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Abstract. In comparison to dense matrices multiplication, sparse matrices multi-
plication real performance for CPU is roughly 5–100 times lower when expressed
in GFLOPs. For sparse matrices, microprocessors spend most of the time on com-
paring matrices indices rather than performing floating-point multiply and add
operations. For 16-bit integer operations, like indices comparisons, computational
power of the FPGA significantly surpasses that of CPU. Consequently, this paper
presents a novel theoretical study how matrices sparsity factor influences the indices
comparison to floating-point operation workload ratio. As a result, a novel FPGAs
architecture for sparse matrix-matrix multiplication is presented for which indices
comparison and floating-point operations are separated. We also verified our idea
in practice, and the initial implementations results are very promising. To further
decrease hardware resources required by the floating-point multiplier, a reduced
width multiplication is proposed in the case when IEEE-754 standard compliance
is not required.
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1 INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are alternative computing platform to
microprocessors – CPUs (Central Processing Units) or GP-GPUs (General Pur-
pose Graphics Processing Unit). Computation power for floating-point operations
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of FPGAs are roughly similar to CPUs [1, 2]. Nevertheless, data transmission over-
heads, a difficult and much more time-consuming designing process, result that
FPGAs are rarely employed for floating-point intensive computations. Conversely,
FPGAs are often employed for image processing for which limited bit-width (8 or
16-bit) integer operations are commonly employed [3]. Similarly for DSP (Digital
Signal Processing) integer operations (especially 16-bit or less), computation power
of FPGAs significantly overpass that of CPUs. For example, Xilinx Virtex 7 FPGAs
contain up to 3 600 DSP modules, thus they can perform up to 5.3 TMAC/s (MAC –
Multiply and ACcumulate) [4], which significantly overpass the computation power
of any current CPU or DSP.

For CPUs, in opposite to dense matrix multiplication, sparse matrix multi-
plication sustained performance is roughly 5-100 times smaller when expressed in
GFLOPs [5, 6, 7]. For sparse matrices, processors spend most of the time on com-
paring matrix indices rather than on performing floating-point multiply and add
operations. Therefore, e.g. in [8] indices bit-widths were shortened to 16-bit in or-
der to limit the memory bandwidth overheads. For 16-bit integer operations, i.e.
indices comparisons, computational power of the FPGA significantly surpasses that
of CPU. According to the authors’ knowledge, very few FPGA architectures for
sparse matrices multiplication have been published until now. In [9, 10, 11] only
sparse matrix-vector multiplication is addressed. However, for matrix-vector oper-
ations, a ratio of computation complexity to data transfer size is low, therefore the
data transfer overhead often ruins the speed-up offered by the FPGA. The only
paper that addresses sparse matrix-matrix multiplication is [12]. This paper con-
siders relatively high matrices density of 100 %, 30 %, 20 % and 10 %, where the
100 %-density is used to represent the dense matrix-matrix multiplication. Nowa-
days when CPU and GP-GPU employs SIMD/SPMD (Single Instruction Multi-
ple Data/Single Program Multiple Data) operations and are highly optimized for
dense matrix-matrix multiplication, density should have a factor of 10 % or lower
in order to efficiently implement sparse rather than dense matrix-matrix multipli-
cation algorithm. This holds when computation power and not the memory size
is the key limiting factor. For example in [6], DGEMM performance is roughly
180 GFLOPS compared to up to 18 GFLOPS for sparse matrix-vector computa-
tions.

Paper [12] considers the power dissipation rather than the computation power
of the solution. Every Processing Element (PE) contains arithmetic unit; thus it
is not highly optimized for sparse operations, for which, as it will be proved in
this paper, indices comparisons dominate the floating-point operations. Therefore
a novel architecture is proposed, that is highly parallel, able to carry out 8× 8 (or
more) indices comparison in a single clock cycle.

The organization of this paper is as follows. Chapter 2 considers how sparsity
of matrices influences the integer comparison to floating-point arithmetic operations
workload ratio. This novel theoretical study, verified in practice, demonstrates that
the larger the matrices sparsity, the more workload should be allocated to indices
comparison. Chapter 3 introduces a novel architecture for highly-parallel indices
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comparison. Chapter 4 presents promising implementation results. Chapter 5 pro-
poses a novel reduce-width floating point multiplier.

2 THE SOFTWARE ALGORITHM FOR SPARSE
MATRICES MULTIPLICATION

In this paper, similarly to [7, 9], Compress Sparse Row (CSR) for matrix A and
Compress Sparse Column (CSC) for matrix B representations are employed, where
A × B is the performed matrix-matrix multiplication. Examples of the CSR and
CSC representations are given in Figure 1.

CSR format
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Figure 1. Examples of Compress Sparse Row and Compress Sparse Column representa-
tions for A ∗B

In the proposed architecture for matrix A, column indices are stored in internal
FPGA memory denoted as Block RAM (BRAM) [4], a separate BRAM memory for
each row. Similarly for the matrix B, row indices are stored in a separate BRAM
memory for different columns.

Consider the matrices multiplication of A ∗ B, where matrix A has density dA
and a size N × N (a square matrix is considered, however the same methodology
can be derived for any rectangular size), and matrix B has density dB and size N .
Density dA (dB) is defined as the number of nonzero elements to the total number
of elements N2. Consequently, the number of nonzero elements in every row and
column is on average equal to dA ∗ N (denoted as daN in Listing 1) for matrix A
and dB ∗N (dbN) for matrix B.

The matrix-matrix multiplication incorporates many vector-vector dot products
a∗b, thus for the simplicity, only a vector-vector operation will be considered in this
section. An algorithm for the sparse vector-vector dot product a ∗ b is presented in
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Listing 1. The most important part of this algorithm is indices comparison ia[ja]
and ib[jb] and taking the next nonzero index (incrementing ja or jb) according to the
comparison results. It should be noted that both values ja and jb are incremented
and multiplication is performed only if indices ia[ja] and ib[jb] are the same.

double a [ ] , b [ ] ; // nonzero va l u e s o f v e c t o r s a , b
// in a compressed form

int i a [ ] , ib [ ] ; // t a b l e o f i n d i c e s f o r nonzero e lements in
// in vec t o r a , b − same as e . g . column index 0 in Figure 1 .

double product= 0 . 0 ;

// f o r ( a lmost ) every element in ia [ ] and i b [ ]
for ( int j a =0, jb=0; ja<daN && jb<dbN ; )
{

i f ( i a [ j a ] < ib [ jb ] ) // index ia [ ja ]< i b [ j b ] so take the next index ia [ ]
{

j a++;
{
else

i f ( i a [ j a ] == ib [ jb ] ) // mu l t i p l i c a t i o n i s performed
{

product+= a [ j a ] ∗ b [ jb ] ;
j a++; jb++; // take the next i n d i c e s ia [ ] and i b [ ]

}
else // ia [ j a ] > i b [ j b ] − t ake the next index i b [ ]
{

jb++;
}

}

Listing 1. Sparse vector-vector dot multiplication algorithm

From Listing 1, the following conclusions can be driven. The number of indices
comparisons LN (the loop iterations) is equal to:

LN ≈ B ∗ (dA + dB) (1)

provided that no multiplication is performed (no indices match occurs), where dA∗N ,
dB ∗ N are the number of nonzero elements in the vector a, b respectively. For
nonzero elements located only in the left-part of the vector a, and nonzero elements
located only in the right-part of vector b, the number of iterations might be as low
as LN = dA ∗ N . However the assumption is made that nonzero elements in the
vector a and b are randomly distributed and therefore (1) is satisfied.

If the LM is the number of performed multiplications, the total number of the
loop iterations L is equal to

L ≈ LN − LM . (2)

Equation (2) holds as for the indices match (multiplication is performed), both
ja and jb are incremented (see Listing 1); otherwise, either ja or jb is incremented.

Now, let us assume that nonzero elements in the vector a and b are randomly
distributed. For an arbitrary taken index ia[ja] of nonzero element of the vector a,
the probability that the corresponding element of the vector b (index ib[jb]) is also
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nonzero (i.e. ia[ja] == ib[jb]) is equal to dB, where dB is the density of the vector b.
Consequently, the average total number of nonzero indices matches, i.e. the number
of performed multiplications, LM , is

LM = N ∗ dA ∗ dB. (3)

The total number of the loop iterations in Listing 1, L, is therefore equal to

L ≈ LN − LM ≈ N ∗ (dA + dB − dA ∗ dB). (4)

Concluding the discussion, the ratio R for the number of performed multiplica-
tion LM to the total number of the loop iterations L is equal:

R =
LM

L
≈ dA ∗ dB

dA + dB − dA ∗ dB
≈ dA ∗ dB

dA + dB
. (5)

For dA = dB, (5) can be further simplified to

R ≈ dA/2. (6)

For example, for dA = dB = 0.1, the ratio R ≈ 0.05, thus the number of multi-
plications LM is 20 times lower than the total number of the loop iterations L. The
architecture of the sparse matrix-matrix multiplication should be able to perform
20 times more indices comparisons to floating-point multiply and add operations.
Consequently, indices comparison should be carried out independently to arithmetic
operations as it is presented in Figure 2. Thus the indices comparison block should
pass to the floating-point arithmetic unit only indices of matrix A and corresponding
indices of matrix B for which arithmetic operation are required. In order to sepa-
rate indices comparisons from floating-point arithmetic, an additional FIFO (First-
In First-Out) buffer is employed. Consequently, local grouping of nonzero values,
where high number of arithmetic operations are required, may be distributed in time
by the FIFO buffer. Thus average (not peak) number of floating-point arithmetic
operations should be considered in the arithmetic module.

(Index A, Index B)

Indices
comparison

FIFO

Floating-point
arithmetic

(Index A, Index B)

Figure 2. The idea of independent indices comparison and floating-point arithmetic mod-
ules
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3 ARCHITECTURES FOR PARALLEL MATRICES
MULTIPLICATION

A typical (e.g. [13, 14]) architecture for parallel dense matrix-matrix multiplication
is given in Figure 3. In this architecture n ×m floating-point multiplications and
additions are carried out in a single clock cycle. Row 0 of matrix A is stored
in RAM A0. Row 1 of Matrix A is stored in RAM A1, and so on. Column 0
of matrix B is stored in RAM B0 and so on. Consequently n × m results are
calculated at the time. The most important advantage of this architecture is that
only n + m memory blocks are required; the output of a single memory block feeds
many arithmetic modules. This is very important as in many applications internal
memory size limits the level of parallelism.

Figure 3. A typical architecture for dense matrix-matrix multiplication

For efficient sparse matrix-matrix multiplication the above architecture cannot
be adopted straightforward, as multiplication process is not regular. According to
Listing 1 for sparse operations, the memory address ja, jb or both can be incre-
mented in a single iteration. For dense matrix operations both addresses are always
incremented. Therefore, novel architectures should be proposed in order to compare
indices in parallel.
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3.1 Independent Parallel Indices Comparison (IPIC)

For the proposed solution denoted as Independent Parallel Indices Comparison
(IPIC), each indices comparison is carried out separately, thus has its own memory
and comparison module. A single module should be able to perform a single indices
comparison and two independent (index) memory accesses in a single clock cycle.
In FPGAs, blocks RAM (BRAM) are the dual port memory; thus two independent
memory accesses can be delivered in a single clock cycle. Therefore, in order to
better utilize the BRAM memory, the same contents of memory should be used on
two ports. Consequently, a basic building block for the IPIC is given in Figure 4. It
performs 2× 2 comparisons and contains a single BRAM per comparison. In order
to further speed up the comparison, tens or hundreds of instances of these blocks
should be employed in parallel.
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Figure 4. 2× 2 Independent Parallel Indices Comparison (IPIC)

For this architecture the level of parallelism is limited by the number of BRAMs.
This holds as a comparison process requires insignificant number of FPGA resources.
For example, the largest Virtex 7 XC7VX1140T contains 3 760 BRAMs [4], each of
them can hold up to 1 024 16-bit words (an assumption is made that indices are
16-bit wide, thus the matrix size N < 216). Considering that only a half the number
of memory blocks is assigned to indices comparison (another part of BRAMs is
assigned to hold matrices values), up to 1 800 comparisons can be carried out in
a single clock cycle. Assuming matrix density dA = dB = 0.1, i.e. indices comparison
to arithmetic ratio is equal to 20, only 90 floating-point multiply and add modules
are required. For 200 MHz clock frequency, the FPGAs are able to achieve up to
90 ∗ 2 ∗ 200 MHz = 36 GFLOPS.
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3.2 FIFO-based Parallel Index Comparison (FPIC)

The IPIC throughput is limited by the amount of BRAM rather than by available
FPGA logic resources. Consequently higher level of parallelism for indices com-
parison is required. Analyzing Figure 4, a conclusion can be drawn that the same
data but in different time-slots are read at port A and port B of a single BRAM.
Consequently, by insertion of a small FIFO, whose functionality resembles cache
memory, a greater number of memory accesses can be obtained. The greater the
FIFO depth, the smaller ports dependency, but higher hardware requirements. As
FIFOs in FPGAs usually incorporate SRLs (Shift Register LUT) logic and a 32-bit
depth SRL fits into a single LUT for Virtex 6 family, a 32-bit FIFO depth is cho-
sen. In the proposed architecture, a single BRAM port feeds 4 FIFOs, thus a single
BRAM with additional FIFOs feeds 8 data ports. A block diagram of the proposed
indices comparison module for 8× 8 parallel comparison is given in Figure 5. In the
authors’ opinion the proposed architecture has the best ratio of BRAM memory to
logic resources, especially for density 10 % or lower. For higher parallelism several
8× 8 FPIC modules should be implemented.

4 FPGA IMPLEMENTATION

Table 1 gives implementation results for 8× 8 FPIC, for different matrices of size N
and density roughly 10 %. As can be seen, the number of required clock cycles
is significantly reduced. The effective parallelism is around 43 to 60, where 64 is
theoretical maximum value (8 × 8 parallelism). The higher the matrix size the
better the performance. This holds as the matrices were randomly generated, thus
statistically the greater the matrix size, the more similar the relative number of
nonzero values in each row and column.

N Density [%] # clock cycles effective parallelism

100 10.5 4 179 43.6

250 9.83 56 639 51.0

500 9.67 409 705 55.1

1 000 9.61 3 032 541 59.7

Table 1. Implementation results for FPIC 8× 8

The drawback of the FPIC architecture is that it works poorly for non-uniform
distribution of nonzero values. The throughput of the entire 8× 8 module is limited
by the slowest row-column comparison. Consequently, for strongly non-uniform
distribution of nonzero matrix values, 2×2 IPIC architecture should be implemented.
Alternative solution is to implement 4 × 4 FPIC, i.e. each BRAM port feeds only
two (instead of four for 8× 8 FPIC) FIFO buffers.

Typical hardware requirements for different modules employed in the design is
given in Table 2. Two different types of floating-point multipliers are considered:
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Figure 5. The 8× 8 FIFO-based Parallel Index Comparison (FPIC)

type 1 – utilization of only logic resources (LUTs), type 2 – utilization of logic and
dedicated 25× 18-bit integer multipliers (DSP48 modules), rows 3 vs. 4, and 5 vs. 6
in Table 2. The largest Xilinx Virtex 7 chip can incorporate roughly 920 single
and 370 double precision floating-point multiply and add modules (row 8 and 9 in
Table 2); these numbers are theoretical. For double precision operation the number
of available DSP48 rather than logic resorces limits the level of parallelism. In real
applications, up to roughly 50–80 % of FPGA logic resources should only be used
(otherwise the clock frequency drops dramatically) and assumption is made that half
of the logic resources is reserved by the indices comparison, external memory and
control logic. The DSP48 modules are used only by the floating-point multiplier,
therefore, in the final system they do not limit the level of parallelism. Thus the real
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number of floating-point modules is estimated as 250 single and 150 double precision.
Assuming 200MHz clock frequency, the throughput is roughly 250 ∗ 2 ∗ 200 MHz =
100 GFLOPS single and 150∗2∗200 MHz = 60 GFLOPS double precision operations.
The additional multiplication by 2 is to account for “multiply and add” operations.

Module # LUT # FF #BRAM 18k #DSP48

1 32-bit floating-point adder 404 546 0 0

2 64-bit floating-point adder 730 944 0 0

3 32-bit floating-point multiplier1 692 672 0 0

4 32-bit floating-point multiplier2 396 360 0 1

5 64-bit floating-point multiplier1 2 455 2 422 0 0

6 64-bit floating-point multiplier2 463 541 0 9

7 XC7VX1140T 712 000 1 424 000 3 760 3 360

8 max number of 32-bit 921 1 571 3 360
fmul + fadd row: 7/(1 + 4)

9 max number of 64-bit 569 959 373
fmul + fadd row: 7/(2 + 6)

Table 2. Implementation results for selected modules

Sparse matrix-vector multiplication throughputs on GP-GPU presented in [15]
are 16 and 10 GFLOPS for single and double precision operations, respectively. Si-
milar results were also presented in [6]. It should be noted that FPGAs significantly
outperform counterparts in the case when a matrix sparsity is unstructured and ran-
domly distributed. In the case when a matrix structure is known, a dense approach
is usually employed, e.g. for a band matrix, the BLAS-General-Band Storage Mode
should be used.

In many cases the sparse indexing overheads can be reduced by recognizing
patterns in the structure of nonzero coefficients. For example, the matrix may
entirely consist of small fixed-size, dense rectangular blocks. Then, we can use
a block variant of CSR – a block CSR, or BCSR, format which stores one index per
block instead of one per nonzero [7]. As a result, indices comparison overhead is
reduced at a cost of increase in the number of unnecessary floating-point operations,
i.e. some calculations are performed on zero elements. It should be noted that the
BCSR format might be also introduced in the FPGA, however indices comparison
overhead in comparison to floating-point operations overhead is less destructive than
in the case of CPUs. Summing up, a speed-up factor for CPU and FPGA for sparse
matrices multiplication is application-depending, thus cannot be easily generalized.
Therefore this paper focuses only on randomly generated sparse matrices. The less
dense and more randomly distributed sparse matrices are, the larger is the speed-up
factor for FPGA. This holds as the indices comparison to floating-point workload
ratio is greater, and FPGAs can significantly outperform CPUs for reduced-width
integer operations.
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5 FLOATING-POINT MULTIPLIERS

5.1 IEEE-754 Standard Requirements

Both Central Processing Units (CPU) and Graphic Processing Units (GPU) in-
corporate high throughput floating-point multipliers. These multipliers comply
with IEEE-754 standard, either Single-Precision (SP; 32-bit), Double-Precision (DP;
64-bit) or extended double precision (roughly 80-bit). Therefore multipliers struc-
ture and bit-width are strictly defined. A processor designer selects a proper archi-
tecture of a multiplier. It suits a certain data representation of arguments. A differ-
ent type of arguments may be programmed on these platforms, nevertheless they will
be emulated in software and therefore executed significantly more slowly. It should
be noted that the computing performance strongly depends on multiplication preci-
sion. CPUs usually doubles their performance for Single-Instruction Multiple-Data
(SIMD) operations when multiplication is carried out on the SP instead of DP. For
some GPUs a speed-up factor is even higher as they are optimized for the SP oper-
ations. For example: AMD Radeon HD 4 870 peak performance is 1.2 TFLOPS for
SP and only 240 GFLOPS for DP, five times the performance gap.

The selection of the calculation precision is more complicated for FPGA designs
for which precision can be selected without restraints. The significant and exponent
bit-widths can be custom-defined. For example, Xilinx CORE Generator [16] can
generate a floating-point multiplier for fraction widths 4 . . . 64, and exponent widths
4 . . . 16. Reduction of a data width causes less FPGA resources consumption per
multiplier, thus greater number of the parallel multipliers can be implemented and
higher computation power is achieved.

Unfortunately, the HPC society is strongly committed to the DP calculations,
mostly due to software backward compatibility. Nevertheless, a research is required
whether some DP computation can be substituted by the SP or other user-defined
precision counterparts. For example, there are a great number of iterative algo-
rithms for which the result precision (thus also calculation precision) increases with
an iteration number, e.g. Newton-Raphson method or conjugate gradient method.
Therefore initial iterations can be calculated in reduced custom-defined precisions
and IEEE-754 standard compliance may be required for final iterations only.

In principle, IEEE-754 standard was defined to allow for effortless migration be-
tween different platforms, i.e. the computation results should be the same on differ-
ent platforms. Nevertheless, no IEEE-754 compatibility is required for computations
carried out on e.g. 48-bit data as these computations can be efficiently performed
only on FPGA and therefore there is no need to be compatible with different plat-
forms. The same results can be obtained on different FPGAs by implementing the
same IP-cores rather than by compiling with the IEEE-754 standard.

Analyzing IEEE-754 standard, a conclusion can be drawn that it was optimized
for storage rather than calculation resources. For example, incrementing exponent
width by one bit instead of supporting denormalized numbers would significantly
increase the represented numbers range and probably reduce resources occupied by
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arithmetic modules. Nevertheless, one extra bit is required to store such numbers.
Therefore, the idea behind this chapter is to optimize intermediate data format in
order to reduce arithmetic resources. This holds especially for intermediate data
which are not stored in the memory or for data whose width is not compact to the
memory interface width (e.g. 50-bit data for 64-bit memory interface). Summing up,
the main idea presented in this section is to stop complying with IEEE-754 standard
in order to reduce hardware resources. It should be noted that the calculation errors
obtained by custom modules may not be greater than for IEEE-754 compliant ones
but calculation results might be slightly different.

5.2 Structure of Floating-Point Multipliers

The structure of a floating-point multiplier is described e.g. in [17] and presented
in Figure 6. The most area consuming module is the significant multiplier which
is a standard unsigned integer multiplier. The inputs bit-width of this multiplier,
n, is equal to the significant bit-width plus one (additional hidden ‘1’ of the man-
tissa). The integer multiplier output bit-width is equal to 2 ∗ n. Then, the result is
normalized and rounded. Additional module “Normalize 2” is required in a case of
rounding overflow. The final mantissa width (together with the hidden ‘1’) is equal
to n, therefore a great number of the integer multiplier output bits are disregarded.
The above scheme is required due to IEEE-754 standard complaints.

Significant

Sign Exponent Significant

Sign

XOR ADD MULTIPLY

Exponent

Adjust Normalize

Round

Normalize 2Adjust 2

Sign Exponent Significant

Figure 6. Block diagram of the standard floating point multiplier

The main idea behind this chapter is to design hardware-optimized floating-
point multiplier which is not IEEE-754 compliant. The integer multiplier produces
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2n-bit result, but only n+ 2 MSBs are further used to produce the final significant.
These two additional bits (n + 2) are required during normalization (where the
integer multiplier result might be shifted one bit to the left) and during rounding
(assuming rounding-to-nearest-up [17]). Summing up, as (n − 2) output bits of
the integer multiplier are disregarded, a reduced-width multiplier with a reasonable
error might be employed instead of the full-width integer multiplier.

5.3 Reduced Width Multipliers

The idea is to carry out multiplication in such a way that (n−w) LSBs of the results
are ignored during the multiplication process where w is a number of guard bits, see
Figure 7.
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Figure 7. Block diagram of the direct truncated fixed width multiplier

Consequently, a multiplier area is significantly reduced at a cost of an additional
calculation error. Analyzing Figure 7 it can be seen that the hardware resources
are roughly halved for w = 0. A truncation error can be significantly decreased by
adding an error compensation logic, e.g. [18, 19]. Nevertheless, these error compen-
sation methods are dedicated to ASIC (Application Specific Integrated Circuit) and
are not optimal for FPGA designs. An FPGA-optimized reduced width multiplier
is presented in [20]. This multiplier does not require additional FPGA resources in
comparison to the direct truncation multiplier as the truncated carry path is fed by
the input bits ai or bj.

In this paper an assumption is made that multipliers are implemented in Con-
figurable Logic Blocks (CLBs) [4]. However, dedicated multipliers incorporated in
DSP blocks [4] are now available in FPGAs and often they are preferable to CLB-
type of multipliers. Nevertheless, according to the authors’ experience and the
publication [21], using dedicated multipliers complicates routing and often leads to
additional propagation delays. This holds as the dedicated multipliers are located in
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the particular FPGAs sites. Besides, the number of dedicated multipliers is limited
for a given FPGA, and in many cases a combination of dedicated and CLB-type
multipliers can increase design functionality. Similarly a combination of CLB-type
and dedicated multipliers can be used within a single multiplier, e.g. in a 24×24-bit
multiplier when 17 × 17-bit (Xilinx Spartan) or 17 × 24 (Xilinx Virtex) unsigned
built-in multipliers are available. This combination is especially recommended for
reduced-width multipliers.

5.4 Implementation Results

In order to properly evaluate the proposed multiplier architecture, the following
calculation error statistics are employed:

• Mean Error: ME =
∑N

1
ei

N

• Mean Absolute Error: MAE =
∑N

1
|ei|

N

• Root Mean Square Error: RMSE =

√∑N

1
e2i

N

• Maximal error: Emax = max(|ei|)

where ei is the difference between the correct result (obtained by the full-width
multiplier) and the result obtained for the ith sample. Results are given in Table 3.
The error is expressed in Unit Last Places (ULP). The second column corresponds to
the type of multiplier: a direct truncation (dir) and the FPGA-optimized truncated
multiplier (opt) (see [21]).

Error Type w = 0 w = 1 w = 2 w = 3 w = 4 w = 5 w = 6 round

ME dir. 5.752 2.751 1.313 0.625 0.297 0.141 0.066 0
opt. 0.255 0.001 0.063 0.000 0.016 0.000 0.004 0

MAE dir. 5.752 2.751 1.313 0.625 0.297 0.141 0.066 0.250
opt. 1.478 0.714 0.350 0.169 0.084 0.040 0.020 0.250

RMSE dir. 6.031 2.890 1.382 0.660 0.314 0.149 0.071 0.289
opt. 1.852 0.892 0.439 0.211 0.105 0.050 0.025 0.289

Emax dir. 15.977 7.977 3.774 1.899 0.909 0.440 0.215 0.500
opt. 9.191 4.477 2.116 1.089 0.497 0.240 0.125 0.500

Table 3. Truncation errors for a direct truncation and the FPGA-optimized error compen-
sation (n = 24)

The column ‘round’ in Table 3 indicates the perfect rounding error. As can
be seen from Table 3, truncation errors for reduced-width multipliers and for ad-
ditional guard bits w = 4 . . . 6 are significantly lower than for the perfect rounding
error. Consequently, it is recommended to add one extra (guard) bit and to employ
reduced-width multiplier rather than to employ a standard full-width multiplier.
This holds both for the calculation error and occupied FPGA area.
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6 CONCLUSIONS

In this paper, sparse matrix-matrix multiplication was studied. In comparison to the
previous works, a high throughput can be achieved in the proposed architectures by
separation of the indices comparison and a floating-point arithmetic modules. This
is based on the novel theoretical study (verified in practice), that the number of
indices comparison to floating-point multiply and add operations ratio is equal to
matrix density divided by 2. Therefore for matrix density equal to 10 %, the number
of comparison modules should be 20 times greater than the number of multiply
and add modules. For lower density the ratio should be even higher. It should
be noted that indices comparison requires insignificant FPGA hardware resources;
thus highly parallel architectures for indices comparison are proposed. Summing
up, the proposed architecture offers significant speed-up in comparison to the CPU
and GP-GPU, especially in the case when the matrices sparsity is unstructured and
randomly distributed.

The last section is dedicated to floating-point multiplication which can be also
significantly optimized in the case when IEEE-754 standard compliance is not re-
quired. In this case, a reduced-width multiplier should be employed for which mul-
tiplier area is significantly reduced at the cost of additional truncation error. As
proved in Table 3, the truncation error is significantly lower than perfect rounding
error in the case when 4 . . . 6 extra guard bits are added.

Acknowledgement

This scholarly work was made thanks to POWIEW project. The project is co-funded
by the European Regional Development Fund (ERDF) as a part of the Innovative
Economy program.

REFERENCES

[1] Strenski, D. et al.: Latest FPGAs Show Big Gains in Floating Point Performance.
HPC Wire, April 16, 2012.

[2] Wielgosz, M.—Mazur, G.—Makowski, M.—Jamro, E.—Russek, P.—
Wiatr, K.: Analysis of the Basic Implementation Aspects of Hardware-Accelerated
Density Functional Theory Calculations. Computing and Informatics, Vol. 29, 2010,
No. 6, pp. 989–1000.

[3] Kryjak, T.—Marek, G.: Real-Time Implementation of Moving Object Detec-
tion in Video Surveillance Systems Using FPGA. Computer Science, Vol. 12, 2011,
pp. 149–162.

[4] Xilinx Inc. 7 Series FPGAs Overview, www.xilinx.com DS180 (v1.10), March 2,
2012.



682 E. Jamro, T. Pabís, P. Russek, K. Wiatr

[5] Vuduc, R.—Demmel, J.—Yelick, K.—Kamil, S.—Nishtala, R.—Lee, B.:
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply. In Pro-
ceedings of IEEE/ACM Conference on Supercomputing, November 2002.

[6] http://www.siliconmechanics.com/files/C2050Benchmarks.pdf, Tesla C2050
Performance Benchmarks.

[7] Demmel, J.—Dongarra, J.—Eijkhout, V.—Fuentes, E.—Petitet, A.—
Vuduc, R.—Whaley, R. C.—Yelick, K.: Self-Adapting Linear Algebra Algo-
rithms and Software. Proceedings of the IEEE, Vol. 93, 2005, No. 2, pp. 293–312.

[8] Martone, M.—Filippone, S.—Paprzycki, M.—Tucci, S.: On the Usage of 16
Bit Indices in Recursively Stored Sparse Matrices. 12th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) 2010,
pp. 57–64.

[9] Zhuo, L.—Prasanna, V. K.: Sparse Matrix-Vector Multiplication on FPGAs.
In Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-
Programmable Gate Arrays. ACM New York, NY, USA 2005, pp. 63–74.

[10] El-Kurdi, Y.—Gross, W. J.—Giannacopoulos, D.: Sparse Matrix-Vector Mul-
tiplication for Finite Element Method Matrices on FPGAs. 14th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines 2006, pp. 293–294.

[11] Sun, J.—Peterson, G.—Storaasli, O.: Sparse Matrix-Vector Multiplication
Design on FPGAs. 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines 2007, pp. 349–352.

[12] Lin, C. Y.—Zhang, Z.—Wong, N.: Design Space Exploration for Sparse
Matrix-Matrix Multiplication on FPGAs, 2010 International Conference on Field-
Programmable Technology (FPT) 2010, pp. 8–10.

[13] Russek, P.—Wiatr, K.: Dedicated Architecture for Double Precision Matrix Mul-
tiplication in Supercomputing Environment: Proceedings of the 2007 IEEE Workshop
on Design and Diagnostics of Electronic Circuits and Systems, pp. 321–324.

[14] Yong, D.—Vassiliadis, S.—Kuzmanov, G. K.—Gaydadjiev, G. N.: 64-Bit
Floating-Point FPGA Matrix Multiplication. Proceedings 13th ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays 2005.

[15] Bell, N.—Garland, M.: Implementing Sparse Matrix-Vector Multiplication on
Throughput-Oriented Processors. Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ACM, New York 2009.

[16] Xilinx Inc. LogiCORE IP Floating-Point Operator v5.0, Product Specification,
DS335, March 1, 2011, www.xilinx.com.

[17] Omondi, A. R.: Computer Arithmetic Systems: Algorithms, Architecture and Im-
plementation, Prentice-Hall International 1994.

[18] Strollo, A. G. M.—Petra, N.—DeCaro, D.: Dual-Tree Error Compensation
for High Performance Fixed-Width Multipliers. IEEE Trans. on Circuits and Sys-
tems-II: Analog and Digital Signal Processing, Vol. 52, 2005, No. 8, pp. 501–507.

[19] Garofalo, V.—Petra, N.—De Caro, D.—Strollo, A. G. M.—Napoli, E.:
Low Error Truncated Multipliers for DSP Applications. 15th IEEE International Con-
ference on Electronics, Circuits and Systems 2008, pp. 29–32.



The Algorithms for FPGA Implementation of Sparse Matrices Multiplication 683

[20] Jamro, E.—Wielgosz, M.—Wiatr, K.: Novel Reduced-Width Multiplier Struc-
ture Dedicated for FPGAs. Electrical Review, Vol. 85, 2009, No. 8, pp. 66–69.

[21] Poldre, J.—Tammemae, K.: Reconfigurable Multiplier for Virtex FPGA Fami-
ly. Int. Workshop on Field-Programmable Logic and Applications, Glasgow 1999,
pp. 359–364.

Ernest Jamro received his M. Sc. degree in electronic engineer-
ing from the AGH University of Science and Technology (AGH
UST), Kraków (Poland) in 1996; his M. Phil. degree from the
University of Huddersfield (U.K.) in 1997; his Ph. D. degree from
the AGH UST in 2001. He is currently an Assistant Professor in
the Department of Electronics, AGH UST. His research interests
include reconfigurable hardware (especially Field Programmable
Gate Arrays – FPGAs), reconfigurable computing systems, Sys-
tem on Chip design, artificial intelligence.

Tomasz Pabi�s received his B. Sc. degree from AGH University
of Science and Technology in Kraków (Poland) in 2012. During
his studies he worked in the Reconfigurable Computing Systems
group. His interest concerns parallel architectures and comput-
ing. Recently he joined Cambridge based firm ARM Ltd., where
he develops graphics processors.

Pawel Russek received his M. Sc. degree in electronics from
AGH University of Science and Technology in 1995 and his
Ph. D. degree from the same university in 2003, with research
on customized architecture for image compression algorithm in
FPGA. He works as an Assistant Professor in the Department of
Electronics, AGH UST and as a research fellow in the Academic
Computing Center “Cyfronet” AGH. His research interests focus
on hardware acceleration in FPGA. He is particularly interested
in high performance reconfigurable computing, embedded sys-
tems and the digital systems design based on high level synthesis

languages. He is the author and a co-author of many publications in that field.



684 E. Jamro, T. Pabís, P. Russek, K. Wiatr

Kazimierz Wiatr received his M. Sc. and Ph. D. degrees in
electrical engineering from the AGH University of Science and
Technology, Kraków, Poland, in 1980 and 1987, respectively, and
his D. Hab. degree in electronics from the University of Techno-
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