Computing and Informatics, Vol. 27, 2008, 21-36

DEBUGGING ONTOLOGY MAPPINGS: A STATIC APPROACH

PengWanNga, BaowenXu

School of Computer Science and Engineering
Southeast University

#2,9 Pai Lou

Nanjing, 210096, China

e-mail: pwangseu@gmail.com, bwxu@seu.edu.cn

Revised manuscript received 11 January 2007

Abstract. Ontology mapping is the bottleneck in solving interopematbetween Seman-
tic Web applications using heterogeneous ontologies. Maagping methods have been
proposed in recent years, but in practice, it is stiffidult to obtain satisfactory mapping
results having high precision and recall.firent from existing methods, which focus on
finding dficient and &ective solutions for the ontology mapping problem, we plage
phasis on analyzing the mapping result to dgtkagjnose the mapping defects. In this
paper, a novel technique calldebugging ontology mappingsis presented. During debug-
ging, some types of mapping errors, such as redundant andsistent mappings, can be
detected. Some warnings, including imprecise mapping®oornal mappings, are also
locked by analyzing the features of mapping result. Moredrtgntly, some errors and
warnings can be repaired automatically or can be preseatesirs with revising sugges-
tions. The experimental results reveal that the ontolodyudging technique is promising,
and it can improve the quality of mapping result.

Keywords: Ontology mapping, debugging, algorithm

1 INTRODUCTION

Ontologies clarify the structure of domain knowledge anald® knowledge sharing, and
they play a crucial role in dealing with heterogeneous amimgder-oriented huge amount
of data. Ontologies have been used popularly in many fields as knowledge represen-
tation, information retrieval, natural language underdiag, biology and e-science. In
recent years, the Semantic Web [1], which aims at providigh-lquality intelligent ser-

22 P. Wang, B. Xu

vices on the Web, exploits ontlogies to model the knowledigeadous semantic web
applications. In turn, the Semantic Web promotes the rebearof ontology greatly.

Usually, ontologies are distributedly used and built bffestent communities. That
causes many heterogeneous ontologies in same or relativainl® which is the major
obstacle to realize semantic information sharing. Ontplogpping is the main approach
to solve the problem through capturing the communicatidesrbetween heterogeneous
ontologies. Current mapping methods usually employ thbBnelogies such as literal
or structure similarity matching [2], machine learning,[8f combining several tech-
nologies [4], to compute the similarity between the coroesjing entities in dferent
ontologies.

In fact, although many mapping systems have been develoge they are used in
practical applications, they often can't work well as extpelcand the precision and recall
of mapping result are not always high [5]. In our opiniongréhare two main reasons.
First, for the variety of the representations and randometiiogl perspective of actual
ontologies, it often lacks enough information for discangrcorrect mappings. Second,
a certain mapping algorithm is often justextive for some types of ontologies but not for
all.

Till now, most existing mapping approaches focus on the rimapgkills and tech-
niques. However, we find that finding out such mapping resuitmmot be the end of an
ontology mapping process. Through examining some initiabping results, we find an
interesting fact: the mapping result often includes errappings (such as redundant and
inconsistent mappings), imprecise mappings (mappingaarthe best ones) and abnor-
mal mappings (the behavior of a mapping is strange). Thexefee want to compensate
such gap by detecting thmaapping bugs and even repairing them if possible. We call such
ideadebugging ontology mappings. Notice that this novel technique is not a new mapping
approach but a beneficial complement to the existing onyohogpping methods.

The original contributions of this paper are the following:

1. The ontology mapping debugging idea is proposed for thpgae of improving the
quality of mapping result;

2. The dficient methods for detecting and diagnosing mapping bugdu@ing errors
and warnings) are presented;

3. Some bugs would be repaired automatically or be prese¢otasers with generated
repair suggestions for the final decision. The suggestianshelp users improve or
modify the mapping algorithms to avoid such types of errors.

4. Experimental results demonstrate that the debuggirmigge is promising.

The rest of this paper is organized as follows: After a briefrgiew of related work
(Section 2), we give general ideas about ontology mappitgiglging in Section 3. In
Section 4 we describe the methods for debugging ontologypmgpesults. Some expe-
rimental results and discussions are presented in Secti®adiion 6 is conclusion.

Debugging Ontology Mappings: A Static Approach 23

2 RELATED WORK

Ontology mapping is an open problem. Some ontology mapmihdisns have been pro-
posed in recent years, whereas we don't review them herestert the readers to some
comprehensive surveys [6-8]. Most existing works on omplmapping focus on the
mapping algorithms. There are only a few works that addiesdssues related to the
mapping result, but most of them pay attention to evaluadingeusing mappings. Hess
showed how to use the given mappings to a third ontology asnadata or background
knowledge to improve mapping accuracy [9]. Euzenat andggtmbposed a more rea-
sonable precision and recall measure to evaluate the nmsolt [10,11]. These works
did not discuss the bugs in the mapping result.

Hanif et al. described an approach of detecting and elinmigahisalignment at the
time of aligning two diterent ontologies [12]. In their method, two mapping reseks
tracted by diferent mapping techniques from the same pair of ontology fest¢o the
misalignment detection and elimination process to proceteer alignments. This ap-
proach just combines flerent mapping results as a new one, so it can reduce linmitatio
of a specific technique of ontology alignment. Obviouslys thork can not find the map-
ping bugs in a single mapping result. Furthermore, it didgieé a clear definition of
what is a misaligned mapping. According to its misalignmaefinition, a mappingn
could be regarded as aligned under alignment Agtand A, but could be misaligned
under alignment set&; andA;. Therefore, this approach did not adapt to our problem.

The heart of this paper is how to detect and diagnose the Huggta@ogy mapping
result. To our surprise, we have not found any work that tiyexldresses how to deal
with the problem in the published literature. The most edatvork may be [14], in which
Stuckenschmidt et al. proposed a theory for reasoning atrdotogy mappings. This
work identified four properties that reflect the quality of apping, namelgontainment,
minimality, consistency andembedding. Then these properties can be decided based on
existing reasoning services for distributed descriptiogids. The theory could detect
some unsatisfactory and inconsistent mappings, but theesutid not declare their the-
ory would be applied to debug ontology mapping bugs. Fromaek site of DRAGO
project [13], we find a brief introduction of an ontology mampdebugging tool, which
can debug the mappings created using CtxMatch matching. téalcording to its ex-
perimental results, the debugger can detect and removeimaibridge rules between
ontologies. It did not tell what a malicious bridge rule isdavhether the tool can re-
pair some malicious bridge rules. For the reason that tiseme corresponding literature
we can not know more detail information about this ontologgpping debugging tool.
However, we are sure that this work has the similar goal ts.our

Chiticariu, Alex and Tan developed SPIDER [15, 16], whichs\tlae first prototype
tool for debugging schema mappings. The heart of SPIDER wdetadriven facility
for understanding a schema mapping through the displayuiéso A route essentially
described the relationship between source and target ditahe schema mapping. SPI-
DER was also equipped with “standard” debugging featurels as breakpoints, step-by-

1 http://dit.unitn.it/~zanobini/downloads.html

24 P. Wang, B. Xu

step computation of routes and a “watch” window for visualizdata exchanging and
variables used in a dependency at each step. However, SPtBERot discover and
diagnose the bugs in schema mappings. Hence, SPIDER’'sgyoal the same as ours.

Debugging idea has been used in ontology building processrder to detect and
diagnose the cause of errors in ontologies, some debuggatigoais based on logic rea-
soning or heuristic ruls are proposed. Kalyanpur and Patséd. integrated a number
of simple debugging cues generated from their descriptigit Ireasoner, Pellet, in their
ontology development environment, Swoop. They aimed tagemmsatisfiable classes
and repair them in OWL ontologies [17-19]. Schlobach predastechnique called pin-
pointing, and it could significantly improve the quality @&mantic clarification, a process
which in itself was useful for quality assurance of ontoésgj20]. Wang et al. presented
a “black boxed” heuristic approach based on identifying own errors and inferences to
diagnose unsatisfiable classes in OWL ontologies [21]. tology mapping debugging,
both heuristic approach and logic reasoning would be uséfgic reasoning approach
for mapping debugging needs distributed description I¢DIOL) reasoner, and we will
discuss it in our other work. This paper discusses how tizatheuristic rules to solve
ontology mapping debugging problem.

3 THE GENERAL IDEA

Creating original mapping result should not be the end oblogly mapping process. In
this section, we will examine several mapping cases to dstreie that error mappings,
imprecise mappings and abnormal mappings could exist imtdgging result. We should
compensate these bugs before providing mappings to users.

3.1 Mapping Cases Study

Similarly to the work in [8], we define an ontology mapping as@ple:m = (e, €, s, 1),
wherei is a unique identifier of the given mapping elemengnd€ are the entities of
the first and the second ontology, respectivalis a confidence measure in some math-
ematical structure (typically in the [@] range) holding for the correspondence between
e andé¢; r is the relation holding betweemande. We just consider the equivalence
(=) and generifspecific @/C) relation {s-a relation) in this paper. 15 > ¢, wheree is
a predefined threshold, we simplify a mapping(by €), suchag,; : AZ1 0O, : B.

We assume that the ontologies discussed in this paper ssenpee in OWL, an@
ande’ are concepts, i.e. we just consider the mappings betweearptm

We use some mapping examples shown in Figures 1 &nafiich include part of
mappings between two publication and university ontolegiespectively. For the sake
of simplicity in the following discussions, we mark the lefttology as0,, and the right
one aL;.

2 In the process of generating Figures 1 and 2, we used an ggtelsualization tool: RDF
Gravity++ (http://www.salzburgresearch.at).

Debugging Ontology Mappings: A Static Approach 25
Mapping Case 1. From the mapping result set:
{O1: Thesis= 0O, : Thesis, O; : DoctoralThesisC O, : Thesis,

O, : MasterThesscC O, : Thesis},

we can obviously obtain that the last two mappings are reghindecause th®, :
Thesis = O, : Thesiscan deduce the other two mappings. Similar examples are:

{O; : Article = O, : Article, O, : BookArticleC O, : Article}
and
{O; : TeachingAst = O, : TeachAssistant, O, : Assistant J O, : TeachAssistant} ,

whereO; : BookArticle C O, : ArticleandO; : Assistant I O, : TeachAssistant are
redundant mappings.

©Pub|lcation

\ (EPublication
RSN

©Thes|s ©Artic|e ©Soﬂmare

A
© Thesiz

@TechnlcalReport

@Bo‘o‘kﬁtlcle

©MasterThes|s -
_ -

@e\anferencepaper

©J0urna|Paper

©DoctoraIThes|s ©TechnicaIReport

©JournaIAmcle ©S I
oclalizroup

©Drganization
©Education0rg

©NonProfDrg

,'/ @ Institutes

@Researcheroup ©Commercial0rg

@Departments
©Departmen‘/qum/alemMappmg Generic Mappmg

Fig. 1. Part of mappings between two publication ontologies

Mapping Case 2. Given the mapping result set:
{O; : Organization = O, : CommericalOrg,

O : Organization = O, : EducationOrg,

26 P. Wang, B. Xu

Eaquivalent Mapping Generic Mapping

Fig. 2. Part of mappings between two university ontologies

O, : Organization = O, : NonProfOrg},
we can obtain:
O, : CommericalOrg = O, : EducationOrg = O, : NonProfOrg.

Obviously, itis an unreasonable conclusion, especiallgmthere is aisjoint\Wth axiom
declared between the three concepts. So the above mappimgss : Organization are
imprecise. There are two potential solutions:

1. Importing a complex concept and representing the mapag

O, : Organization = O, : CommericalOrgvO; : EducationOrgvO;, : NonProfOrg,

and

2. Considering two sub-concepts ©f : Organization are mapped to the sub-concepts
of O, : EducationOrg, we also can simply treat the mapping®f : Organization
as:

O, : Organization = O, : EducationOrg.

It needs users to determine which choice is better.

Mapping Case 3. Let’s notice a mapping:
{O1 : ResearchGroup = O, : SocialGroup} .

We can doubt it from two aspects. First, we observe the behafthe mapping: the sib-
lings of concepO; : ResearchGroup are mapped to the children 6% : EducationOrg,

Debugging Ontology Mappings: A Static Approach 27

but O, : ResearchGroup is mapped to the parent @, : EducationOrg, so the behavior
of the mapping is strange. Second, the mapping can also taiggonsistency:

O : ResearchGroup

O, : SocialGroup 3 O : EducationOrg 50, : Organization
= 1 - .

O : ResearchGroup = O, : SocialGroup
=
O; : Organization = O, : EducationOrg

It apparently clashes witd; : Organization 2 O, : ResearchGroup. Therefore, this
mapping is error and should be removed.

Mapping Case 4. The two mappings:
{O; : F_Professor = O, : Professor}

and
{O; : V_Professor = O, : Professor}

are similar to Case 3, but we inspect them from other perisgectVe know the map-
ping should not destroy the hierarchy structuea(structure) in ontology, but the two
mappings will causés-a circles as follows:

Circle 1: O; : F_Professor C O; : NonAdminProf C O, : Professor

= 0O, : Professor = O; : F_Professor
Circle 2: O, : V_Professor C O; : NonAdminProf = O, : Professor
= 0O, : Professor = O; : V_Professor

Here, the equivalent mappings are treated as bidirectigreakelations. The twds-a
circles destroy the hierarchy of ontology.

Maybe we have not listed all the problems in mapping reshitsye think the cases
we discussed have proved that there are some defects inarigiapping results; and
furthermore, most of them can be discovered and could belesipthat is the goal of our
work.

3.2 Bugs in Ontology Mapping Results

According to the mapping cases mentioned before, some comypes of bugs may
appear in the mapping result. We divide them into four caiego

1. Redundant Mappings. Some mappings are redundant if they can be deduced from the
existing ones. Redundant mapping is one of the most commgs bdowever, dele-
ting all redundant mappings is not the best choice, because sedundant mappings
can be useful in applications. For instance, storing redohthappings before could
be beneficial to the quenyfiiciency and avoid the burden of reasoning them again.
Another strategy is discovering all redundant mappingsifoing existing ones) and
then storing them; whereas, in fact, the number of such ahirmappings may be
large, not all of them will be useful.

28 P. Wang, B. Xu

2. Imprecise Mappings. Due to the limitation of the mapping algorithm, imprecisegma
pings would occur. Namely, the algorithm has not found the baswer but the ap-
proximate answer. We could revise these approximate mgppn combine them
into more precise ones.

3. Inconsistent mappings.Some mappings could destroy the structure of original on-
tologies and disobey the declared axioms. We call such mgppiconsistent map-
pings. Both the mappings causinga circle and those disobeying the axioms (typi-
cally equivalentClass anddigointWith axioms) are inconsistent.

4. Abnormal mappings. Some suspicious mappings do not belong to the above three
categories. It is diicult to find them in ordinary ways. However, such kind of map-
pings often shows the abnormal behavior. Namely, if twotiestiare close (such
as siblings) inO,, but they are mapped t0,’'s two concepts, which are far away
from each other. The errors caused by homonymy phenomeften,f@ave abnormal
mapping behaviors.

Perhaps the four categories do not cover all the suspiciod€aoneous mappings,
but they certainly occur in mapping results frequently. iblothat the four categories are
not mutually exclusive, they may intersect.

4 DEBUGGING ONTOLOGY MAPPINGS

In this section, we will define the types of mapping bugs, drahtdiscuss the methods
for detecting, repairing and diagnosing them.

4.1 Errors and Warnings in Mappings

Like programming debugging, we treat all suspicious maggpes two categoriesrrors
andwarnings. Apparently, errors are the confirmed wrong mappings, buhings are
the ones which may be wrong, right or imprecise.

Before defining the mapping defects, we give some basic sk definitions
used throughout the paper.

Let T denote the concept set in ontolody,andT, be the concept sets ®; andO,,
respectively. The sel]" (or T}") denotes the concepts @, (or O) used by mapping.
Given a mappingn = (e, €,s,r), letLftim) = ee T, Ritim) = € € T,, Rd(m) =,

M = {m|0 < i < N} denote the mapping set, wheXg is the number of mappings.
We first definemapping implication, and then use it to explain redundant mappings.

Definition 1 (Mapping Implication) If a mappingm,; can deduce another mapping,
we callm, implies m,, and denote asy J mp. If my O3 mp, andm, 2 my, they are
equivalent, i.em; = mp.

Then we obtain the redundant mappings by the following teor

Theorem 1(Redundant Mappings). Given a mappingn, if 3m; € M andm; I m, m
must be redundant.

Debugging Ontology Mappings: A Static Approach 29

Theorem 1 holds apparently, so we omit the proof.

There are two types of redundant mappings. One type is cdnydseh mapping and
equivalent mapping aslapping Case 1 shows. The other type is caused dayival ent-
Class axiom, which states two concepts are equivalent. If bothvatgnt concepts are
mapped to a same concept, a redundant mapping occurs.

In debugging, we will not delete the redundant mappings, sdreat them as warn-
ings and list them to the users.

There is no error in some mappings, but they are not the bestean we expect.
Determining whether a mapping is the best answer is not ¢é@yever, we can obtain
more precise mapping by reusing existing mappings. Invewoen a concept is mapped
to multiple concept$D;} in another ontology, we can combine the multiple concefits in
a complex concept by conjunction or disjunction operatisosh a£=\/D; orC C \/ D;.
Stuckenschmidt has used this idea for approximate infoométtering [22].

Definition 2 (Imprecise Mappings)Given a concepC, C is mapped to multiple con-
cepts{D;i}(2 < i < K) by relationr. if VI, m(2 < I,m < kandl # m), D, C D, does not
exist, then we obtain the following rules: (1)ifs 3, more precise mapping & 2 \/ D;;
(2) if r isC, more precise mapping 8 C A D;; (3) if r is =, we need more knowledge
(such as the mappings 6fs child and parent) to decide whidb, is the precise mapping,
or we can simply us€ 1/ D;.

The imprecise mappings are the warnings. When we obtain premse mappings,
the imprecise ones should be replaced.

The inconsistent mappings may destroy the ontology strectuviolate axioms. For
the sake of convenience, we use graph to represent the gyteith mappings.

Definition 3 (Ontology Graph with Mappings)Let G = (V, E) denote an ontology graph,
whereV is the set of concepts arfd is the set ofis-a edges. If ¢1,Vv,) € E, v, is the
direct child ofv,. Two ontology graph$s; andG, can be connected by the mappings
between them: the equivalent mappings are treated as diidinal is-a edges, and the
is-amappings are transformed int®a edges.

We assume that the original ontology is sound and does nhidecircles. When
two ontology graphs are connected by mappings, that shatldause circles in such
graph. In this way, we can identify the inconsistent mappiegsily.

Definition 4 (Inconsistent Mappings Causing is-a Circle§pombining two ontology
graphsG; and G, with the mappingsM into a single graptG. p = {vi,Va,...,Vm} iS

a path inG, and ifv; = vy, we callp a circle. For all pathy in G, if py is a circle,
px Must contain inconsistent mappings.

Notice that not all mappings in paty are inconsistent.

In ontology debugging, the inconsistent mappings causiagircles are errors.

The other inconsistent mappings may violate the axiomsigiral ontology. We just
considerequivalentClass anddigointWith axioms in this paper.

30 P. Wang, B. Xu

Definition 5 (Inconsistent Mappings Violating Axioms)Given concept$A;}, which sa-
tisfy eguivalentClass axiom, mappinggm} mappedA;} to conceptgB;} in another on-
tology, if {B;} fail to satisfy equivalentClass axiom, {m, must have inconsistent map-
pings. Similarly, if{A;} satisfydisointWith axiom, but{B;} fail to satisfy the same axiom,
mappingsme} have inconsistent mappings.

In debugging, the inconsistent mappings violating axionesearors.

The last kind of bug is abnormal mapping. In order to desdtib@bnormal mapping,
we define mapping behavior first.

Intuitively, when close concepts @, are mapped t@,, the counterpart i, would
likely be close too. We use this intuition to define the maggiehavior.

Definition 6 (Mapping Behavior) Given two mappingsn = (c;, b;, s,r;) andm; = (cj,
bj, s rj), letr; = rj, the mapping behavior ofi on ¢; relative tom; onc; is

d(ci, ¢;)
Bh m;, cj)) = ——,
(m(my, ¢;)) d(b. b))
whered(ci, ¢;) andd(b;, b;j) denote the distance between concepts.
Apparently, the mapping behavior is a relative value. We aln compute the map-
ping behavior ofr; on ¢; relative toc;’s neighbors:

k 3
Bh(M(My, o), .. ., (Me &) = %Z G

The closer to 1 the mapping behavior value is, the more natmeahapping behavior
is.

Definition 7 (Abnormal mappings) If the mapping behavior ofy relative to its neigh-
bors satisfies

|Bh(m|(ml9 C1)9 EIRIEY (rTl(’ Ck)) - 1| > el
m is a abnormal mapping! is a predefined threshold.

In debugging, we treat abnormal mappings as warnings as bexlhuse we need to
judge whether an abnormal mapping is an error mapping.

4.2 Detecting and Diagnosing Mappings

During ontology mapping debugging, the most important pssds detecting and diag-
nosing the suspicious mappings. We present the heurigifoaph debugging algorithms.
The algorithms should lock the suspicious mappings anduwuigeful suggestions.

For the redundant mappings, we first deal with the redundancaused byqui-
valentClass axiom, and then check other redundancies caused by mappplgation.
Algorithm 1 shows the process for debugging redundant nmggpi

Debugging Ontology Mappings: A Static Approach 31

Algorithm 1 Debugging redundant mappings

1: for all concept paifA;, A;} involving equivalentClass axiomdo

2: if Im, m; AND Rel(m) == Rel(m;) then
if (Lft(m) == A AND Lft(m;) == A; AND Rit(m) == Rit(m;)) OR
(Rit(m) == Ay AND Rit(m;) == Aj AND Lft(m) == Lft(m;)) then

w

4 Output: [Warning]m or m; is redundant
5 end if

6: endif

7: end for

8: for all mappingm do

o: for all mappingm;(m # m;) do

10: if (m 2 m;) then

11 Output: [Warningin; is redundant
12: else ifm C m; then

13: Output: [Warningin is redundant
14: end if

15: end for

16: end for

Using mapping implication, the redundant mappings can berganized into the
structure like hierarchy.

The inconsistent mappings causedibya circles can be found according to Defini-

tion 4, and detecting other inconsistent mappings needldokcthe axioms (see Algo-
rithm 2).

Algorithm 2 Debugging inconsistent mappings
1: Combine ontologyO,, O, and mapping#M into a graphG

. TraverseG to find all circlesP

. for all circle p; do

Output:[Error]inconsistent mappings p»

: end for

. for all conceptsA; satisfyequivalentClassdigointWith axiomdo

if m¢ mapA; to B; AND B; fail to satisfyequival entClass/disjointWth axiomthen
Output:[Error] Inconsistent mappings fin

end if

: end for

=
o

The users can repair the inconsistent mappings accordidglingging information
until no other inconsistent mappings appear.

According to Definition 2, we design an algorithm to debug iegise mappings. For
imprecise mappings are often ambiguous, we debug them wiitle ieuristic rules.

32 P. Wang, B. Xu

Algorithm 3 Debugging imprecise mappings
1: for all concepiCi € T;U T, do
2. memapC; to Dj,(2 < Imyl, IDj| < n)

3 if Vs t, Ds C D; does not existhen

4 Select Casdthe mapping relation afy)

5: CaseZ:

6: Output:[Warning]m, may be imprecise

7 Output:More precise mapping may &:3 \/ D;
8 CaseL:

o: Output:[Warning]m, may be imprecise
10: Output:More precise mapping may @&: 2 A D;
11 Case=:
12: Output:[Warning]m, may be imprecise

13: Suggestion 1: More precise mapping may 8e2 \/ D;

14: Suggestion 2: Check the mappings®k childrenparents for final decision;
15: End Select

16: end if

17: end for

For the abnormal mappings, we calculate their behaviorevakor a given concept
and related mappings, we consider the relative mappingvimeta the concept’s neigh-
bors. The algorithm is as follows:

Algorithm 4 Debugging abnormal mappings
1: for all mappingm do
2. Cj = Lft(m) orC; = Rit(m)
. Dj denote<Ci’s neighbors within distancé

3
4. {E)<(Dj}, l{Ei}|=k, andYE;, 3m andRel(m) = Rel(m)
5: Calculatemy’s behavior asBh(m|{E;}) = % Zill %
6: if IBh(m|{E;}) — 1] > 6 then

7 Output:[Warningin is abnormal mapping

8 endif

9: end for

10:

5 EXPERIMENTS AND DISCUSSIONS
5.1 Experiment Results
We report some results we have obtained. In our experimentiss five-pair ontologies,

which describe university, food, publication, travel aichfdomains, respectively. All of
the ontologies are collected through the semantic seagiheSwooglé. Before using

3 http://swoogle.umbc.edu/

Debugging Ontology Mappings: A Static Approach 33

the five-pair ontologies, we preprocess them with seveegisstwhich include translat-
ing DAML format to OWL format, removing some complex classasl revising some
concepts and properties. In order to create the originapingpesult, we utilize several
simple mapping techniques:

1. Literal similarity computes Levenshtein distance between concepts infam@ti-
cluding local-names, labels and comments) to estimatanhitasty;

2. Structure Similarity examines concepts’ neighbors, siblings, domain and ramge t
measure the similarity.

The ontology mapping debugging algorithms are implemeuaséty Java JDK1.5 and
Jena-2.4API. The input data are a pair of ontologies and the mappiegsden them, and
the output data is debugging information. According to autpformation in debugging,
the user can accept or reject the suggestions generatetbbyggieg algorithm. When
a suggestion is accepted, the user can examine the walerirays, and then repair them
manually. Notice that the mapping debugging is an itergireeess, which can avoid that
new change on the mappings would cause new warf@ngss.

Redundant | Inconsistent Mappings Imprecise Abnormal
Mappings Causing Violating Mappings Mappings
Circles Axiom
Num | P/R Num | P/R Num | PR | Num | PR Num | P/R
University 12 1.0¢ 7 1.0¢ 7 100 | 5 1.0¢ 5 0.8Q
1.00 1.00 1.00 0.83 1.00
Food 23 | 1.00 12 | 100 3 1.00 | 9 0.77 4 0.5¢
0.92 1.00 1.00 1.00 1.00
Publicaton | 30 | 0.93 6 1.00 0 5 1.00 7 0.7Y
0.88 1.00 1.00 1.00
Travel 10 | 0.90 3 1.0¢ 3 100 | 2 1.0¢ 0
0.82 1.00 1.00 0.67
Film 5 1.0¢ 0 2 100 | 6 0.83 2 1.0¢
1.00 1.00 0.63 0.50

Table 1. Ontology mapping debugging results

We also userecision andrecall to evaluate the performance of our debugging tech-
nique. If a suggestion is accepted by the user, or the useesghat an output er-
ror/warning is useful, then the suggestiermoywarning is right. Table 1 shows the de-
bugging results in our experiment.

After debugging, some mapping errors may be repaired. Wal@slate the precision
and recall of the mapping result, and compare with the caigime (Figure 3). Figure 3
demonstrates that the debugging process is useful, andutiigygof mapping result is
improved significantly.

4 http://jena.sourceforge.net/index.html

34 P. Wang, B. Xu

t t
University Food Publication Travel Film

‘ @ P-B-Debuggingm P-A-Debuggingd R-B-Debuggingd R-A-Debugging‘

Fig. 3. Mapping results comparison (before debugging atet débugging)

5.2 Discussions

In fact, the debugging technique we discussed is just agtaticess. If we can import
some dynamic techniques, such as setting breakpoints dethegging process, we could
control the mapping process and choose the best parameters.

The abnormal behavior of mappings is based on the intuitiodebugging process,
the abnormal mappings algorithm is very useful for dealirith lasomonymy concepts.
However, when two ontologies have divarication for the sawmcepts, the abnormal
mappings debugging could return wrong results.

The mapping bugs defined in this paper probably do not coVé&irals of mapping
defects. Moreover, some intensive experiments are needetify this technique.

We have not used reason methods in the debugging process.elifeebthe dis-
tributed description logic (DDL) reason will be of benefitttee ontology mapping de-
bugging.

Fortunately, to the best of our knowledge, some companeadopting(or will adopt)
the mapping debugging idea in their semantic informatidegration product. The map-
ping debugging could be a useful temmponent for the ontology mapping systems.

6 CONCLUSIONS

A novel technique called ontology mapping debugging tempimiis proposed. Four types
of mapping bugs are defined, and the methods for detectinglegphosing them are
proposed as well. The experiment results demonstrateithatchnique is promising and
can improve the mapping result quality.

Acknowledgements

This work was supported in part by the NSFC(60425206, 9083 @&nd Excellent Ph. D.
Thesis Fund of Southeast University (YBJJ0502). The astti@nk Yimin Wang and Jie
Bao for the early discussions on this paper. Jin Zhou readhatished the entire paper.

Debugging Ontology Mappings: A Static Approach 35

The authors would also like to thank the anonymous reviefeetseir helpful comments
and suggestions for improving the manuscript.

REFERENCES

[1] Berners-Leg, T.—HenbLer, J.—lassita, O The Semantic Web. Scientific American,
Vol. 284, 2001, No. 5, pp. 34-43.

[2] Nararya, F.N.—Mark, A.: The PROMPT Suite: Interactive Tools for Ontology Merging
and Mapping. Int. J. Hum.-Comput. Stud, Vol. 59, 2003, Ng$,983-1024.

[3] AnHar, D.—&vant, M.—RoBIN, D. et al: Learning to Match Ontologies on the Semantic
Web. The VLDB Journal. Vol. 12, 2003, No. 4, pp. 303-319.

[4] Enrig, M.—StaaB, S: QOM — Quick Ontology Mapping. Proceedings of the Third inte
tional Semantic Web Conference, ISWC2004, Hiroshima, da®@04.

[5] Euzenar, J.—Suckenscumipt, H.—Yarskevich, M.: Introduction to the Ontology Align-
ment Evaluation 2005. Proceedings of the K-CAP 2005 Wonsimintegrating Ontologies,
Banff, Canada, 2005.

[6] Eruarp, R.—Ruwp, A.B.: A Survey of Approaches to Automatic Schema Matching. The
VLDB Journal, Vol. 10, 2001, No. 4, pp. 334-350.

[7] KarrocrLou, Y.—ScHorLEMMER, M.: Ontology Mapping: The State of the Art. The Know-
ledge Engineering Review, Vol. 18, 2003, pp. 1-31.

[8] Suvaiko, P.—Eizenar, J: A Survey of Schema-Based Matching Approaches. Journal on
Data Semantics, Vol. 4, 2005, pp. 146-171.

[9] Hess, A.: An Iterative Algorithm for Ontology Mapping Capable of Wgi Training Data.
Proceedings of theV%European Semantic Web Conference, ESWC 2006, Budva, Menten
gro, 2006.

[10] Enrig, M.—Euzenar, J: Relaxed Precision and Recall for Ontology Matching. Peoliegs
of the K-CAP 2005 Workshop on Integrating Ontologies, BaBanada, 2005.

[11] Euzenar, J: Semantic Precision and Recall for Ontology Alignment Badibn. Proceedings
of the 28" International Joint Conference on Atrtificial Intelligent¢&CAI2007, Hyderabad,
India, January 6-12, 2007.

[12] Hanir, S.—Sk1, Y.—Aono, M.: Automatic Alignment of Ontology Eliminating the Prob-
able Misalignments. Proceedings of tHéAsian Semantic Web Conference, ASWC 2006,
Beijing, China, 2006.

[13] Distributed Reasoning Architecture for Galaxy of Obntgies Mapping Debugging.
http://sra.itc.it/projects/drago/applications-debugging.html.

[14] Sruckenscamipt, H.—SerarNI, L.—WachE, H.: Reasoning about Ontology Mappings. In
ECAI 2006 Workshop on Context Representation and ReaspRiaglel Garda, Italy, 2006.

[15] Chrricariu, L.—Tan, W.: Debugging Schema Mappings with Routes. Proceedings ef-Int
national Conference on Very Large Data Bases, VLDB 2006u5&orea, 2006.

[16] Arexe, B.—Curticariu, L.—Tan, W.: SPIDER: A Schema mapPIng DEbuggeR. Proceed-
ings of International Conference on Very Large Data Base§R2006, Seoul, Korea, 2006.

[17] Karvaneur, A.—Parsia, B.—Srin, E. et al: Debugging Unsatisfiable Classes in OWL On-
tologies. Journal of Web Semantics, Vol. 3, 2005, No. 4, 68-293.

36
[18]

[19]

[20]

[21]

[22]

P. Wang, B. Xu

Parsia, B.—SriN, E.—Karvanpeur, A.: Debugging OWL Ontologies. Proceedings of
the 14" Inter-national World Wide Web Conference, WWW 2005, Chitspan, 2005.
Karvanpur, A.—Parsia, B.—Srin, E. et al: Repairing Unsatisfiable Concepts in OWL On-
tologies. Proceedings of thé?European Semantic Web Conference, ESWC2006, Budva,
Montenegro, 2006.

ScurosacH, S: Debugging and Semantic Clarification by Pinpointing. Rextings of the
Second European Semantic Web Conference, ESWC 2005, ideraRieece, 2005.

Wang, H.—Horripce, M.—REecTOR, A.: Debugging OWL-DL Ontologies: A Heuristic Ap-
proach. Proceedings of th& dnternational Semantic Web Conference, ISWC 2005, Galway,
Ireland, 2005.

SruckenscamipT, H.: Approximate Information Filtering with Multiple Classifation Hierar-
Chies. International Journal of Computational Intelligerand Applications, Vol. 2, 2002,
No. 3, pp. 295-302.

Peng WANc received his bachelor and master degrees from North-
western Polytechnical University, P.R. China in 2000 an@30e-
spectively. Now, he is a Ph. D. candidate in the School of Qdemp
Science and Engineering, Southeast University. His cturesearch
interests include Semantic Web, ontology, and informatirieval

on the web.

Baowen Xu is a Professor of School of Computer Science and En-
gineering, Southeast University. His research areasdegwogram-
ming languages, software engineering (software analysisesting,
re-engineering), formal software techniques, web infaromaanaly-

sis and testing techniques, knowledge and informatioexetrtech-
niques. He has published more than 20 books and more thana200 p
pers in scientific journals and international conferepgeskshops in

the above research areas. He has been the general chaigmrdugir

or PC member of more than 20 international conferences.

