
Computing and Informatics, Vol. 27, 2008, 21–36

DEBUGGING ONTOLOGY MAPPINGS: A STATIC APPROACH

PengWang, BaowenXu

School of Computer Science and Engineering
Southeast University
#2, Si Pai Lou
Nanjing, 210096, China
e-mail: pwangseu@gmail.com, bwxu@seu.edu.cn

Revised manuscript received 11 January 2007

Abstract. Ontology mapping is the bottleneck in solving interoperation between Seman-
tic Web applications using heterogeneous ontologies. Manymapping methods have been
proposed in recent years, but in practice, it is still difficult to obtain satisfactory mapping
results having high precision and recall. Different from existing methods, which focus on
finding efficient and effective solutions for the ontology mapping problem, we placeem-
phasis on analyzing the mapping result to detect/diagnose the mapping defects. In this
paper, a novel technique calleddebugging ontology mappings is presented. During debug-
ging, some types of mapping errors, such as redundant and inconsistent mappings, can be
detected. Some warnings, including imprecise mappings or abnormal mappings, are also
locked by analyzing the features of mapping result. More importantly, some errors and
warnings can be repaired automatically or can be presented to users with revising sugges-
tions. The experimental results reveal that the ontology debugging technique is promising,
and it can improve the quality of mapping result.

Keywords: Ontology mapping, debugging, algorithm

1 INTRODUCTION

Ontologies clarify the structure of domain knowledge and enable knowledge sharing, and
they play a crucial role in dealing with heterogeneous and computer-oriented huge amount
of data. Ontologies have been used popularly in many fields such as knowledge represen-
tation, information retrieval, natural language understanding, biology and e-science. In
recent years, the Semantic Web [1], which aims at providing high-quality intelligent ser-

22 P. Wang, B. Xu

vices on the Web, exploits ontlogies to model the knowledge of various semantic web
applications. In turn, the Semantic Web promotes the researches of ontology greatly.

Usually, ontologies are distributedly used and built by different communities. That
causes many heterogeneous ontologies in same or relative domains, which is the major
obstacle to realize semantic information sharing. Ontology mapping is the main approach
to solve the problem through capturing the communication rules between heterogeneous
ontologies. Current mapping methods usually employ the technologies such as literal
or structure similarity matching [2], machine learning [3], or combining several tech-
nologies [4], to compute the similarity between the corresponding entities in different
ontologies.

In fact, although many mapping systems have been developed,when they are used in
practical applications, they often can’t work well as expected, and the precision and recall
of mapping result are not always high [5]. In our opinions, there are two main reasons.
First, for the variety of the representations and random modeling perspective of actual
ontologies, it often lacks enough information for discovering correct mappings. Second,
a certain mapping algorithm is often just effective for some types of ontologies but not for
all.

Till now, most existing mapping approaches focus on the mapping skills and tech-
niques. However, we find that finding out such mapping result can not be the end of an
ontology mapping process. Through examining some initial mapping results, we find an
interesting fact: the mapping result often includes error mappings (such as redundant and
inconsistent mappings), imprecise mappings (mappings arenot the best ones) and abnor-
mal mappings (the behavior of a mapping is strange). Therefore, we want to compensate
such gap by detecting themapping bugs and even repairing them if possible. We call such
ideadebugging ontology mappings. Notice that this novel technique is not a new mapping
approach but a beneficial complement to the existing ontology mapping methods.

The original contributions of this paper are the following:

1. The ontology mapping debugging idea is proposed for the purpose of improving the
quality of mapping result;

2. The efficient methods for detecting and diagnosing mapping bugs (including errors
and warnings) are presented;

3. Some bugs would be repaired automatically or be presentedto users with generated
repair suggestions for the final decision. The suggestions can help users improve or
modify the mapping algorithms to avoid such types of errors.

4. Experimental results demonstrate that the debugging technique is promising.

The rest of this paper is organized as follows: After a brief overview of related work
(Section 2), we give general ideas about ontology mapping debugging in Section 3. In
Section 4 we describe the methods for debugging ontology mapping results. Some expe-
rimental results and discussions are presented in Section 5. Section 6 is conclusion.

Debugging Ontology Mappings: A Static Approach 23

2 RELATED WORK

Ontology mapping is an open problem. Some ontology mapping solutions have been pro-
posed in recent years, whereas we don’t review them here but refer the readers to some
comprehensive surveys [6–8]. Most existing works on ontology mapping focus on the
mapping algorithms. There are only a few works that address the issues related to the
mapping result, but most of them pay attention to evaluatingor reusing mappings. Hess
showed how to use the given mappings to a third ontology as training data or background
knowledge to improve mapping accuracy [9]. Euzenat and Ehrig proposed a more rea-
sonable precision and recall measure to evaluate the mapping result [10,11]. These works
did not discuss the bugs in the mapping result.

Hanif et al. described an approach of detecting and eliminating misalignment at the
time of aligning two different ontologies [12]. In their method, two mapping resultsex-
tracted by different mapping techniques from the same pair of ontology werefed to the
misalignment detection and elimination process to producebetter alignments. This ap-
proach just combines different mapping results as a new one, so it can reduce limitation
of a specific technique of ontology alignment. Obviously, this work can not find the map-
ping bugs in a single mapping result. Furthermore, it did notgive a clear definition of
what is a misaligned mapping. According to its misalignmentdefinition, a mappingmi

could be regarded as aligned under alignment setsAS andAT , but could be misaligned
under alignment setsA′S andA′T . Therefore, this approach did not adapt to our problem.

The heart of this paper is how to detect and diagnose the bugs of ontology mapping
result. To our surprise, we have not found any work that directly addresses how to deal
with the problem in the published literature. The most related work may be [14], in which
Stuckenschmidt et al. proposed a theory for reasoning aboutontology mappings. This
work identified four properties that reflect the quality of a mapping, namelycontainment,
minimality, consistency andembedding. Then these properties can be decided based on
existing reasoning services for distributed description logics. The theory could detect
some unsatisfactory and inconsistent mappings, but the authors did not declare their the-
ory would be applied to debug ontology mapping bugs. From theweb site of DRAGO
project [13], we find a brief introduction of an ontology mapping debugging tool, which
can debug the mappings created using CtxMatch matching tool1. According to its ex-
perimental results, the debugger can detect and remove malicious bridge rules between
ontologies. It did not tell what a malicious bridge rule is, and whether the tool can re-
pair some malicious bridge rules. For the reason that there is no corresponding literature
we can not know more detail information about this ontology mapping debugging tool.
However, we are sure that this work has the similar goal to ours.

Chiticariu, Alex and Tan developed SPIDER [15, 16], which was the first prototype
tool for debugging schema mappings. The heart of SPIDER was adata-driven facility
for understanding a schema mapping through the display of routes. A route essentially
described the relationship between source and target data with the schema mapping. SPI-
DER was also equipped with “standard” debugging features such as breakpoints, step-by-

1 http://dit.unitn.it/∼zanobini/downloads.html

24 P. Wang, B. Xu

step computation of routes and a “watch” window for visualizing data exchanging and
variables used in a dependency at each step. However, SPIDERcan not discover and
diagnose the bugs in schema mappings. Hence, SPIDER’s goal is not the same as ours.

Debugging idea has been used in ontology building process. In order to detect and
diagnose the cause of errors in ontologies, some debugging methods based on logic rea-
soning or heuristic ruls are proposed. Kalyanpur and Parsiaet al. integrated a number
of simple debugging cues generated from their description logic reasoner, Pellet, in their
ontology development environment, Swoop. They aimed to debug unsatisfiable classes
and repair them in OWL ontologies [17–19]. Schlobach proposed a technique called pin-
pointing, and it could significantly improve the quality of semantic clarification, a process
which in itself was useful for quality assurance of ontologies [20]. Wang et al. presented
a “black boxed” heuristic approach based on identifying common errors and inferences to
diagnose unsatisfiable classes in OWL ontologies [21]. In ontology mapping debugging,
both heuristic approach and logic reasoning would be useful. Logic reasoning approach
for mapping debugging needs distributed description logic(DDL) reasoner, and we will
discuss it in our other work. This paper discusses how to utilize heuristic rules to solve
ontology mapping debugging problem.

3 THE GENERAL IDEA

Creating original mapping result should not be the end of ontology mapping process. In
this section, we will examine several mapping cases to demonstrate that error mappings,
imprecise mappings and abnormal mappings could exist in themapping result. We should
compensate these bugs before providing mappings to users.

3.1 Mapping Cases Study

Similarly to the work in [8], we define an ontology mapping as a4-tuple:mi = 〈e, e′, s, r〉,
wherei is a unique identifier of the given mapping element;e ande′ are the entities of
the first and the second ontology, respectively;s is a confidence measure in some math-
ematical structure (typically in the [0, 1] range) holding for the correspondence between
e and e′; r is the relation holding betweene and e′. We just consider the equivalence
(=) and generic/specific (⊒/⊑) relation (is-a relation) in this paper. Ifs > ε, whereε is
a predefined threshold, we simplify a mapping by〈e r e′〉, such asO1 : A ⊒ O2 : B.

We assume that the ontologies discussed in this paper are presented in OWL, ande
ande′ are concepts, i.e. we just consider the mappings between concepts.

We use some mapping examples shown in Figures 1 and 22, which include part of
mappings between two publication and university ontologies, respectively. For the sake
of simplicity in the following discussions, we mark the leftontology asO1, and the right
one asO2.

2 In the process of generating Figures 1 and 2, we used an ontology visualization tool: RDF
Gravity++ (http://www.salzburgresearch.at).

Debugging Ontology Mappings: A Static Approach 25

Mapping Case 1. From the mapping result set:

{O1 : Thesis = O2 : Thesis,O1 : DoctoralThesis ⊑ O2 : Thesis,

O1 : MasterThesis ⊑ O2 : Thesis} ,

we can obviously obtain that the last two mappings are redundant, because theO1 :
Thesis = O2 : Thesis can deduce the other two mappings. Similar examples are:

{O1 : Article = O2 : Article,O1 : BookArticle ⊑ O2 : Article}

and

{O1 : TeachingAst = O2 : TeachAssistant,O1 : Assistant ⊒ O2 : TeachAssistant} ,

whereO1 : BookArticle ⊑ O2 : Article andO1 : Assistant ⊒ O2 : TeachAssistant are
redundant mappings.

Fig. 1. Part of mappings between two publication ontologies

Mapping Case 2. Given the mapping result set:

{O1 : Organization = O2 : CommericalOrg,

O1 : Organization = O2 : EducationOrg,

26 P. Wang, B. Xu

Generic MappingEquivalent Mapping

Fig. 2. Part of mappings between two university ontologies

O1 : Organization = O2 : NonPro f Org} ,

we can obtain:

O2 : CommericalOrg = O2 : EducationOrg = O2 : NonPro f Org.

Obviously, it is an unreasonable conclusion, especially when there is adisjointWith axiom
declared between the three concepts. So the above mappings aboutO1 : Organization are
imprecise. There are two potential solutions:

1. Importing a complex concept and representing the mappings as

O1 : Organization = O2 : CommericalOrg∨O2 : EducationOrg∨O2 : NonPro f Org,

and

2. Considering two sub-concepts ofO1 : Organization are mapped to the sub-concepts
of O2 : EducationOrg, we also can simply treat the mapping ofO1 : Organization
as:

O1 : Organization = O2 : EducationOrg.

It needs users to determine which choice is better.

Mapping Case 3. Let’s notice a mapping:

{O1 : ResearchGroup = O2 : S ocialGroup} .

We can doubt it from two aspects. First, we observe the behavior of the mapping: the sib-
lings of conceptO1 : ResearchGroup are mapped to the children ofO2 : EducationOrg,

Debugging Ontology Mappings: A Static Approach 27

but O1 : ResearchGroup is mapped to the parent ofO2 : EducationOrg, so the behavior
of the mapping is strange. Second, the mapping can also causethe inconsistency:



















O1 : ResearchGroup = O2 : S ocialGroup
O2 : S ocialGroup ⊒ O2 : EducationOrg
O1 : Organization = O2 : EducationOrg



















⇒
O1 : ResearchGroup
⊒ O1 : Organization.

It apparently clashes withO1 : Organization ⊒ O1 : ResearchGroup. Therefore, this
mapping is error and should be removed.

Mapping Case 4. The two mappings:

{O1 : F Pro f essor = O2 : Pro f essor}

and
{O1 : V Pro f essor = O2 : Pro f essor}

are similar to Case 3, but we inspect them from other perspective. We know the map-
ping should not destroy the hierarchy structure (is-a structure) in ontology, but the two
mappings will causeis-a circles as follows:

Circle 1: O1 : F Pro f essor ⊑ O1 : NonAdminPro f ⊑ O1 : Pro f essor

= O2 : Pro f essor = O1 : F Pro f essor

Circle 2: O1 : V Pro f essor ⊑ O1 : NonAdminPro f ⊑ O1 : Pro f essor

= O2 : Pro f essor = O1 : V Pro f essor

Here, the equivalent mappings are treated as bidirectionalis-a relations. The twois-a
circles destroy the hierarchy of ontology.

Maybe we have not listed all the problems in mapping results,but we think the cases
we discussed have proved that there are some defects in original mapping results; and
furthermore, most of them can be discovered and could be avoided; that is the goal of our
work.

3.2 Bugs in Ontology Mapping Results

According to the mapping cases mentioned before, some common types of bugs may
appear in the mapping result. We divide them into four categories.

1. Redundant Mappings. Some mappings are redundant if they can be deduced from the
existing ones. Redundant mapping is one of the most common bugs. However, dele-
ting all redundant mappings is not the best choice, because some redundant mappings
can be useful in applications. For instance, storing redundant mappings before could
be beneficial to the query efficiency and avoid the burden of reasoning them again.
Another strategy is discovering all redundant mappings (including existing ones) and
then storing them; whereas, in fact, the number of such redundant mappings may be
large, not all of them will be useful.

28 P. Wang, B. Xu

2. Imprecise Mappings. Due to the limitation of the mapping algorithm, imprecise map-
pings would occur. Namely, the algorithm has not found the best answer but the ap-
proximate answer. We could revise these approximate mappings or combine them
into more precise ones.

3. Inconsistent mappings.Some mappings could destroy the structure of original on-
tologies and disobey the declared axioms. We call such mappingsinconsistent map-
pings. Both the mappings causingis-a circle and those disobeying the axioms (typi-
cally equivalentClass anddisjointWith axioms) are inconsistent.

4. Abnormal mappings. Some suspicious mappings do not belong to the above three
categories. It is difficult to find them in ordinary ways. However, such kind of map-
pings often shows the abnormal behavior. Namely, if two entities are close (such
as siblings) inO1, but they are mapped toO2’s two concepts, which are far away
from each other. The errors caused by homonymy phenomenon, often have abnormal
mapping behaviors.

Perhaps the four categories do not cover all the suspicious and erroneous mappings,
but they certainly occur in mapping results frequently. Notice that the four categories are
not mutually exclusive, they may intersect.

4 DEBUGGING ONTOLOGY MAPPINGS

In this section, we will define the types of mapping bugs, and then discuss the methods
for detecting, repairing and diagnosing them.

4.1 Errors and Warnings in Mappings

Like programming debugging, we treat all suspicious mappings as two categories:errors
andwarnings. Apparently, errors are the confirmed wrong mappings, but warnings are
the ones which may be wrong, right or imprecise.

Before defining the mapping defects, we give some basic symbols and definitions
used throughout the paper.

Let T denote the concept set in ontology,T1 andT2 be the concept sets inO1 andO2,
respectively. The setT m

1 (or T m
2) denotes the concepts inO1 (or O2) used by mapping.

Given a mappingmi = 〈e, e′, s, r〉, let L f t(mi) = e ∈ T1 , Rit(mi) = e′ ∈ T2, Rel(mi) = r,
M = {mi|0 6 i 6 Nm} denote the mapping set, whereNm is the number of mappings.

We first definemapping implication, and then use it to explain redundant mappings.

Definition 1 (Mapping Implication). If a mappingm1 can deduce another mappingm2,
we call m1 implies m2, and denote asm1 ⊒ m2. If m1 ⊒ m2 and m2 ⊒ m1, they are
equivalent, i.e.m1 ≡ m2.

Then we obtain the redundant mappings by the following theorem.

Theorem 1(Redundant Mappings). Given a mappingmi, if ∃m j ∈ M andm j ⊒ mi, mi

must be redundant.

Debugging Ontology Mappings: A Static Approach 29

Theorem 1 holds apparently, so we omit the proof.
There are two types of redundant mappings. One type is causedby is-a mapping and

equivalent mapping asMapping Case 1 shows. The other type is caused byequivalent-
Class axiom, which states two concepts are equivalent. If both equivalent concepts are
mapped to a same concept, a redundant mapping occurs.

In debugging, we will not delete the redundant mappings, so we treat them as warn-
ings and list them to the users.

There is no error in some mappings, but they are not the best answers we expect.
Determining whether a mapping is the best answer is not easy.However, we can obtain
more precise mapping by reusing existing mappings. In fact,when a conceptC is mapped
to multiple concepts{Di} in another ontology, we can combine the multiple concepts into
a complex concept by conjunction or disjunction operations, such asC=

∨

Di orC ⊑
∨

Di.
Stuckenschmidt has used this idea for approximate information filtering [22].

Definition 2 (Imprecise Mappings). Given a conceptC, C is mapped to multiple con-
cepts{Di}(2 6 i 6 k) by relationr. if ∀l,m (2 6 l,m 6 k andl , m), Dl ⊑ Dm does not
exist, then we obtain the following rules: (1) ifr is⊒, more precise mapping isC ⊒

∨

Di;
(2) if r is ⊑, more precise mapping isC ⊑

∧

Di; (3) if r is =, we need more knowledge
(such as the mappings ofC’s child and parent) to decide whichDi is the precise mapping,
or we can simply useC ⊒

∨

Di.

The imprecise mappings are the warnings. When we obtain moreprecise mappings,
the imprecise ones should be replaced.

The inconsistent mappings may destroy the ontology structure or violate axioms. For
the sake of convenience, we use graph to represent the ontology with mappings.

Definition 3 (Ontology Graph with Mappings). Let G = (V, E) denote an ontology graph,
whereV is the set of concepts andE is the set ofis-a edges. If (v1, v2) ∈ E, v1 is the
direct child ofv2. Two ontology graphsG1 andG2 can be connected by the mappings
between them: the equivalent mappings are treated as bidirectional is-a edges, and the
is-a mappings are transformed intois-a edges.

We assume that the original ontology is sound and does not include circles. When
two ontology graphs are connected by mappings, that should not cause circles in such
graph. In this way, we can identify the inconsistent mappings easily.

Definition 4 (Inconsistent Mappings Causing is-a Circles). Combining two ontology
graphsG1 andG2 with the mappingsM into a single graphG. p = {v1, v2, . . . , vm} is
a path inG, and if v1 = vm, we call p a circle. For all pathspx in G, if px is a circle,
px must contain inconsistent mappings.

Notice that not all mappings in pathpx are inconsistent.
In ontology debugging, the inconsistent mappings causingis-a circles are errors.
The other inconsistent mappings may violate the axioms in original ontology. We just

considerequivalentClass anddisjointWith axioms in this paper.

30 P. Wang, B. Xu

Definition 5 (Inconsistent Mappings Violating Axioms). Given concepts{Ai}, which sa-
tisfy equivalentClass axiom, mappings{mk} mapped{Ai} to concepts{B j} in another on-
tology, if {B j} fail to satisfy equivalentClass axiom, {mk} must have inconsistent map-
pings. Similarly, if{Ai} satisfydisjointWith axiom, but{B j} fail to satisfy the same axiom,
mappings{mk} have inconsistent mappings.

In debugging, the inconsistent mappings violating axioms are errors.
The last kind of bug is abnormal mapping. In order to describethe abnormal mapping,

we define mapping behavior first.
Intuitively, when close concepts inO1 are mapped toO2, the counterpart inO2 would

likely be close too. We use this intuition to define the mapping behavior.

Definition 6 (Mapping Behavior). Given two mappingsmi = 〈ci, bi, s, ri〉 andm j = 〈c j,

b j, s, r j〉, let ri = r j, the mapping behavior ofmi on ci relative tom j on c j is

Bh(mi|(m j, c j)) =
d(ci, c j)

d(bi, b j)
,

whered(ci, c j) andd(bi, b j) denote the distance between concepts.
Apparently, the mapping behavior is a relative value. We also can compute the map-

ping behavior ofmi on ci relative toci’s neighbors:

Bh(mi|(m1, c1), . . . , (mk, ck)) =
1
k

k
∑

t=1

d(ci, ct)
d(bi, bt)

, (t , i).

The closer to 1 the mapping behavior value is, the more normalthe mapping behavior
is.

Definition 7 (Abnormal mappings). If the mapping behavior ofmi relative to its neigh-
bors satisfies

|Bh(mi|(m1, c1), . . . , (mk, ck)) − 1| > θ,

mi is a abnormal mapping.θ is a predefined threshold.

In debugging, we treat abnormal mappings as warnings as well, because we need to
judge whether an abnormal mapping is an error mapping.

4.2 Detecting and Diagnosing Mappings

During ontology mapping debugging, the most important process is detecting and diag-
nosing the suspicious mappings. We present the heuristic approach debugging algorithms.
The algorithms should lock the suspicious mappings and output useful suggestions.

For the redundant mappings, we first deal with the redundancies caused byequi-
valentClass axiom, and then check other redundancies caused by mapping implication.
Algorithm 1 shows the process for debugging redundant mappings.

Debugging Ontology Mappings: A Static Approach 31

Algorithm 1 Debugging redundant mappings
1: for all concept pair{Ai, A j} involving equivalentClass axiomdo
2: if ∃mi,m j AND Rel(mi) == Rel(m j) then
3: if (L f t(mi) == Ai AND L f t(m j) == A j AND Rit(mi) == Rit(m j)) OR

(Rit(mi) == Ai AND Rit(m j) == A j AND L f t(mi) == L f t(m j)) then
4: Output: [Warning]mi or m j is redundant
5: end if
6: end if
7: end for
8: for all mappingmi do
9: for all mappingm j(mi , m j) do

10: if (mi ⊒ m j) then
11: Output: [Warning]m j is redundant
12: else if mi ⊑ m j then
13: Output: [Warning]mi is redundant
14: end if
15: end for
16: end for

Using mapping implication, the redundant mappings can be re-organized into the
structure like hierarchy.

The inconsistent mappings caused byis-a circles can be found according to Defini-
tion 4, and detecting other inconsistent mappings needs to check the axioms (see Algo-
rithm 2).

Algorithm 2 Debugging inconsistent mappings
1: Combine ontologyO1, O2 and mappingsM into a graphG
2: TraverseG to find all circlesP
3: for all circle pi do
4: Output:[Error]Inconsistent mappings inpi

5: end for
6: for all conceptsAi satisfyequivalentClass/disjointWith axiomdo
7: if mk mapAi to B j AND B j fail to satisfyequivalentClass/disjointWith axiomthen
8: Output:[Error] Inconsistent mappings inmk

9: end if
10: end for

The users can repair the inconsistent mappings according todebugging information
until no other inconsistent mappings appear.

According to Definition 2, we design an algorithm to debug imprecise mappings. For
imprecise mappings are often ambiguous, we debug them with some heuristic rules.

32 P. Wang, B. Xu

Algorithm 3 Debugging imprecise mappings
1: for all conceptCi ∈ T1 ∪ T2 do
2: mk mapCi to D j,(26 |mk|, |D j| 6 n)
3: if ∀s, t,Ds ⊑ Dt does not existthen
4: Select Case(the mapping relation ofmk)
5: Case⊒:
6: Output:[Warning]mk may be imprecise
7: Output:More precise mapping may be:Ci ⊒

∨

D j

8: Case⊑:
9: Output:[Warning]mk may be imprecise

10: Output:More precise mapping may be:Ci ⊒
∧

D j

11: Case=:
12: Output:[Warning]mk may be imprecise
13: Suggestion 1: More precise mapping may be:Ci ⊒

∨

D j

14: Suggestion 2: Check the mappings ofCi’s children/parents for final decision;
15: End Select
16: end if
17: end for

For the abnormal mappings, we calculate their behavior value. For a given concept
and related mappings, we consider the relative mapping behavior to the concept’s neigh-
bors. The algorithm is as follows:

Algorithm 4 Debugging abnormal mappings
1: for all mappingmi do
2: Ci = L f t(mi) or Ci = Rit(mi)
3: Di denotesCi’s neighbors within distanceδ
4: {Ei}⊆{Di}, |{Ei}|=k, and∀Ei, ∃mt andRel(mt) = Rel(mi)
5: Calculatemi’s behavior as:Bh(mi|{Ei}) = 1

k

∑k
t=1

d(ci,ct)
d(ei,et)

6: if |Bh(mi|{Ei}) − 1| > θ then
7: Output:[Warning]mi is abnormal mapping
8: end if
9: end for

10:

5 EXPERIMENTS AND DISCUSSIONS

5.1 Experiment Results

We report some results we have obtained. In our experiment, we use five-pair ontologies,
which describe university, food, publication, travel and film domains, respectively. All of
the ontologies are collected through the semantic search engine Swoogle3. Before using

3 http://swoogle.umbc.edu/

Debugging Ontology Mappings: A Static Approach 33

the five-pair ontologies, we preprocess them with several steps, which include translat-
ing DAML format to OWL format, removing some complex classesand revising some
concepts and properties. In order to create the original mapping result, we utilize several
simple mapping techniques:

1. Literal similarity computes Levenshtein distance between concepts information (in-
cluding local-names, labels and comments) to estimate the similarity;

2. Structure Similarity examines concepts’ neighbors, siblings, domain and range to
measure the similarity.

The ontology mapping debugging algorithms are implementedusing Java JDK1.5 and
Jena-2.44 API. The input data are a pair of ontologies and the mappings between them, and
the output data is debugging information. According to output information in debugging,
the user can accept or reject the suggestions generated by debugging algorithm. When
a suggestion is accepted, the user can examine the warnings/errors, and then repair them
manually. Notice that the mapping debugging is an iterativeprocess, which can avoid that
new change on the mappings would cause new warnings/errors.

Redundant Inconsistent Mappings Imprecise Abnormal
Mappings Causing Violating Mappings Mappings

Circles Axiom
Num P/R Num P/R Num P/R Num P/R Num P/R

University 12 1.00/ 7 1.00/ 7 1.00/ 5 1.00/ 5 0.80/

1.00 1.00 1.00 0.83 1.00

Food 23 1.00/ 12 1.00/ 3 1.00/ 9 0.77/ 4 0.50/

0.92 1.00 1.00 1.00 1.00

Publication 30 0.93/ 6 1.00/ 0 5 1.00/ 7 0.71/

0.88 1.00 1.00 1.00

Travel 10 0.90/ 3 1.00/ 3 1.00/ 2 1.00/ 0
0.82 1.00 1.00 0.67

Film 5 1.00/ 0 2 1.00/ 6 0.83/ 2 1.00/

1.00 1.00 0.63 0.50

Table 1. Ontology mapping debugging results

We also useprecision andrecall to evaluate the performance of our debugging tech-
nique. If a suggestion is accepted by the user, or the user agrees that an output er-
ror/warning is useful, then the suggestion/error/warning is right. Table 1 shows the de-
bugging results in our experiment.

After debugging, some mapping errors may be repaired. We re-calculate the precision
and recall of the mapping result, and compare with the original one (Figure 3). Figure 3
demonstrates that the debugging process is useful, and the quality of mapping result is
improved significantly.

4 http://jena.sourceforge.net/index.html

34 P. Wang, B. Xu

0,30
0,35
0,40
0,45
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

University Food Publication Travel Film

P-B-Debugging P-A-Debugging R-B-Debugging R-A-Debugging

Fig. 3. Mapping results comparison (before debugging and after debugging)

5.2 Discussions

In fact, the debugging technique we discussed is just a static process. If we can import
some dynamic techniques, such as setting breakpoints in thedebugging process, we could
control the mapping process and choose the best parameters.

The abnormal behavior of mappings is based on the intuition.In debugging process,
the abnormal mappings algorithm is very useful for dealing with homonymy concepts.
However, when two ontologies have divarication for the sameconcepts, the abnormal
mappings debugging could return wrong results.

The mapping bugs defined in this paper probably do not cover all kinds of mapping
defects. Moreover, some intensive experiments are needed to verify this technique.

We have not used reason methods in the debugging process. We believe the dis-
tributed description logic (DDL) reason will be of benefit tothe ontology mapping de-
bugging.

Fortunately, to the best of our knowledge, some companies are adopting(or will adopt)
the mapping debugging idea in their semantic information integration product. The map-
ping debugging could be a useful tool/component for the ontology mapping systems.

6 CONCLUSIONS

A novel technique called ontology mapping debugging technique is proposed. Four types
of mapping bugs are defined, and the methods for detecting anddiagnosing them are
proposed as well. The experiment results demonstrate that the technique is promising and
can improve the mapping result quality.

Acknowledgements

This work was supported in part by the NSFC(60425206, 90412003), and Excellent Ph. D.
Thesis Fund of Southeast University (YBJJ0502). The authors thank Yimin Wang and Jie
Bao for the early discussions on this paper. Jin Zhou read andpolished the entire paper.

Debugging Ontology Mappings: A Static Approach 35

The authors would also like to thank the anonymous reviewersfor their helpful comments
and suggestions for improving the manuscript.

REFERENCES

[1] Berners-Lee, T.—Hendler, J.—Lassila, O.: The Semantic Web. Scientific American,
Vol. 284, 2001, No. 5, pp. 34–43.

[2] Natalya, F. N.—Mark, A.: The PROMPT Suite: Interactive Tools for Ontology Merging
and Mapping. Int. J. Hum.-Comput. Stud, Vol. 59, 2003, No. 6,pp. 983–1024.

[3] AnHai, D.—Jayant, M.—Robin, D. et al.: Learning to Match Ontologies on the Semantic
Web. The VLDB Journal. Vol. 12, 2003, No. 4, pp. 303–319.

[4] Ehrig, M.—Staab, S.: QOM – Quick Ontology Mapping. Proceedings of the Third Interna-
tional Semantic Web Conference, ISWC2004, Hiroshima, Japan, 2004.

[5] Euzenat, J.—Stuckenschmidt, H.—Yatskevich, M.: Introduction to the Ontology Align-
ment Evaluation 2005. Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies,
Banff, Canada, 2005.

[6] Erhard, R.—Philip, A. B.: A Survey of Approaches to Automatic Schema Matching. The
VLDB Journal, Vol. 10, 2001, No. 4, pp. 334–350.

[7] Kalfoglou, Y.—Schorlemmer, M.: Ontology Mapping: The State of the Art. The Know-
ledge Engineering Review, Vol. 18, 2003, pp. 1–31.

[8] Shvaiko, P.—Euzenat, J.: A Survey of Schema-Based Matching Approaches. Journal on
Data Semantics, Vol. 4, 2005, pp. 146–171.

[9] Hess, A.: An Iterative Algorithm for Ontology Mapping Capable of Using Training Data.
Proceedings of the 3rd European Semantic Web Conference, ESWC 2006, Budva, Montene-
gro, 2006.

[10] Ehrig, M.—Euzenat, J.: Relaxed Precision and Recall for Ontology Matching. Proceedings
of the K-CAP 2005 Workshop on Integrating Ontologies, Banff, Canada, 2005.

[11] Euzenat, J.: Semantic Precision and Recall for Ontology Alignment Evaluation. Proceedings
of the 20th International Joint Conference on Artificial Intelligence, IJCAI2007, Hyderabad,
India, January 6–12, 2007.

[12] Hanif, S.—Seki, Y.—Aono, M.: Automatic Alignment of Ontology Eliminating the Prob-
able Misalignments. Proceedings of the 1st Asian Semantic Web Conference, ASWC 2006,
Beijing, China, 2006.

[13] Distributed Reasoning Architecture for Galaxy of Ontologies Mapping Debugging.
http://sra.itc.it/projects/drago/applications-debugging.html.

[14] Stuckenschmidt, H.—Serafini, L.—Wache, H.: Reasoning about Ontology Mappings. In
ECAI 2006 Workshop on Context Representation and Reasoning, Ria del Garda, Italy, 2006.

[15] Chiticariu, L.—Tan, W.: Debugging Schema Mappings with Routes. Proceedings of Inter-
national Conference on Very Large Data Bases, VLDB 2006, Seoul, Korea, 2006.

[16] Alexe, B.—Chiticariu, L.—Tan, W.: SPIDER: A Schema mapPIng DEbuggeR. Proceed-
ings of International Conference on Very Large Data Bases, VLDB2006, Seoul, Korea, 2006.

[17] Kalyanpur, A.—Parsia, B.—Sirin, E. et al.: Debugging Unsatisfiable Classes in OWL On-
tologies. Journal of Web Semantics, Vol. 3, 2005, No. 4, pp. 268–293.

36 P. Wang, B. Xu

[18] Parsia, B.—Sirin, E.—Kalyanpur, A.: Debugging OWL Ontologies. Proceedings of
the 14th Inter-national World Wide Web Conference, WWW 2005, Chiba,Japan, 2005.

[19] Kalyanpur, A.—Parsia, B.—Sirin, E. et al.: Repairing Unsatisfiable Concepts in OWL On-
tologies. Proceedings of the 3rd European Semantic Web Conference, ESWC2006, Budva,
Montenegro, 2006.

[20] Schlobach, S.: Debugging and Semantic Clarification by Pinpointing. Proceedings of the
Second European Semantic Web Conference, ESWC 2005, Heraklion, Greece, 2005.

[21] Wang, H.—Horridge, M.—Rector, A.: Debugging OWL-DL Ontologies: A Heuristic Ap-
proach. Proceedings of the 4th International Semantic Web Conference, ISWC 2005, Galway,
Ireland, 2005.

[22] Stuckenschmidt, H.: Approximate Information Filtering with Multiple Classification Hierar-
Chies. International Journal of Computational Intelligence and Applications, Vol. 2, 2002,
No. 3, pp. 295–302.

Peng Wang received his bachelor and master degrees from North-
western Polytechnical University, P. R. China in 2000 and 2003, re-
spectively. Now, he is a Ph. D. candidate in the School of Computer
Science and Engineering, Southeast University. His current research
interests include Semantic Web, ontology, and informationretrieval
on the web.

Baowen Xu is a Professor of School of Computer Science and En-
gineering, Southeast University. His research areas include program-
ming languages, software engineering (software analysis and testing,
re-engineering), formal software techniques, web information analy-
sis and testing techniques, knowledge and information retrieval tech-
niques. He has published more than 20 books and more than 200 pa-
pers in scientific journals and international conferences/workshops in
the above research areas. He has been the general chair, program chair
or PC member of more than 20 international conferences.

