L.—Shapiro, P.—Adams, J.H.—Burke, E. A.: Calculation of
Cosmic-Ray Induced Soft Upsets and Scaling in VLSI Devices. IEEE Transactions
on Nuclear Science, Vol. 29, 1982, No. 6, pp. 2055–2063.

[20] Rebaudengo, M.—Sonza Reorda, M.—Violante, M.: A New Functional
Model for Fpga Application-Oriented Testing. In Proceedings of the IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 372–380,
2002.

112 M. Wegrzyn, F. Novak, A. Biasizzo, M. Renovell

[21] Renovell, M.—Figueras, J.—Zorian, Y.: Test of RAM-Based FPGA: Metho-

dology and Application to Interconnect. In Proceedings of the 15th IEEE VLSI Test
Symposium, pp. 230–237, 1997.

[22] Renovell, M.—Portal, J.—Figueras, J.—Zorian, Y.: Testing the Intercon-

nect of RAM-Based FPGAs. IEEE Design and Test of Computers, Vol. 15, 1998,
No. 1, pp. 45–50.

[23] Renovell, M.—Zorian, Y.: Different Experiments in Test Generation for XILINX

FPGAs. In Proceedings of the International Test Conference, pp. 854–862, 2000.

[24] Shen, J.—Abraham, J.A.: Native Mode Functional Test Generation for Proces-
sors with Applications to Self Test and Design Validation. In Proceedings of the
International Test Conference, pp. 990–999, 1998.

[25] Stroud, C.—Konala, S.—Ping C.—Abramovici, M.: Built-in Self-Test of
Logic Blocks in FPGAs (Finally, a Free Lunch: BIST without Overhead). In Pro-
ceedings of the 14th IEEE VLSI Test Symposium, pp. 387–392, 1996.

[26] Tahoori, M.B.: Application-Specific Bridging Fault Testing of FPGAs. Journal of
Electronic Testing, Theory, and Application, Vol. 20, 2004, No. 3, pp. 279–289.

[27] Tahoori, M.B.—McCluskey, E. J.—Renovell, M.—Faure, P.: A Multi-
Configuration Strategy for an Application Dependent Testing of FPGAs. In Pro-
ceedings of the 22nd IEEE VLSI Test Symposium, pp. 154–159, 2004.

Mariusz Wegrzyn gained M. Sc. degree at the Faculty of Elec-

tronics, Computer Science&Telecommunications, Technical
University of Gdansk in 2002 and he is now finishing his Ph. D.
degree at Jožef Stefan Institute, Ljubljana.

Franc Novak is Head of the Computer Systems Department

at the Jozef Stefan Institute, Ljubljana, and associate professor
at the Faculty of Electrical Engineering and Computer Science,
University of Maribor. His research interests are in the areas of
electronic testing and diagnosis, fault-tolerant computing, and
design for testability. He has an M. Sc. (1977) and a Ph. D.
(1988) in electrical engineering, both from the University of
Ljubljana.

Functional Testing of Processor Cores in FPGA-Based Applications 113

Anton Biasizzo is a researcher at Jožef Stefan Institute since

1991. He received Ph.D. degree from the University in Ljubljana
in 1998. His research interests include efficient algorithms for
sequential diagnosis, constraint logic programming, model based
diagnosis and automatic test pattern generation.

Michel Renovell received his Ph.D. degree in applied physics

in 1986 from the University of Montpellier, France. He joined
the Laboratory of Computer Science, Automation and Micro-
electronics of Montpellier (LIRMM) in 1986 where he served
as Head of the Microelectronics team from 2000 to 2005. He
is currently Associate-Director of the ST2I department at the
CNRS (Centre National de la Recherche Scientifique) headquar-
ters managing more than 200 French labs. He is member of the
editorial board of JETTA, IEEE Design& Test and VLSI Jour-
nal. His research interests include defect-oriented testing, analog
testing and FPGA testing.

