
Computing and Informatics, Vol. 27, 2008, 199–211

INTERACTIVE TECHNIQUES IN GRID COMPUTING:
A SURVEY

Herbert Rosmanith, Jens Volkert

GUP Linz
Johannes Kepler University Linz
Altenbergerstrasse 69
A-404 Linz, Austria/Europe
e-mail: hr@uni-linz.ac.at

Abstract. In Grid computing, the dominating paradigm is batch processing. Grid
middleware ships with batch-job support only, while lacking support for interactive
applications. The reason is that grid middleware was developed for compute inten-
sive jobs, which may run for a long time before a result becomes available. This
leads to a “post-mortem” approach of analysing the output, possibly resulting in
a waste of computing and research time. Adding the possibility to observe and steer
the job during execution enables the researcher to modify job-parameters without
restarting the entire job. In this paper, several interactivity support techniques are
explored, followed by several examples proving their usefulness.

Keywords: Grid computing, interactivity, steering, visualisation

1 INTRODUCTION

In this section, the area of Grid computing is introduced first, followed by an intro-
duction of interactivity. Section 2 presents various techniques to gain interactivity in
Grid computing, then Section 3 deals with related work. Finally, Section 4 describes
projects making use of the techniques presented herein, which have been successfully
implemented in the past.



200 H. Rosmanith, J. Volkert

1.1 Grid Computing

Grid computing, introduced in 1998, is concerned with resource sharing, such as
processing power and storage capacity, done in a coordinated way by “virtual or-
ganisations”. The definition in [1] precisely describes the sharing and how it is
controlled by the virtual organisations:

The sharing that we are concerned with is not primarily file exchange but
rather direct access to computers, software, data, and other resources, as is
required by a range of collaborative problem-solving and resource-brokering
strategies emerging in industry, science, and engineering. This sharing is,
necessarily, highly controlled, with resource providers and consumers defining
clearly and carefully just what is shared, who is allowed to share, and the con-
ditions under which sharing occurs. A set of individuals and/or institutions
defined by such sharing rules form what we call a virtual organisation.

Similar systems such as cluster computing and distributed computing can not be
considered Grid computing. In cluster computing, the resources are usually owned
and controlled by one central authority, there is no virtual organisation defining
sharing rules. Distributed computing differs from Grid computing in that tasks run
by distributed computing usually execute on idle workstations primarily used for
other tasks, while, in contrast, Grid computing leans to dedicated systems.

One of the largest users of Grid technology is CERN. CERN created the Large
Hadron Collider Grid (LHC Grid, LCG) to cope with 15 petabytes per year, which
is expected to be produced by the LHC in Geneva. In 2004, the LCG spawned the
EGEE-project (Enabling Grids for E-sciencE). The task of EGEE is to allocate re-
sources, user-groups and applications from all over the world, to establish the largest
production quality Grid. In parallel, development of the “gLite” [2] middleware was
started, which is based upon the Globus Toolkit [3] and consists of more than 200
software packages.

The development of this middleware was done by CERN and for the needs of
CERN. This means storing and processing huge amount of data, leading to long-
term jobs which a typical physicist at CERN is interested in. Physical simulations
can easily take days, weeks or even months to finish. In a multi-user environment
this leads to the development of a computing environment in which jobs are put
into a queue and processed one after another. The output of the job can only be
analysed when the job is done. These are the typical characteristics of a batch-job
environment. In such an environment, it is not possible to examine intermediate
results or even intervene to change the job’s parameters. This can, at worst, lead
to a waste of valuable research time and to a waste of resources. We address this
problem by adding interactivity to middleware.



Interactive Techniques in Grid Computing: A Survey 201

1.2 Interactivity

In [4], J. C. R. Licklider talks about a symbiosis of man and machine: “Man-Com-
puter symbiosis is an expected development in cooperative interaction between men
and electronic computers.” Quoting Webster’s Dictionary, he understands that sym-
biosis means “living together in intimate association, or even close union, of two
dissimilar organisms”. In saying this, Licklider assigns the same significance as that
of an organism to a machine.

The same trend can be observed in early Artificial Intelligence (AI). In 1970,
Marvin Minsky predicted that in about three to eight years, computers will be as
intelligent as the average human being. Working with such machines would then not
simply mean using a computer. Working with a human like, intelligent computer
would rather mean: social interactions. This way, a term which originally was coined
in sociology [5] turned to become a well-known term of computer science.

One of the first projects leading to improvments in interactive computing was
the cold war project SAGE (Semi-Automatic Grounding Environment) [6], on which
Licklider worked, too. SAGE task was to detect and intercept hostile enemy air-
planes, preferably bombers from the former Soviet Union. Since the users of SAGE
were common soldiers, a complex man-machine interface has been developed for the
first time, resulting in a system to display text and graphical drawings, using a light
gun (a predecessor of the light-pen) to interact with SAGE.

Barely ten years later Sketchpad [7] appears. It was developed 1961 to 1963 as
part of the Ph. D. thesis of Ivan Sutherland at MIT. Sketchpad was already using
a lightpen and a cathode-ray-tube (CRT) and thus can be seen as a first step towards
interactively working with computers.

Nevertheless, the title “father of interactivity” has been assigned to Douglas
Engelbart. In December 1968, he presented the first computer mouse to the public
in a conference in San Francisco. The body was carved out of wood, and it had only
one button, because there was no room for more. Using two right-angledly mounted
wheels, the movement of the mouse was tracked and its position reconstructed by
the computer.

Despite this early success in the research laboratories yet about twenty years had
to pass until interactivity was accepted in the public. The majority of computer work
in these days happened to take place in computing centres: Halls filled with noisy,
cabinet-sized systems from IBM and other companies. Data and source code were
recorded on punch cards, and given to an operator to feed them into the computer
system. As an undergraduate computer-science student, one usually had to wait
a whole day in order to get the output of an exercise program. Home-computers
such as the Apple-II (1977), the VC-64 (1982) from Commodore, the Sinclair ZX
Spectrum (1982), the IBM PC (1981), the Macintosh (1984) appeared ten to fifteen
years later. These early systems could not compete with the computing and storage
capacities of the computing centres. Microsoft’s mission statement: “A PC on every
desk and in every home” is by no means only a for-profit maxim, but attests to
a time when computers were not as omnipresent as they are today.



202 H. Rosmanith, J. Volkert

Thanks to the advancements made in computer technology, personal computers
began to spread, replacing established systems and finally changed the way humans
work with computers.

It is ironic that the descendants of the early slow PCs, which heralded the
“interactive evolution” in computing, now service probably in the same halls of
the computing centres of that time in the form of super computers, and, by being
operated with non-interactive Grid middleware, exhibit the same shortcomings as
the systems which they replaced.

2 INTERACTIVITY AND THE GRID

In most of current Grid middleware, two important properties of interactivity are
missing: bidirectional data flow and event based data processing.

In interactive programs, data flows from and to the user as the program executes.
This allows users to control and steer the program by sending new data using input
devices such as keyboard, mouse, position trackers, video cameras and the like. In
Grid middleware, input data can not be provided to programs interactively; instead,
the whole input data set has to be available before the program starts to execute.

To interact with a computer system in a convenient way, messages to and from
the system have to be exchanged at a speed fast enough to satisfy the problem’s
requirements. For instance, pressing the button of a graphical user interface should
result in processing and confirmation by the program almost instantly. GUIs im-
plement this feature by performing user centered, event based processing. Grid
middleware, on the other hand, polls for the advent of new data. Since the mid-
dleware was not designed with interactivity in mind, the polling interval is set to
a relatively high value, thus reducing system load, but also leading to slow notifica-
tion times.

Examining the so-called interactive job manager of the Globus Toolkit reveals
that it lacks the above mentioned features. This can be checked by running a simple
test program, such as incrementally counting from zero to infinity, pausing for one
second each increment. Starting this program with the interactive job manager
(also called jobmanager-fork) in the Grid shows the following behaviour: for about
ten seconds, nothing is displayed at the terminal. Then, the numbers from zero to
nine appear all of a sudden. This behaviour results from polling for data instead of
performing event based data transport.

Checking whether a user can send data to a Grid job (while it is running) can be
done by examining the job’s file descriptors. On a Linux system, the proc-filesystem
holds the necessary information. It can be seen that by default, the input file
descriptor zero (stdin) is connected to the null-device, /dev/null, thus disabling any
input to the Grid job. Even specifying an input location using the stdin-keyword in
the Resource Specification Language (RSL) when submitting a job to the Grid does
not lead to success: this input data set is read in as a whole by the middleware and
put into the GASS-cache [8] before the jobs starts.



Interactive Techniques in Grid Computing: A Survey 203

Conclusion: In order to add interactivity to the Grid, a fast and bidirectional way
to enable communication between the Grid job and the user’s interface is required.
In the following, various methods how interactivity in Grid computing has been
achieved are presented.

2.1 Glogin for GT2

In the Globus Toolkit version 2 (GT2), a client (such as globusrun) connects to the
globus-gatekeeper and requests the execution of a job by passing a job description,
specified by various keywords in RSL. The globus-gatekeeper delegates this task to
the Globus job manager. When using the “interactive” job manager, jobmanager-
fork, a unidirectional connection from the job manager to the client is present.
Therefore, it was first explored whether it is possible to reuse this connection. This
was not the case, because this connection always remains associated to the job
manager. Consequently, interactivity in GT2 can only be achieved by establishing
a separate connection.

A demand for a solution has been that Grid middleware must not be modi-
fied. This resulted in the development of a lightweight tool called glogin [9], which
executes on top of Globus, requiring no changes to the middleware whatsoever. glo-
gin implements pseudo terminals (PTY), allowing shell access to grid nodes, I/O
interception of standard input, output and error file descriptors, TCP and X11 for-
warding. To accomplish this, a lightweight protocol (called the GSH-protocol) has
been defined and implemented in glogin.

How does glogin work? Just like globusrun, glogin contacts the globus-gatekeeper,
but instead of specifying an arbitrary command to execute, glogin requests execu-
tion of a remote copy of itself. Prior to submitting, the local glogin allocates a TCP
port and stores the address in the RSL. When the remote glogin starts executing,
it obtains the TCP address from its parameter list. Additionally, the remote glogin
allocates another TCP port and writes the address to its output file descriptor. The
local glogin receives the output sent by the remote process. Now, both instances of
glogin try to establish a connection to each other. By using two connections, the
probability of successful connection establishment increases. The connection estab-
lished first remains, while the second connection is discarded. The remote glogin
now executes the command the user specified (or the login shell, if the parameter is
omitted) and intercepts its I/O. Data from the command is transported securely by
using the GSS-API [10, 11]. The local glogin receives all the input from the user,
for instance, from the terminal it is connected to and securely sends it to remote
glogin, which in turn sends the user input to the specified user command executing
in the Grid. This way, a secure, interactive date transport between both processes
is formed.

To speed up the transmission of the information about the remotely allocated
TCP port, remote glogin has to flush the GASS-cache; otherwise, the connection
establishment is delayed for ten seconds, the duration of the polling interval. One
method to flush the cache is to fork a child process fast enough (within two seconds)



204 H. Rosmanith, J. Volkert

and then terminate the parent process, with the child process continuing process-
ing.

2.2 An Interactive Job-Manager for GT2

In contrast to the glogin tool described above, this section describes a solution which
is part of the Grid middleware. Analysing how jobs are started on the Grid led to
the finding that implementing a separate job manager [12] is the best way to provide
interactivity in the desired manner.

The reason why glogin creates a separate communication channel is the presence
of the job manager, which can not not release the initial connection created by the
client. Since now a separate job manager is designed, the question arises whether
it is possible to reuse the initial connection this time. It turned out that the exist-
ing connections are still in use for sending and receiving job status requests/replies.
Again, a separate connection is required for interactive data exchange. The connec-
tion is established such that an arbitrary client creates a TCP listener, while the job
manager connects back to the client. When submitting a job to the interactive job
manager, a parameter describing where to connect back is passed to the interactive
job manager. This has been utilised by expanding the RSL, allowing to specify an
interactive attribute:

(interactive=proto://host<:port>)

The interactive job manager supports a subset of the RSL only. Attributes not
supported are ignored and throw a warning message. The following attributes are
recognised:

executable, arguments, count, interactive, jobtype,

directory, environment

The Interactive job manager supports MPI and multiple jobs.

2.3 The Interactive Job-Manager for GT4 in GT2 Compatibility Mode

In 2004, GT2 was replaced by the Globus Toolkit 4 (GT4). GT4 offers Web Ser-
vice [13] based job submission instead of the previous, pre-Web service protocol. To
ease the transition from GT2, GT4 still offers pre-Web service support to be built.
Today, pre-Web services are still in use on many sites using GT4 middleware. In
GT4, the previous IO layer was replaced by an “extended IO” (Globus-XIO) layer,
the IO interface used before was implemented by adding a compatibility layer. Un-
fortunately, this layer does not support the way the interactive job manager (see
above) needs to access relevant data: the type definition globus io handle t does
not contain a file descriptor entry any more. Instead, globus xio handle cntl() and
globus xio server cntl(), requesting GLOBUS XIO TCP GET HANDLE have to be
used. The problematic part, however, is that GT4 hides previously accessible data



Interactive Techniques in Grid Computing: A Survey 205

structures by using opaque type definitions, not providing an API for getting/setting
required values. Developers writing external programs have to copy the definition,
which is often not even available as a C-header file, but a private data structure,
declared inside the source-code of the corresponding program.

2.4 Glogin with Web-Services

The current movement in Grid middleware, with respect to providing services, is
replacing proprietary solutions by making use of Web services. Two prominent
examples are the Globus Toolkit and Unicore [14], the latter switched toWeb services
when releasing version 6.

To keep up with this trend, methods to provide interactivity in the presence of
Web services have to be explored. In GT4, the Web service enabled globusrun-ws
is the counterpart of the pre-Web service globusrun. Thus, the Web service port
of glogin uses the same job submission mechanism, the ManagedJobFactory Ser-
vice, the ManagedJob Service, the ManagedExecutable Job Service, the Delegation
Service and the Subscription Manager Service. Using these services, glogin invokes
a remote copy of itself and creates a separate, bidirectional, event-based data trans-
port channel. Once the connection is established, processing continues as described
above.

Although globusrun-ws provides “data-streaming”, its behaviour does not dif-
fer from globusrun. Firstly, there is no way to send data from the user interface
to the running job in a fashion suitable for interactive communication. Secondly,
globusrun-ws exhibits the same slow polling based mechanism as present in GT2.
The implementation in GT4 differs in that “data-streaming” is implemented by
the client (globusrun-ws) instead, using grid-ftp to poll for new data every ten se-
conds.

2.5 An Interactive Web Service for GT4

The major disadvantage of creating a separate communication channel is that con-
nection establishment might fail. The security needs of Grid sites require the in-
stallation of firewalls, resulting in a certain possibility that a connection might be
blocked by the network because of firewall rules.

Unlike GT2, a globus-gatekeeper is not used in GT4 any more. Instead, Globus
executes within a Tomcat [15] container which in turn invokes the requested service.
Therefore, a Web service client (such as e.g. globusrun-ws) is directly connected to
the invoked service. By developing a dedicated Web service it has been explored
whether this very connection can be reused to support interactivity.

When invoking a Web service, the request is encapsulated in SOAP/XML and
sent to the Globus container, usually via HTTPS. After processing, the reply also
is encapsulated in XML and sent to the requester. After exchanging request and
reply, both partners terminate the connection. For demanding interactive appli-



206 H. Rosmanith, J. Volkert

cations, a persistent connection is required. The InteractiveService facilitates this
requirement by turning the Web service connection into a persistent one.

The mechanism works as follows: a client connects to the Globus container by
using asynchronous Web service invocation, which means that the client has control
over when to send a request and when to receive a reply. After successfully sending
the request, but before reading the reply, the client duplicates its connection to the
Web service. The client can find the connection by examining its file descriptor table.
On the container side, after having received a request, the Web service starts a helper
process (thus creating a duplicate of the Web service connection), which passively
waits for a message from the client. The Web service returns an empty reply to the
client and terminates the connection. Now, the client sends a certain message to the
helper process, indicating that it is ready to continue processing. This is perfectly
valid, since although the initial connection does not exist any more, both the client
and helper process are able to communicate by using their duplicated connections.
Data transport is protected using the GSS-API.

2.6 I2Glogin – Glogin for the Int.Eu.Grid

For use within the Interactive European Grid project (I2G) [16] the glogin tool was
modified. Connection establishment only occurs from the Grid to the user interface,
making the GASS-cache flushing mechanism unnecessary. Thus, problems with local
schedulers can be avoided [17].

When invoked locally, i2glogin allocates a TCP listener and displays this address
in textual form on its output. The output is intercepted by I2G middleware and
stored in a Job Description Language (JDL) file, describing which job to execute on
the Grid. I2G middleware then submits the job. When the Grid job starts, remote
i2glogin is started, too, contacting the local i2glogin using the provided address.
Remote i2glogin intercepts all IO of the Grid job, thus establishing an interactive
connection between the job and the user interface.

2.7 Interactivity using the Condor Bypass

As of version 3, interactivity support has been added to gLite, the grid middleware
developed within the EGEE project. gLite uses the “Condor Bypass” [18, 19] me-
chanism, although “Condor” and “Bypass”, to quote Condor’s FAQ: “are separate
programs. Bypass does not require Condor, nor does Condor use Bypass.” Condor
Bypass modifies the environment variable LD PRELOAD to intercept open, read,
write, close system calls implemented in the C-library. As a result, only programs
which are dynamically linked with the C-library can be used interactively with
this method. Modifying LD PRELOAD is a great debugging technique, as, for
instance, BuGLe[20] demonstrates. To prevent potential conflicts with debuggers,
gLite middleware should refrain from using LD PRELOAD .

According to the online documentation [21], interactive jobs in gLite do not
work well:



Interactive Techniques in Grid Computing: A Survey 207

Due to timing or buffering problems, glite-wms-job-submit starts reading in-

put before it has displayed first part of the text. Also the second input is
skipped and the program finishes. Running non-interactive jobs using this
facility also shows problems of repeated and duplicated output.

and

Although gLite gives some basic interactivity between the user and the job,
implementation is still having significant usability problems as shown by the
example job.

According to the online manual of gLite’s Grid console, the user has to specify
LD PRELOAD manually to overwrite system calls the C-library. This is a possible
source of error, since common user should focus on application specific problems
instead of learning how to operate middleware manually.

By default, gLite opens a window to a X-server the user works with. If
an X-server is not available, textual interaction takes place in the user’s termi-
nal. The example in the manual gives the impression that user input is processed
in a line-oriented fashion. In contrast to this, glogin offers a binary character- and
block-oriented IO mature enough for implementing complex GUIs (as described
later).

In CrossGrid [22], Bypass was used such that applications were linked with the
bypass library, thus avoiding the use of LD PRELOAD , enabling static applications.
Of course, this restricts this method to programs available in source code only.

3 RELATED WORK

Interactivity is not restricted to fancy GUIs, but also includes accessing a computer
via a monitor and a keyboard, called a “terminal”. In a distributed environment,
a way to remotely access a host is required. In the Internet, such a “Networked
Virtual Terminal” (NVT) [23], is implemented by the telnet program. An alternate
implementation is the remote shell (RSH), which was later replaced by the secure
shell (SSH) [24]. For the Grid, the SSH was adopted to use the Grid Security Infras-
tructure (GSI), resulting in a Grid aware SSH (GSI-SSH). The Globus Toolkit 4 now
contains the GSI-SSH by default. The disadvantage of using GSI-SSH is that a GSI
aware ssh server (ssh daemon, sshd) needs to be installed, configured and started
(eventually from inetd) outside of the context of the globus-gatekeeper or Globus
servlet container. Starting jobs from GSI-SSH results in access to the host without
being subject to scheduling mechanisms. Hence, GSI-SSH can not be a substitute
for the usual job submission mechanism.

In “Interactive Grid Architecture for Application Service Providers”
(I-GASP) [25], interactive sessions for the grid are introduced. The I-GASP solution
makes use of Virtual Network Computing (VNC) [26], and thus can be compared
to X11-forwarding with glogin. Using glogin, VNC sessions can be supported using



208 H. Rosmanith, J. Volkert

the TCP port forwarding feature; however, glogin is not limited to VNC but can
also support a local visualisation frontend to remotely steer a Grid job.

Often, Grid portals are labeled “interactive”. Here, the term “interactive” rather
refers to an interactive environment built on top of non-interactive middleware, as
can be seen in “Grid ENabled Interactive Environment” (GENIE) [27]. In such
a Grid portal, accessing the Grid job is not necessarily interactive. In contrast, the
methods presented above focus on interactive jobs.

In the Unicore 6 grid, the VISIT/GS [28] architecture for online visualisation
and steering is presented. VISIT/GS uses SSH to get interactive access to the Grid
job. As an interesting alternative, the approach used in the InteractiveService could
be examined and implemented for the Unicore middleware. This way, using SSH
could be avoided.

4 APPLICATION EXAMPLES

By describing a few examples, we demonstrate the usefulness of interactivity in Grid.

One of the first applications that made use of interactivity in the Grid was the
“Virtual Radiology Explorer” (DesktopVRE). The DesktopVRE acts as a visualisa-
tion client for a medical application [29, 30] running on the Grid. Since DesktopVRE
is a program using the Visualisation Toolkit (VTK), a wrapper was built around
glogin to interface with the VTK-libraries.

The DesktopVRE showed that the amount of data produced by simulations such
as the medical application can grow so tremendously large that performing the visu-
alisation entirely in the Grid and transporting completely rendered frames is more
efficient. The “Grid Video tool” (GVid) [31] drives this idea even further by using
advanced video compression techniques to reduce network load. To demonstrate the
feasibility of this method, the “father of first person shooters”, the Doom-game (and
later, the Quake-game) was ported to make use of the GVid-interface by replacing
the original X11-interface. The game entirely runs in the Grid, while the graphical
output is displayed in the Migrating Desktop (MD) [32].

To demonstrate a counter-example requring only low video bandwidth, a chess
frontend (Xboard) has been implemented for the MD. While still being a demanding
application, a chess application (e.g. gnuchess) has very low needs for visualisation,
thus the visualisation, like drawing and moving chess pieces on the screen, can
be done entirely locally. The protocol between the chess frontend and the chess
application is extremely lightweight, since most of the time only piece movement
instructions such as “e2-e4” needs to be transported.

As the last example, we describe I2G’s piloting application, the “Interactive
Fusion Visualisation and Simulation”. The simulation executes in the Grid, using
GVid to display the graphical output locally in the MD. A local GUI, displayed
in the same window in the MD, is used for steering the simulation. To implement
the transport of GUI events, such as the user pushing buttons or moving sliders,
the GVid protocol had to be extended. State information about the GUI element



Interactive Techniques in Grid Computing: A Survey 209

operated is sent to the remote application in the form of a “name = value” pair.
Encoding this state information in XML has been thought about, but has been
discarded for reasons of efficiency and implementation.

5 ACKNOWLEDGMENT

We would like to thank our colleague Paul Heinzlreiter for proof-reading.

The work described in this paper was supported in part by the European Union
through the FP6-2005-Infrastructures-7-contract No. 031857 project “Int.eu.grid”.

REFERENCES

[1] Foster, I.—Kesselmann, C.—Tuecke, S.: The Anatomy of the Grid – Enabling
Scalable Virtual Organizations. International Journal of Supercomputer Applications,
2001.

[2] Laure, E. et al.: Programming the Grid using gLite. EGEE Technical Report, 2006.

[3] Foster, I.—Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing. Vol. 11, 1997, No. 2, pp. 115–128

[4] Licklider, J. C. R.: Man-Computer-Symbiosis. 1960, http://memex.org/

licklider.pdf.

[5] Morris, Ch. W. (ed): Mind, Self and Society: From the Standpoint of a Social
Behaviorist. George Herbert Mead, University of Chicago, 1934.

[6] Everett, R. R. (ed.): Special Issue: SAGE (Semi-Automatic Ground Environ-
ment). Annals of the History of Computing, 1983.

[7] Sutherland, I. E.: Sketchpad, a Man-Machine Graphical Communication System.
MIT, 1963.

[8] Bester, J.—Foster, I.—Kesselman, C.—Tedesco, J.—Tuecke, S.: GASS:
A Data Movement and Access Service for Wide Area Computing Systems. Sixth
Workshop on I/O in Parallel and Distributed Systems, May 5, 1999.

[9] Rosmanith, H.—Kranzlműller,D.: glogin – A Multifunctional Interactive Tun-
nel into the Grid. In: R. Buyya (ed.), Proc. Grid 2004, 5th IEEE/ACM Intl. Workshop
on Grid Computing, IEEE Computer Society, ISBN 0-7695-2256-4 Pittsburgh, PA,
USA, pp. 266–272.

[10] Linn, J.: Generic Security Service Application Program Interface. RFC 2743, Inter-
net Engineering Task Force, January 2000.

[11] Wray, J.: Generic Security Service API Version 2: C-Bindings. RFC 2744, Internet

Engineering Task Force, January 2000.

[12] Rosmanith, H.—Kranzlműller, D.—Volkert, J.: An Interactive Job Manager
for Globus. In: Roberto Moreno-Daz, Franz Pichler, Alexis Quesada-Arencibia (eds.),
Computer Aided Systems Theory – EUROCAST 2007, 11th International Conference
on Computer Aided Systems Theory, pp. 431–442.



210 H. Rosmanith, J. Volkert

[13] Alonso, G.: Web Services: Concepts, Architectures and Applications. Springer,

2004.

[14] Erwin, D.–Snelling, D.: UNICORE: A Grid Computing Environment. Lecture
Notes in Computer Science, 2001.

[15] Tomcat Home Page: http://jakarta.apache.org/tomcat.

[16] Interactive European Grid Project, http://www.interactive-grid.eu.

[17] Rosmanith, H.—Praxmarer, P.—Kranzlműller, D.: Jens Volkert: Towards
Job Accounting in Existing Resource Schedulers: Weaknesses and Improvements.
High Performance Computing and Communication (HPCC 2006), pp. 719–726, Mu-
nich, Germany, 2006.

[18] Thain, D.—Livny, M.: Bypass: A Tool for Building Split Execution Systems. In
the Proceedings of the Ninth IEEE Symposium on High Performance Distributed
Computing, Pittsburg, Pennsylvania, pp. 79–85, August 1–4, 2000.

[19] Thain, D.—Livny, M.: Multiple Bypass: Interposition Agents for Distributed
Computing. Journal of Cluster Computing, Vol. 4, 2001, pp. 39–47.

[20] BuGLe Home Page: http://www.opengl.org/sdk/tools/BuGLe/.

[21] Interactive jobs using bypass (online documentation), http://wiki.egee-see.org/
index.php/Interactive jobs using bypass.

[22] The Crossgrid Project, http://www.crossgrid.org.

[23] Postel, J.: Telnet Protocol specification. ISI, June 1980.

[24] Tatu Ylőnen: SSH Secure Login Connections over the Internet. Sixth USENIX
Security Symposium, pp. 37–42, Proceedings, SSH Communications Security Ltd.,
1996.

[25] Basu, S.—Talwar, V.—Agarwalla, B.—Kumar, R.: Interactive Grid Archi-
tecture for Application Service Providers. Mobile and Media Systems Laboratory, HP
Laboratories Palo Alto, Technical Report, July 2003.

[26] Richardson, T.—Stafford-Fraser, Q.—Wood, K.—Hopper, A.: Virtual
Network Computing. IEEE Internet Computing, Vol. 2, 1998, No. 1, pp. 33–38.

[27] GENIE: Grid ENabled Interactive Environment, http://www.npaci.edu/online/
v5.5/genie.html.

[28] Riedel, M.—Frings, W.—Dominiczak, S.—Eickermann, Th.—Mallmann,

D.—Gibbon, P.—Dussel, Th.: VISIT/GS: Higher Level Grid Services for Scien-
tific Collaborative Online Visualization and Steering in UNICORE Grids. Sixth In-
ternational Symposium on Parallel and Distributed Computing (ISPDC ’07), 2007.

[29] Tirado-Ramos, A.—Ragas, H.—Shamonin, D. P.—Rosmanith, H.—

Kranzlműller, D.: Integration of Blood Flow Visualization on the Grid: The Flow-
Fish/GVK Approach. European Across Grids Conference 2004, pp. 77–79, Nicosia,
Cyprus, 2004.

[30] Sloot, P. A. M.—van Albada, D. G.—Zudilova, E.—Heinzlreiter, P.—

Kranzlműller, D.—Rosmanith, H.—Volkert, J.: Grid-Based Interactive Vi-
sualisation of Medical Images. S. Norager (editor), Proceedings of the First European
HealthGrid Conference, January 203, pp. 57–66, Commission of the European Com-
munities, Information Society Directorate-General, Brussels, Belgium, 2003.



Interactive Techniques in Grid Computing: A Survey 211

[31] Polak, M.—Kranzlműller, D.: Interactive Videostreaming Visualization on

Grids. In: J. Dongarra, B. Tourancheau (Eds.), Cluster and Computational Grids
for Scientific Computing. Future Generation Computer Systems, Special Section, El-
sevier Science, Amsterdam, The Netherlands, Vol. 24, 2008, No. 1, pp. 39–45.

[32] Kupczyk, M.—Lichwa la, R.—P lóciennik, M.—Wolniewicz, P.: “Applica-
tions on Demand” as the Exploitation of the Migrating Desktop Future Generation
Computer Systems. Vol. 21, 2005, No. 1, pp. 37–44.

Herbert Rosmanith graduated in Computer Science from the
University of Linz in 1998. In 2004, he joined GUP and started
working in the EU-funded projects Crossgrid and Interactive Eu-
ropean Grid. His main research interest is interactivity support
for Grid computing.


