
Computing and Informatics, Vol. 28, 2009, 127–137

HIGHLY EFFICIENT TWIN MODULE STRUCTURE

OF 64-BIT EXPONENTIAL FUNCTION

IMPLEMENTED ON SGI RASC PLATFORM

Maciej Wielgosz, Ernest Jamro, Kazimierz Wiatr

ACK Cyfronet AGH

ul. Nawojki 11, 30-950 Krakow

&

Akademia Gorniczo-Hutnicza

Al. Mickiewicza 30, 30-059 Krakow

e-mail: {wielgosz, jamro, wiatr}@agh.edu.pl

Manuscript received 29 June 2008

Abstract. This paper presents an implementation of the double precision expo-
nential function. A novel table-based architecture, together with short Taylor ex-

pansion, provides a low latency (30 clock cycles) which is comparable to 32 bit
implementations. A low area consumption of a single exp() module (roughtly 4 %
of XC4LX200) allows that several modules can be implemented in a single FP-
GAs.The employment of massive parallelism results in high performance of the
module. Nevertheless, because of the external memory interface limitation, only
a twin module structure is presented in this paper. This implementation aims pri-
marily to meet quantum chemistry huge and strict requirements for precision and
speed. Each module is capable of processing at speed of 200 MHz with max. error
of 1 ulp, RMSE equals 0.62.

Keywords: HPRC (High Performance Reconfigurable Computing), FPGA, ele-
mentary function, exponent function, RASC (Reconfigurable Application-specific
Computing)

1 INTRODUCTION

Rapid growth of HPRC (High Performance Reconfigurable Computing) platforms
(e.g. SRC-computers, DRC-computers, Cray, XtremeData) has encouraged scien-

128 M. Wielgosz, E. Jamro, K. Wiatr

tists and companies to develop libraries of hardware modules. It is worth noticing
that the idea behind specialized hardware modules commonly known as IP-cores
is quite similar to the modern vision of portable hardware modules intended to
support super computer systems. However, hardware modules employed in HPRC
systems are subjected to rougher limitations of the silicon area. This factor strongly
impacts the number of modules that can fit into FPGA which in turn affects the
overall data transfer between software and hardware parts of the system. HPRC
modules should cope easily with the rest of the software as well as hardware parts
of the system, therefore some unified interface is indispensable. HPRC have other
important advantages over HPC (High Performance Computing) like significantly
lower power consumption and more efficient silicon coverage (80 % of silicon area is
utilized whereas processors usually do not exceed more then 11 %). Unfortunately,
carrying out a floating-point operation within FPGA absorbs much more area than
fixed-point calculations, therefore for a long time, FPGAs had not been employed to
support double precision operations. Nowadays, there are some implementations of
single precision floating-point operations [1, 2, 3]. Since the proposed exp() module
aims at speeding up HPC chemistry and physics calculations, it has to be compatible
with the data format employed so far. Consequently, the IEEE-754 double precision
standard is adopted.

2 ALGORITHM CONSIDERATIONS

Floating point elementary functions evaluation methods can be separated into two
groups: iterative [4] and non-iterative algorithms. Since iterative methods have
longer computation latency, non-iterative methods are considered hereon. Non-
iterative methods can be classified as follows:

• direct Look-Up Table (LUT)

• polynomial approximations

• a mixture of LUT and polynomial approximation.

Direct LUT methods are conceptually the simplest and their implementations result
in very high performance. These methods also provide precise results. The most
significant disadvantage of direct LUT methods is their huge memory size which
rises exponentially with the width of input data. Consequently the area occupied
by the memory becomes unacceptable when the input data width reaches roughly
16 bits.

An alternative solution to the LUT-based method is the polynomial approxi-
mation which is commonly employed in hardware. It has the several important
advantages over the direct LUT-based algorithm. First of all, the implementation
of this method consumes scientifically less resources and often leads to comparable
speed achievements. The designer must however pick up a polynomial function
that perfectly suits a task, otherwise approximation errors are unacceptable. The
above considerations apply to single precision calculations, usage of these methods

Highly Efficient Twin exp() Module on SGI RASC 129

with higher precision data imposes more strict restrictions to the approximating
function and results in a much higher degree of the polynomial. The degree of
the polynomial corresponds directly to the number of multiplications. Moreover,
increased data precision implies also a wider data word which results in much more
area occupied by multipliers. Summing up, for higher precision data (e.g. 64-bit)
polynomial approximation methods lose their primary advantages.

An alternative approach to the polynomial approximation is to divide the input
space into sections. Each section can be separately approximated with a lower
degree polynomial. An increase on the number of sections results in a decrease of the
polynomial degree. Conversely, every section has different polynomial coefficients
that have to be stored, which in turn results in an increase of the memory area [5].
Therefore, the number of sections is a trade-off between the polynomial degree (the
area of arithmetic units) and the memory size.

It has been decided to employ an algorithm that combines the positive features
of both above mentioned techniques – LUT-based method and polynomial appro-
ximations. Many mixed method implementations have been introduced [1]. There
were, however, mostly single precision solutions. First, there appeared a software
implementation of mixed methods [6], then an early hardware application derived
much from them and can be regarded as an attempt to adopt software algorithms
to hardware. This approach does not take full advantage of hardware capabilities,
therefore new hardware LUT-based algorithms of exp() evaluation [3] were proposed.

3 ARCHITECTURE OF EXP MODULE

The main idea behind the exp() module is based on the following equations [9, 10]:

ex = 2x ∗ log2(e) = 2xi ∗ ex−xi/ log
2

e (1)

and
ex+y = ex ∗ ey (2)

where xi is an integer part of x ∗ log2 e.
A mixed method adoption always leads to the dilemma of the trade-off between

the LUT memories’ size and the polynomial part of the algorithm. In case of exp()
function implementation, increase of LUT size results in a decrease of the multipli-
cation at the expense of the rising number of occupied LUT blocks. Nevertheless,
the analysis of the resources occupied by multipliers and LUT memories has led
to the conclusion that the employment of Block RAMs (BRAMs) embedded in the
FPGAs would be a best solution. The replacement of floating-point multipliers with
fixed-point ones further reduces occupied FPGA resources. It is possible to do so
because the input data was previously converted into a fixed-point format. Fur-
thermore, input data smaller than 2(−60) may be neglected during the calculation as
they have unnoticeable impact on the final result.

It should be noted how negative numbers are handled. The negative input argu-
ment −x is usually split into integer part −xi and fractional part −xf . Therefore,

130 M. Wielgosz, E. Jamro, K. Wiatr

the fractional part LUTs must also service the negative numbers, which results in
one extra address bit of every LUT reserved for the sign. A better solution is ob-
tained when negative numbers are limited only to the integer part (most significant
bits part) [7]. Therefore for xf 6= 0 and x < 0 the following mathematical identity
is employed:

−x = −xi − xf = −(xi + 1) + (1 − xf) (3)

It should be noted that the above identity is obtained by converting an input
argument from the sign-and-magnitude format (floating point mantissa standard)
into the two’s complement format. In order to further reduce hardware require-
ments, the polynomial approximation is employed. According to Taylor-Maclaurin
expansion:

ex = 1 + x + x2/2 + x3/6 + . . . (4)

In order to disregard x2/2 and higher degree expressions, the input argument
must be very small to satisfy the maximum mantissa error < 2−54 for the double
precision format. This is satisfied for x < 2−27. Consequently, the most significant
27 bits of input xf (fractional part of x) are calculated employing LUT-based me-
thods, the reset less significant bits are calculated using Taylor-Maclaurin expansion
limited to: ex ≈ 1 + x. To obtain the final result, the results of the LUT-based
algorithm and polynomial approximation are multiplied according to Equation (2).
The employment of polynomial approximation results in a significant decrease in
the number of multipliers and LUTs.

Summing up, the input argument x after the conversion to the fixed-point format
is divided into 5 sections:

1. integer part (11-bit), xI , which evaluates 2Xi (exponent part of the result),

2. fractional MSB part, xM , bits 2−1 ÷ 2−9,

3. fractional middle-bits part, xD, bits 2−10 ÷ 2−18,

4. fractional LSB part, xL, bits 2−19 ÷ 2−27,

5. fractional Taylor part, xT , bits 2−28. . .

Summing up, the following mathematical operations are employed:

xI = ⌊x ∗ log2(e)⌋ (5)

xF = xM&xD&xL&xT = x − xI · (log2(2))−1 (6)

y = 2xI ∗ exM ∗ exD ∗ exL ∗ (1 + xT) (7)

where: & – bit concatenation, ⌊x⌋ – rounding to the greatest integer xI such that
xI ≤ x. Using Equations (5) and (6) enables the separation of the integer and
fractional parts. This step can be considered to be a scaling process that transforms
input data to an interval of boundaries at 0 and ln(2). As xI is a small integer,
this approach in practice replaces a large multiplication (required by identity ex =

Highly Efficient Twin exp() Module on SGI RASC 131

2X/ ln(2) by two smaller multiplications, one to compute xI , the second to compute
xI · ln(2).

It is worth noticing that the above modules work in parallel. This approach
required an additional couple of pipeline registers to adjust the different latency of
these modules.

Conversion to fixed-point 5 clock cycles

Delay alignment
Multiplication by constant

1/ln(2)
2 clock cycles

Integer and fractional
part separation

LUT MSB LUT LSB LUT MID

5 clock cycles

Multiplier 6 clk

Multiplier 6 clk

Maclaurin

add and round 1 clk

 Round and add 2 clk

6 clk cycles delay

Delay 5 clk

1 clock cycle

exponent out

Floating-point argument

Delay 17 clk

Normalize 1 clk

mantissa out

Multiplier 4 clk Delay 5 clk

Align and add 1clk

Delay alignment Delay alignment Delay alignment Delay alignment 1 clock cycle

Round 1 clk

Delay 1 clk

Delay 6 clk

Fig. 1. Exp() module block diagram

3.1 Reduced Arithmetic Width

The multiplier inputs are roughly 60-bit wide, therefore the product width is 120-bit
wide. Such a bit-width is far beyond the required precision, therefore the LSBs of

132 M. Wielgosz, E. Jamro, K. Wiatr

the product are usually disregarded. Consequently, an LSBs part of the multiplier
performs operations which are not used in the next steps. As a result, in the proposed
architecture, some of the LSBs logic is not implemented at all. Figure 2 illustrates
the proposed approach for a 4 × 4-bit multiplier for which arithmetic for 2 LSBs
(p0, p1) is not implemented. This approach allows for significant area reduction
as it will be proved in the implementation results. Unfortunately, the calculation
error is greater for the given architecture. The proposed architecture does not use
any advance error compensation logic. The maximum error is equal the number
of broken carry-in (ck-1 in 2) paths. To decrease this error, some additional guard
bits are usually provided, e.g. in Figure 2 for the 4-bit output width (bits p6 ÷ p3)
an additional logic for bit p2 is implemented. It should be noted that for the FPGA
implementation a modified multiplier architecture is used according to [8].

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

a0 a1 a2 a3

&
+

ai

bj

ck-1 ck

sl-1

sl

b0

b1

b2

b3

2⋅ck+sl=
=sl-1+(ai⋅bj)+ck-1

p0 p1 p2 p3 p4 p5 p6

Full Adder
with AND Gate

Not
Implem
-ented

Fig. 2. Parallel-array multiplier with arithmetic width reduction

4 ERROR ANALYSIS

In the proposed architecture the following sources of errors can be distinguished:

1. Taylor series expansion,

2. multiplier (and LUT) width limitation:

(a) The Taylor series expansion is limited only to: ex ≈ 1 + x. For x =⇒ 0
the expansion error can be approximated by the next omitted expression,
i.e. x2/2. As input argument xT < 2−27 the Taylor series expansion error is
limited roughly by 2−55. It should be noted that the input value is xT ≥ 0,
thus the result yT = 1 + xT ≥ 1. Consequently, the relative error is also
≤ 2−55. Summing up, the Taylor series expansion error is much lower than
the double precision format accuracy.

Highly Efficient Twin exp() Module on SGI RASC 133

(b) In order to reduce hardware requirements for multipliers, parts of the LSBs
are not implemented. This results in an additional calculation error. This
error is limited by the number of carry paths which are cut. To limit this
error, additional guard bits are introduced.

5 IMPLEMENTATION RESULTS

The presented implementation results contain an exp() module logic consumption
together with RASC core services, essential to provide a compatibility with Altix
4700.

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs

Single exp() module 13.614 (7 %) 19.704 (11 %) 29 (8 %)

Twin exp() module 17.897 (10 %) 25.461 (14 %) 35 (10 %)

Table 1. Implementation results

Max. frequency 200 Mhz

Max. error 1 ulp

Root mean square error 0.61

Pipeline latency 30 clk cycles

Table 2. System parameters

6 APPLICATION PLATFORM

There are several reasons for choosing the SGI RASC platform as an implementation
environment. First of all, RASC’s platform delivers huge computational power.
Secondly, SGI provides handy programming tools which, however, does not prevent
the user from accessing low level code layers to carry out modifications (allow VHDL
coding style) and are convenient for designers familiar with hardware design. The
architecture of the SGI Altix 4700 belongs to the modern global shared memory
group of super computing systems together with Cray XT4 and SRC-7.

SGI RASC RC100 Blade consists of two Virtex-4 LX 200 FPGAs, with 40 MB
for each FPGA of SRAM logically organized as two 16 MB blocks (as shown in
Figure 1) and an 8 MB block. The SRAM are 36-bit QDR devices with 4-bit parity,
thus transferring 128-bit data every clock cycle. The RC100 Blade is connected
using the low latency NUMALink interconnect to the SGI Altix 4700 Host System,
for a rated peak bandwidth of 6.4GB per second. 128-bit data vectors are read from
the MEM0, spread into two substreams each consisting of 64-bits. Every clock cycle
(due to pipelining) data is processed by two exponential modules and results are
concatenated to a 128-bit vector which finally is written to the MEM1. Afterwards
the result is transferred through the NUMAlink to the rest of the system.

134 M. Wielgosz, E. Jamro, K. Wiatr

0,59

0,595

0,6

0,605

0,61

0,615

0,62

0,625

0,63

0,635

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
M

S
E

number of the interval

Fig. 3. RMSE across different ranges of input data

The RASC platform provides two FPGA chips (Xilinx Virtex 4 LX200), which
allows to double the calculation rate by employing a second FPGA (this is not taken
into account in Figure 5).

To compare the calculation speed-up achieved by the RASC, the average double
precision calculation time per single exp function is given in Table 3 for Pentium 4

Exp()

Exp()

64 bit 64 bit

MEM

1

16MB

NUMAlink

MEM

0

16MB

Xilinx Virtex-4 LX200

72

128 bit

128 bit

Core services

Fig. 4. System Overview of an FPGA on the SGI RC100 Blade

Highly Efficient Twin exp() Module on SGI RASC 135

Fig. 5. Exp calculation on different platforms

Pentium 4 processor Itanium / Itanium 2 processors RASC

Exp() 13.65 3.08 2.5

Table 3. Average calculation time [ns] per an exp calculation

and Itanium processors [8]. It is assumed that processors (Table 3) work at 2 GHz
while single FPGA was clocked at 200 MHz.

The calculation speed-up achieved by the RASC is not significant, nevertheless
it should be noted that the throughput can be doubled by employing two FPGAs –
two FPGAs are incorporated in a RASC board. Secondly, only 10 % of FPGA
resources are employed, thus additional arithmetic functions can be incorporated in
the same FPGA. Besides, by improving external memory interface, the number of
parallel exp() modules can be increased.

7 SUMMARY

This paper describes a novel architecture of double precision exponential function
implemented in FPGAs and SGI RASC platform. The presented exp() architec-
ture introduces several novel hardware solutions never used for the exp() function:
a) 3 independent LUTs and Taylor series expansion for the exp() function, b) sign-
migration to integer part, c) optimized multipliers.

There are two considerations on improvements worth introducing. The source
code of quantum – chemistry software application can be thoroughly revisited in
the future in order to eliminate a precision overhead. There is still a lot of silicon
space on the FPGA (approximately 80 %) that can easily fit an additional logic.
Investigations are being carried out to expand the exp() function with an additional
logic of the hot spots found in the quantum chemistry application source code.

136 M. Wielgosz, E. Jamro, K. Wiatr

REFERENCES

[1] Doss, C.C.—Riley, R. L., Jr.: FPGA-Based Implementation of a Robust IEEE-
754 Exponential Unit. 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’04), 2004, p. 229–238.

[2] Bui, H.T.—Tahar, S.: Design and Synthesis of an IEEE-754 Exponential Func-
tion. 1999 IEEE Canadian Conference on Electrical and Computer Engineering Shaw
Conference Center, Vol. 1,1999, p. 450–455.

[3] Detrey J.—de Dinechin, F.: A Parameterized Foating-Point Exponential Func-
tion for FPGAs. IEEE International Conference on Field-Programmable Technology
(FPT ’05), Singapore, 2005, p. 27–34.

[4] Omondi, A.R.: Computer Arithmetic Systems. Prentice Hall. Cambridge, 1994.

[5] Lee, D.—Gaffar, A.—Mencer, O.—Luk, W.: Optimizing Hardware Function
Evaluation. IEEE Transactions on Computers, Vol. 54, 2005, p. 1520–1531.

[6] Tang, P.: Table-Driven Implementation of the Exponential Function in IEEE
Floating-Point Arithmetic. Argonne National Laboratory, ACM Transactions on
Mathematical Software (TOMS), Vol. 15, 1989, p. 144–157.

[7] Wiatr K.—Jamro E.: Constant Coefficient Multiplication in FPGA Structures.
Proc. of the IEEE Int. Conf. Euromicro, Maastricht, The Netherlands, Vol. 1, 2000,
p. 252–259.

[8] Elzinga, S.—Lin, J.—Singhal, V.: Design Tips for HDL Implementation of
Arithmetic Functions. Proc. of the IEEE Int. Conf. Euromicro, Maastricht, The
Netherlands, 2000.

[9] Jamro, E.—Wielgosz, M.—Wiatr, K.: FPGA Implementation of 64-Bit Expo-
nential Function for HPC. FPL Netherlands, August 27–29, 2007, FPL Proceedings.

[10] Wielgosz, M.—Jamro, E.—Wiatr, K.: Highly Efficient Structure of 64-Bit
Exponential Function implemented. In FPGAs, ARC 2008 (Applied Reconfigurable
Computing), March 26–28, 2008, London, UK.

Maciej Wielgosz Maciej Wielgosz obtained the M. Sc. degree
in Electrical Engineering from the AGH University of Science
and Technology in 2005. He is a Ph. d. student and the member
of Reconfigurable Systems team. His primary research interests
are in HPRC systems, image compression and neural networks.
Currently involved in the project aiming at hardware implemen-
tation of quantum chemistry algorithms leading to deployment
of the complete FPGA accelerator.

Highly Efficient Twin exp() Module on SGI RASC 137

Ernest Jamro recieved M. Sc. degree in electronics engineer-

ing from the AGH University of Science and Technology (UST),
Cracow Poland in 1996; M. Phil. degree from the University of
Huddersfield (U. K.) in 1997; Ph. D. degree from the UST in
2001. He is currently a professor assistant in the Department
of Electronics UST. His research interest include reconfigurable
hardware (esp. Field Programmable Gate Arays – FPGAs), re-
configurable computing systems, System on Chip design, artifi-
cial intelligence.

Kazimierz Wiatr received the M. Sc. and Ph. D. degrees in

electrical engineering from the AGH University of Science and
Technology, Kraków, Poland, in 1980 and 1987, respectively,
and the D. Hab. degree in electronics from the University of
Technology of Lódź in 1999. He received the professor degree
in 2002. His research interests include design and performance
of dedicated hardware structures and reconfigurable processors
employing FPGAs for acceleration computing. He received 9 re-
search grants from Polish Committee of Science Research. These
works resulted in 140 publications, including 3 books, the recent

one: Acceleration Computing in Vision Systems. He is also an author of 5 patents and
35 industrial implementations. He currently is a Director of Academic Computing Centre
CYFRONET AGH, and is a head of PIONIER council – Polish Optical Internet. And
last but not least, he is a member of the Polish parliament (Senate), and a head of the
Senate Science and Education Committee. www.kazimierzwiatr.pl.

