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Abstract. The internet era and high speed networks have ushered in the capabili-
ties to have ready access to large amounts of geographically distributed data. Indi-
viduals, businesses, and governments recognize the value of this available resource
to those who can transform the data into information. These databases, though
valuable as individual entities, become significantly more valuable when they func-
tion as parts of a federated database and their data can be aggregated for collective
mining or computations. This requires new algorithms to shift their focus from
working with single databases to efficiently working with federated databases. In
this paper, we propose a new decomposable version of the popular k-means cluster-
ing algorithm that works in this desired manner with a set of networked databases.
We show that it is possible to perform global computation in a reasonably secure
manner for either horizontally or vertically distributed databases. The computa-
tion is completed by only exchanging a few local summaries among the databases.
An empirical and analytical validation of our results is also presented.

Keywords: Data privacy, decomposable algorithm, k-means clustering, vertically
and horizontally distributed data

Mathematics Subject Classification 2010: 68U99



944 A.M. Khedr, R.K. Bhatnagar

1 INTRODUCTION

Our society is generating an ever increasing volume of data that resides in multiple
databases connected by communication networks. These include data from scien-
tific, engineering, medical, business, finance, and social domains, representing every
aspect of our society. Some of these were designed and implemented as distributed
databases where aggregation was in the interest of a single enterprise, but a majority
of these were designed to work as independent databases. For some specific compu-
tation a number of these independent databases may want to cooperate, and thus
the problem of developing efficient collaboration mechanisms among a federation of
databases becomes significant. Proliferation of independent databases and the need
for aggregating information from multiple such databases will present an increas-
ing number of situations where this problem needs to be addressed. Security and
privacy concerns for the data in individual databases must be addressed when they
participate in collaborative computations.

In a typical setting a number of databases may decide to collaborate to collec-
tively perform some global computation. Each database then contributes its infor-
mation, in the form of some partial results derived from its data, while minimizing
the amount of information to be exchanged, maximizing the privacy protection of
its data, and requiring the least amount of coordination to control the flow of the
global computation. In this paper, we present such cooperative communication-
plus-computation formulations of algorithms for global computations for clustering
k-means algorithm.

Clustering algorithms have been studied extensively in the context of single
processor or parallel processor systems [1, 2, 3, 4] and there has been relatively
recent work on clustering horizontally and vertically distributed databases while
preserving data security and privacy during the exchange of information among the
nodes [5, 7, 6].

The parallel clustering algorithms are tailored for situations in which:

1. all data resides in main memory or distributed shared memory of a set of closely
connected processors;

2. a large number of closely connected processors are needed at a single site that
can access the shared memory to achieve the reasonable performance; and

3. Inter-processor communication is extremely fast and involves reading data in
the main or shared memory.

Our algorithm is tailored for very different situations in which we do not have
closely connected processors. There are multiple processors but they are independent
and reside at geographically distant sites and communication among them may be
many orders of magnitude slower than the rates of inter-processor communication
in a set of closely coupled processors. This is the case in many real-life scenar-
ios. Therefore, our formalism implements a methodology wherein each site works as
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much as possible with its own local data and then communicates with others at
the level of local results of some partial computations.

The work in [5] discussed a privacy-preserving k-means algorithm for horizon-
tally distributed databases that exists in two sites. In [6], the authors presented
a method for k-means clustering when different sites contain different attributes for
a common set of entities. Security requirements to be met in this algorithm demand
that a site can know only its own attributes – value pairs when they become parts
of the global cluster centers. In [7], the authors presented an algorithm for cluster-
ing high dimensional heterogeneous data using a distributed principal component
analysis (PCA) technique. In their approach partial results (principle eigenvectors)
are computed at each site and transmitted to a central site along with a number
of data tuples corresponding to each eigenvector. The error between the actual
global result and the computed result decreases as the number of tuples transmitted
from each site to the central site increases. In [8], the authors discussed a method
of k-means for distributed databases where a small number of passes need to be
made on the entire database. This may not be feasible in all cases. Our proposed
algorithm is designed for vertically and horizontally distributed datasets, does not
put any limitation on the number of participating sites, and is applicable for the
most general situations in which existing distributed databases want to cooperate
for k-means clustering by properly accounting for any number of shared attributes.
It computes global cluster centers at any of the participating sites with significantly
small communication cost without transferring any tuple among the database sites
which preserves local data privacy. Also, the proposed algorithm does not require
even a single pass on the whole dataset, thus making it more useful in real life
scenarios

Distributed knowledge discovery work such as [9, 10, 11, 12, 13, 14, 15] merges
the computation with communication but either at the raw data level or at the
local final result level. The former is highly insecure, and the latter adds high level
of noise in the global results. Our past work [18, 16, 19, 20, 21, 22, 17] and the
algorithm presented here work by exchanging summaries at intermediate level so as
to preserve the data privacy and also reduce the amount of error.

The rest of the paper is organized as follows: In the following section, we briefly
describe integration of distributed data. In Section 3, we give a step-by-step outline
of our proposed algorithm. In Section 4, the complexity computing and the privacy
and security discussion are given. The simulation results of our algorithm are given
in Section 5. We conclude our work in Section 6.

2 INTEGRATION OF DISTRIBUTED DATA

In a distributed setting, a dataset D is implicitly defined in n explicit databases Di

located at n different sites. We model databases Di at the ith site, by a relation con-
taining a number of tuples. Each Di contains a set of attributes. Since an arbitrary
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number of independent, already existing databases may be consulted for a com-
putation, we cannot assume any data normalization to have been performed for
their schemas. The implicit data set D with which the computation is to be per-
formed is a subset of the set of tuples generated by a Join operation performed on all
Di’s. However, the tuples of D cannot be made explicit at any network site because
entire databases, Di’s, cannot be moved to other sites. The tuples of D, therefore,
must remain implicitly specified. This inability to make explicit the tuples of D is
the main problem addressed in the generalized decomposition of global algorithms.

2.1 Nature of Data Distribution

Horizontally Distributed Datasets: The global database D exists as a set of
components D1, D2, . . . , Dn such that each Di contains tuples consisting of an
identical set of attributes A; but a distinct set of data tuples resides at each site.
Each Di resides on a different site of the network and the tuples contained in all
the Di’s, taken together, constitute the complete dataset D.

Vertically Distributed Datasets: In this case, each component Di consists of
tuples formed with a different set of attributes but each Di may share some
attributes with those of some other databases, Dj, j 6= i. Each Di may also
contain some attributes that are unique to the local site and are not shared with
a database at any other site. In effect, each Di is a projection of the implicit
global D.

Vertically distributed datasets require computations to be performed in the im-
plicit Join, D, of all the Dis, but without ever making explicit the tuples of D. The
decomposed algorithm must appropriately account for all the shared attributes that
would have played a role in enumerating the tuples of the Join-ed D, if it were to be
made explicit. This formulation models more general circumstances than the case
of a single key and non-overlapping attribute sets for single records distributed at
various sites [6]. Our target is to enable those databases for participation that were
designed independently and may have arbitrary overlap of attribute sets with the
other databases they have to collaborate with. The database for which the k-means
clustering is performed is the implicit cross product of the relations stored at the
distributed sites.

2.2 Distributed Data Sources

A number of vertically or horizontally geographically distributed databases together
form an implicitly Joined global dataset that contains all the data relevant for mining
or other computational tasks. It would be desirable to have algorithms that let the
individual databases reside at their own sites and work with an imagined implicit
join of the databases. Let us say D1, D2, . . . , Dn are n local databases and D is
the implicit global database formed by Merging (in case of horizontal distribution)
or Joining (in case of vertical distribution) all the participating local Di’s. Let us
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say a result R is obtained by applying a function (or running an algorithm) F on D,
that is:

R = F (D). (1)

In our case, D, the global database, cannot be made explicit and is known only
implicitly in terms of the explicit components D1, D2, . . . , Dn. The implementation
of F can now be redesigned by a functionally equivalent formulation:

R = G(g1(D1), g2(D2), . . . , gn(Dn)). (2)

That is, a local computation gi(Di) is performed at Site i using the database Di.
The results of these local computations are aggregated using the operation G. Our
notion of data privacy requires that when the gi’s are exchanged over the network,
even if they are captured by someone, they should not enable reconstruction of any
single tuple residing in any of the participating databases. It is facilitated, partly,
by the absence of knowledge of G by the network intruder; and with this constraint,
any of the participating sites should be able to determine the k cluster centers for
the collective data.

2.3 Addressed Problem

In this paper, we present a decomposable version of k-means algorithm, where the
function F to be computed in Equation (1) is the same set of k clusters that would
be produced by the k-means algorithm if the data at the networked databases were
to be collected at one site. The spirit here is similar for the k-means algorithm but
the final composition operator creates a close approximation of the cluster centers
and not the exact ones. However, the same level of privacy protection for data is
maintained.

A coordinator site that seeks to compute the global results of the algorithm
first determines all the databases and sites that should be involved in a clustering
task and then communicates to them requests for results of some computations
performed locally at each site. Only the results of these local computations are
transmitted to the coordinator site, followed by new requests for results of more
local computations, until the global computation is completed and the results are
obtained at the coordinator site.

At first glance, this might appear simple – every site runs the k-means algorithm
on its own data. This would preserve complete privacy. Figure 1 shows why this
will not work. Assume we want to perform 2-means clustering on the data in the
figure. From y’s point of view, it appears that there are two clusters centered at
about 2 and 5.5. However, in two dimensions it is clear that the difference in the
horizontal axis dominates. The clusters are actually “left” and “right”, with both
having a mean in the y dimension of about 3. The problem is exacerbated by higher
dimensionality.
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Figure 1. Two-dimensional problem that cannot be decomposed into two one-dimensional
problems

3 DECOMPOSABLE K-MEANS ALGORITHM

In this section, we discuss how the algorithm performs clustering in geographically
distributed databases. The algorithm includes six phases: managing the implicit
join, clustering at local sites, globalizing local cluster centers, populations around
globalized cluster centers, clustering globalizing data points, and recomputing clus-
ter centers. Managing the implicit join phase shows how we deal with the implicit
database. In clustering at local sites phase, we find the clustering data informa-
tion at each site. In globalizing local cluster centers phase, we show how to find
global cluster centers from local cluster centers. In populations around globalized
cluster centers phase, we find the population of each candidate global cluster cen-
ter. In clustering globalizing data points phase, using the set of globalized cluster
centers, Q, available at the coordinating site, we determine the cluster centers for
all the data points in the implicit D. This is to be done in such a way that the
error for k-means clustering of D is minimized. Finally, recomputing cluster cen-
ters phase recomputes the global cluster centers according to the computed total
error.

The total clustering error for clustering of data points is defined as follows:

TotalError =
∑
i,j

modulus(distance(pij, cj)), (3)

where pij is the ith data point in the jth cluster and cj is the center of the jth

cluster. It has been shown in [24] that the clusters and cluster centers computed
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by k-means algorithm are located in such a way that they minimize the magni-
tude of the square of TotalError quantity as defined above, even though it may
be a local minimum they settle down in. Our decomposable version of k-means is
guided by the goal to minimize a close approximation of this same error for the
networked databases, and thus mimic the behavior of the k-means algorithm run on
the implicit D. An outline of our k-means algorithm for the vertically distributed
databases is as follows:

1. Each site computes local cluster centers for its di-dimensional data space and
sends them to the coordinating site. This is elaborated in Section 3.2 below.

2. The central site performs a cross-product of the various local clusters in smaller
dimensional spaces received from local sites to generate larger dimensional (full
dimensions/attributes of D) globalized cluster center candidates. This is elabo-
rated in Section 3.3 below.

3. The central site then runs a k-means algorithm on these globalized cluster centers
candidates into desired number of k final clusters and also tries to minimize
an estimate of the quantity TotalError mentioned in Equation (3) above. The
main algorithm is explained in Section 3.5. This algorithm needs populations of
data points in D around the potential cluster centers and the way to compute
these is elaborated in Section 3.4 below.

3.1 Managing the Implicit Join

If an explicit D were to be generated from the Di’s, the process would have been
mediated by the attributes shared among the Di’s. Let us say the set of attributes
contained in relation Di is represented as Ai. For a pair of databases Di and Dj

the corresponding sets of attributes Ai and Aj may have a set of shared attributes
given by Sij such that

Sij = Ai ∩ Aj.

For vertically distributed D a subset of Ai and Aj will be obtained as Sij and for
horizontally distributed D we will have Sij = Ai = Aj. To facilitate clustering in
the implicitly described D, we define a set S that is the union of all the intersection
sets defined above. That is,

S = ∪i,j, i6=jSij.

The set S, in effect, contains all those attributes that occur in more than one Di.

We define a relation called PreShared on the attributes in the set S. This
relation, PreShared, contains tuples corresponding to all possible combinations of
values for the attributes in S. The relation PreShared would have mediated the
creation of the explicit D, if it was attempted, and is used by us in a very similar
role. Then we generate the relation Shared by removing from PreShared all tuples
that have zero count at any participating site.
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3.2 Clustering at Local Sites

The following steps are executed at each site on its local database.

• The ith site determines the number of local clusters, ki, that it should generate
with the local Di. In the final composition step G, the local cluster centers will
be used as representative of the data at the local sites.

• Using k-means clustering algorithm, locally cluster data in the database Di into
ki clusters.

• Send the following information to the central coordinating site:

– The set of local cluster centers {Cij: the center of the jth cluster at the ith

site}.
– rij is the radius of the local cluster centered at Cij and is the maximum of

the distances between the cluster center and the points in the cluster.

3.3 Globalizing Local Cluster Centers

A cross product of the cluster centers from the local sites is computed at the co-
ordinating site to get the globalized cluster centers. The cross product of local
di-dimensional points from each local site will result in the global d-dimensional
vector.

After the local clustering phase each Site i returns cluster centers that lie in
one plane. Candidates for the global cluster centers, Qi’s can be generated by
performing a cross-product of the cluster center points from the distinct planes.
One problem in determining the Qi’s relates to determining when two values of
a shared attribute B may be considered identical for the purpose of performing
a cross product of the two sets of local cluster centers. That is, should a value
of u for B from Site i be considered the same as a value of u ± ε for B from
Site j as part of a cluster center coordinate? Cluster centers in a k-means algorithm
adjust with every iteration and may be somewhat different for different sets of tuples
representing the same underlying process. Therefore, we need to match the values of
shared attributes only approximately for determining the globalized cluster centers.
Once the globalized cluster centers are processed and adjusted in future iterations
the impact of approximation would be automatically eliminated here. So, for each
value x of a shared attribute, we create a x ± ε window around it and whenever
two windows overlap we consider the values to be identical for the purpose of cross
product.

If we replace values of B throughout with windows x± ε then we can generate
a global cluster center by choosing any of the two values as the candidate value
for B. These points are only candidates for the global cluster centers and will be
automatically adjusted for better accuracy in later iterations. So, they do not have
to be computed exactly at this stage.
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3.4 Populations around Globalized Cluster Centers

The clustering algorithm presented in later subsections of this paper requires that
we compute the number of data points in the implicit data space D that are within
some fixed distance from a global cluster center qi when the qi is known only at the
coordinating site. We have presented a decomposable algorithm for counting tuples
that match some conditions in an implicit D. This algorithm uses some counts taken
from explicit local Di’s that constitute the D and sends them to the coordinating
site.

For each globalized cluster center qi we find population Nq of data points around
it in D. For an implicitly stated set of tuples the counting process proceeds in such
a way that each decomposed part can be sent as a request to an explicit database
site and the responses composed to reconstruct the counts. The decomposition for
obtaining the count Nq for each globalized cluster center candidate q ∈ Q is as
follows:

Nq =
∑

tup in shrd

(
n∏

t=1

(N(Dt)tup in shrd)

)
, (4)

where n is the number of participating database sites (Di’s), tup in shrd is a tuple
selected by the coordinating site from the relation Shareds , as defined in Section 3.1
above, and sent as part of request to each local site; and (N(Dt)tup in shrd) is the
count of those tuples in Dt that meet the following conditions:

1. the values of shared attributes of Dt in the local tuple are the same as in the
tuple tup in shrd selected from the relation Shareds ; and

2. the value of each attribute in the counted tuple at the local site has a distance
from the value of the same attribute in qi that is less than some threshold radius
value r. In effect, we are counting the number of data points in D that are
within the hypersphere of radius r centered at the point qi. A hypersphere of
radius r in a d-dimensional space when projected to an (d−1)-dimensional space
retains the same radius, as a sphere of radius r in 3-dimensions when projected
in 2-dimensions becomes a circle of the same radius r. Therefore, it is justified
to use the same value of r at each local database.

For each sum of products term in the above expression the coordinating site sends
a message to the corresponding local site to obtain the count of tuples satisfying
the conditions of tup in shrd . A number of such count requests may be combined
in a single message to reduce the number of messages exchanged.

The product, in the above expression, is performed for the counts N(Dt)’s ob-
tained from all the n sites for each tuple from Shareds ; and the summation is per-
formed over the product values for all the tuples shrd ’s in the relation Shareds . The
coordinating site stores the relation Shareds and sends out messages to individual
sites to obtain various N(Dt)’s. Here the decomposition of the global counting can
be related to the discussion in Section 1 in the context of Equation (2) as follows.
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The sum of products is the composing function G and the individual counts N(Dt)’s
are the local gi’s.

The expression for Nq, therefore, simulates the effect of a Join operation on all
the n Di’s without explicitly enumerating the tuples.

3.5 Clustering of Globalized Data Points

The next task we examine is using the set of globalized cluster centers, Q, available
at the coordinating site to determine the cluster centers for all the data points in the
implicit D. This is to be done in such a way that the error for k-means clustering
of D is minimized. To get an intuitive feel we can say that the D may contain tens of
thousands of data points, and if each local site sends about 15 local cluster centers
and there are 3 participating sites, then at the coordinating site approximately
thousand globalized cluster centers are created. These global cluster centers can
now be used to find the final k, say 10, cluster centers for D.

Analytical Justification: The expression for total clustering error is stated earlier
in Equation (3). By triangle law of inequality, the distance from a point p in D
to its final cluster center ci will be less than the sum of the distances from that
point p to its globalized cluster center q and the distance from the globalized
cluster center q to the final cluster center c. That is:

distance(pij, cj) ≤ distance(pil, qlj) + distance(qlj, cj),

TotalError ≤
∑
i

(distance(pil, qlj) + distance(qlj, cj), (5)

where pil is the ith data point from D and belongs to globalized cluster center qlj,
qlj belongs to the jth final cluster and cj is the center of the final jth cluster. The
total error can be minimized by individually minimizing both the quantities.

The first quantity in Equation (5) is less than
∑

i,j Ri ∗ pij, where pij is the jth

point counted in the ith globalized cluster center and Ri is its radius. This is the
worst case scenario, when all the points are on the periphery of the hypersphere.
However, minimizing this quantity requires that we use the smallest feasible value
for the radius while computing the population around each qi. At the same time
we need to have a large enough radius to include all the points of D around the
members of Q.

The second quantity in Equation (5), GlobalizingError, is equal to∑
i distance(qlj, cj) where pi is counted in globalized cluster center l and the cj is the

final cluster center to which l is assigned. Note that the error is summed over all
the points in D.

If al is the number of points in the hypersphere around the lth globalized cluster
center, then

GlobalizingError =
∑
l

al ∗ distance(qlj, cj).
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If we take the distance function as Euclidean, then

GlobalizingError =
∑
l

al(qlj − cj)
2.

Differentiating GlobalizingError with respect to a cluster center cj, we get
∑

l−2al
(qlj − cj). For minimum error, this quantity should be equal to 0. Therefore,

⇒
∑
l

−2al(qlj − cj) = 0

⇒
∑
l

al(qlj − cj) = 0

⇒
∑
l

alqlj −
∑
l

alcj = 0

⇒ cj =

∑
l alqlj∑
l al

. (6)

Equation (6) implies that the final cluster center should be the mean of the
globalized cluster centers included in a cluster, weighted by the population of points
around each globalized cluster center. This modified rule for finding cluster center
is used, and iterations of regular k-means algorithm are applied to arrive at the final
cluster centers. This part is performed entirely at the coordinating site and does
not require any communication with the local sites.

In a distributed environment we cannot compute the clustering error for D;
therefore we define its estimate, called Estimated Clustering Error (ECE), as an es-
timate of the total distance between a data point p of D and its final cluster center c
(to be found in this phase of the algorithm), weighted by the population associa-
ted with c. Step 2.ii of the algorithm below shows the quantitative definition of
the estimated clustering error (ECE). The coordinating site now runs a modified
version of the k-means algorithm on the globalized cluster centers in set Q as fol-
lows:

1. Randomly choose a set C of k points as the initial candidates for final cluster
centers cis.

2. For each data point qi ∈ Q having a coordinate (xi1, xi2, · · · , xim) do

(a) For each final cluster j having a coordinate (cj1, cj2, · · · , cjm) do

i Compute the weighted mid-point tj between a final cluster center cj and
a point qi, weighted by populations around qis, as:

tj = ((ai ∗ xi1 + bj ∗ cj1)/(ai + bj), (ai ∗ xi2 + bj ∗ cj2)/(ai + bj), . . . ,

(ai ∗ xim + bj ∗ cjm)/(ai + bj)),
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where ai is the population in the hypersphere around point qi in D, and
bj is the population of the cluster at cj, and

bj =
∑

q∈cluster(j)
Nq. (7)

ii Compute the estimated contribution to the total clustering error if the
globalized data point qi is added to the final cluster j as:

ECE = distance(center(j), tj) ∗ bj + distance(pi, tj) ∗ ai. (8)

iii Include globalized data point qi in that final cluster which results in
minimum value for the estimated clustering error.

The difference between the above and the traditional clustering algorithm lies
primarily in the way the membership of a point in a potential cluster is decided.
Here we make this decision to minimize the potential contribution a point would
make to the total clustering error when examined for its inclusion in all possible
candidate clusters. This decision is weighted by the population associated with each
point, which is actually a cluster center from a local database. The next phase is to
recompute the final cluster centers, as per the iterations of the k-means algorithm.
This part is also performed entirely at the coordinating site and does not require
any communication with the local sites.

3.6 Recompute Cluster Centers

For each final cluster j:

1. Find the total population of the cluster. This is the same as bj described above.

2. Find all the points Pi that belong to the cluster j.

3. Recompute the new center of cluster j. In this phase we have a deviation from
the traditional k-means algorithm. We compute the new centers such that each
point is weighted by the population of data points in D that is associated with
it using Equation (6) above.

The last two of the above steps are repeated until the decrease in the estimated
cluster error remains below a threshold for a number of iterations. The population
weight related adaptations in the previous two steps can be shown to result in
clusters that actually minimize the estimated cluster error.

4 COMPLEXITY ANALYSIS AND PRIVACY CONSIDERATION

The cost of working with implicitly specified set of tuples can be measured in various
ways. One cost model computes the number of messages that must be exchanged
among various sites. Complexity for distributed query processing in databases has
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been discussed in [23] and this cost model measures the total data transferred for
answering a query. In our case the amount of data transferred is very little (statistical
summaries) but the number of messages to be exchanged may grow rapidly with the
number of iterations for the clustering algorithm. We derive below an expression
for the number of messages that need to be exchanged for our clustering algorithm
dealing with the implicit set of tuples. Let us say:

1. There are n relations, D1 . . . Dn, residing at n different network sites.

2. There are r tuples in relation PreShared.

3. There are l tuples in relation Shared.

4. The number of globalized cluster centers in Q is p.

4.1 Complexity Analysis

According to our cost models in [16, 17, 18, 19, 20, 21, 22], we count the number of
local counts, Nm, that must be exchanged among all the participating sites.

Stationary Agent Case: We give below an expression for the number of messages
that need to be exchanged for dealing with the implicit tuples.

Cost Model 1 (Unoptimized): In the worst case, the number of messages
needed will be the sum of the number of messages required to compute
the relation Shared, perform local clustering, and compute the population
around a globalized cluster center (Nq). Thus, the total number of exchanged
messages will be:

Total Exchanged Messages = n(2 + r + p ∗ l), (9)

where we have n messages to get the different values of the shared attributes
from local sites, n ∗ r messages to find relation Shared from the PreShared
relation, n messages to perform local clustering, and p ∗ n ∗ l messages to
compute the population around globalized cluster centers.

Cost Model 2 (Optimized): In this cost model, all tuples of Shared will be
sent in one request and then receive the summaries in one message. This
reduces the number of messages exchanged to 4n, the same as 4 times the
number of participating sites. Thus, the total number of exchanged messages
will be:

Total Exchanged Messages = 4n. (10)

When computing the population around a globalized cluster center, we can
also drop certain variables with too many possible values from consideration.
The rationale is the same as adopted in decision tree induction algorithms [21]
where we do not select an attribute with very high branching factor, such as the
SS#, as a node in the decision tree. Such attributes do not contribute much to
the information gain and are not to be preferred for generalization desired in
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a learning algorithm. An example of the worst type of shared variable with too
many possible values is the social security number. This may still be a smaller set
of data to be transferred compared to the complete database transfer and Join;
but this approach is more suitable in all those domains where shared variables
are not very much fragmented. There are many such situations in inventory
databases and GIS data mining situations.

Mobile Agent Case: This agent has the relation Shareds stored in it. During
a visit to a data site, it computes all local computations for that site. The local
results for computing all the counts can be gathered during three visits to a site.
Thus, the mobile agent can compute all requirements by visiting each site three
times (3n hops) and then aggregating the local results.

The above analysis of complexity shows that the number of messages that need
to be exchanged among the sites is not dependent on the size of the database at each
site. The communication complexity, in the case of vertically distributed data, is
dependent primarily on the number and manner in which the attributes are shared
among the participating sites. This is significant because it shows that as the sizes
of the individual databases grow, the communication complexity of the algorithm
would remain unaffected. Computational cost of local computations would grow
with the database size at each individual site but our decomposable version has an
advantage in this regard also over the transport, join, and then cluster alternative. If
a k-means algorithm runs q iterations for finding k cluster centers and it has m data
points then it must compute q ∗ k ∗m distances.

If each local database Di has m tuples, then in the worst case the join of n local
databases would produce a relation containing order of mn tuples. There is addi-
tional cost of order of (n∗m) comparisons for creating the Join. When the k-means
algorithm is run with this explicitly created D, we would need to compute q ∗k ∗mn

distances. In our decomposable version, each of the n sites would be computing only
q∗k∗m distances. Thus, there is tremendous saving in the computational cost when
the decomposable version is executed instead of moving the data, creating a Join
and then running the clustering algorithm. Also, for the communication cost, the
number of partial results that need to be transmitted is far fewer that the messages
that may have to be transmitted if entire databases are collected at some central
site.

Another important gain of decomposable version is that it preserves the privacy
of the data by not requiring any data tuples to be placed on a communication
network. It also preserves the integrity of individual databases because no site
needs to update or write into any of the participating databases. All the queries are
strictly reading queries.

4.2 Privacy and Security Considerations

We have demonstrated above that k-means algorithm can be very closely approx-
imated for distributed databases without having to move the databases to a cen-
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tralized site. From the point of view of data security and privacy the following
observations can be made:

1. No data tuple is exchanged between the sites.

2. Initial cluster centers from local sites are transmitted to the central site. Global
cluster centers are maintained within the coordinating site and never transmit-
ted.

3. When computing the population around global cluster centers, the coordinating
site sends only the locally relevant attributes to each site and distances from the
attribute-value pairs of the local data are returned only for a subset of attributes
contained in the global cluster centers.

If the information security and privacy is defined by not having to release any data
tuple out of a database for transmission over the network and the reconstruction
of any data tuple being impossible by the released data summaries then the above
algorithm preserves the privacy of the data in each participating database. No data
tuple is ever transmitted and the summaries are not sufficient to reconstruct any
individual data tuple. The only loophole would be when a cluster of one data point
is formed and its contents are released for communication to other sites in the form
of the cluster center of this cluster. This can be easily avoided by setting a minimum
threshold t (at least t = 2) so that any time a local site sends out a summary it
must be for at least t tuples. The tradeoff would be that the algorithm would not
be able to form clusters that are smaller than t in size.

5 SIMULATION RESULTS

In order to show the advantages of our algorithm, we have performed a number
of tests to demonstrate that the proposed k-means clustering algorithm can work
correctly in a distributed knowledge environment without moving all the databases
to a single site. The tests were performed to find out the effect of various parameters
on the final result. Three very important variables that affect the result are: the
number of tuples per database, the number of sites, and the average number of shared
tuples between local databases. These tests have been carried out on a network of
workstations connected by a LAN and tested against a number of databases of
different sizes.

The first test was done to demonstrate how the elapsed time and the number
of exchanged messages varies with the number of local sites. The number of local
sites varies as 2, 3, 4, 5, and 6. Figure 2 a) shows how the elapsed time to compute
the proposed k-means clustering algorithm in an implicit database D changes with
the number of local sites. It can be seen easily that the elapsed time to compute
the proposed k-means clustering algorithm increases as the number of local sites
increases. Figure 2 b) shows how the number of exchanged messages between the
local sites changes with the number of local sites. It can be seen easily that the
number of exchanged messages increases as the number of local sites increases.
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a)

b)

Figure 2. Results of running the proposed k-means on vertically distributed databases
when the number of local sites is varied: a) elapsed time, b) the number of ex-
changed messages
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The second test was done to demonstrate how the elapsed time and the number
of exchanged messages varies with the average number of shared tuples between local
databases. The number of shared values varies as 5, 10, 15, 20, and 25. Figure 3 a)
shows how the elapsed time to compute the proposed k-means clustering algorithm
in an implicit database D changes with the average number of shared tuples between
local databases. It can be seen easily that the elapsed time to compute the proposed
k-means clustering algorithm increases as the number of shared values increases.
Figure 3 b) shows how the number of exchanged messages between the local sites
changes with the number of shared values. It can be seen easily that the number of
exchanged messages increases as the number of shared values increases.

The third test was done to demonstrate how the elapsed time and the number
of exchanged messages varies with the number of tuples in the database. Figure 4 a)
shows how the elapsed time to compute the proposed k-means clustering algorithm
in an implicit database D changes with the number of tuples in the database. Fi-
gure 4 b) shows how the number of exchanged messages between the local sites
changes with the number of tuples in the database. The results show that the
performance of our proposed k-means clustering algorithm continues to perform the
best results.

Finally, we ran the tests by varying the number of clusters for a D that had in
excess of 500 points and were distributed similarly into two projections and measured
the clustering error for each case. The plots in Figure 5 show the total clustering
error for cluster centers determined by our decomposable algorithm and by direct
application of a k-means algorithm on an explicitly created D. It can be seen that
the difference between the error quantities is very small and follows the same pattern
in two tests. The plots also show the estimated clustering error that is computed by
the coordinating site to guide itself towards the final cluster centers. This quantity
reduces faster than the actual clustering error but follows the same trend, and thus
can guide towards the minimum error cluster centers.

6 CONCLUSION

In this paper we have presented a decomposable version of k-means clustering al-
gorithm for vertically and horizontally distributed datasets that are geographically
distributed. We have also presented the analytical basis for the design of our algo-
rithm. The algorithm succeeds in obtaining results very close to those that would be
achieved by moving all the databases to one site, joining them, and then executing
the k-means algorithm. Our distributed version of the algorithm succeeds in doing
so by minimizing the total clustering error, a characteristic property of the k-means
algorithm. We use the information about the clusters formed at local sites to deter-
mine the approximate locations of the possible global cluster centers. Information
about the centers and an algorithm to count populations of points around cluster
centers in an implicitly specified relation are used by the central coordinating site
to minimize a close estimate of the total clustering error. We have demonstrated
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a)

b)

Figure 3. Results of running the proposed k-means on vertically distributed databases
when the average number of shared values is varied: a) elapsed time, b) the number
of exchanged messages
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a)

b)

Figure 4. Results of running the proposed k-means on vertically distributed databases
when the number of tuples is varied: a) elapsed time, b) the number of exchanged
messages
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Figure 5. Total error versus the number of clusters in distributed and traditional algo-
rithms

that the convergence of the above version and of the original k-means algorithm is
to centers that are very closely placed; signified by a very small difference in the
total clustering error. Our version achieves these very close results at a great saving
in the total communication cost and also preserves the privacy and integrity of the
individual databases.
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