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Abstract. To overcome the noise sensitiveness of conventional fuzzy c-means (FCM)
clustering algorithm, a novel extended FCM algorithm for image segmentation is
presented in this paper. The algorithm is developed by modifying the objective
function of the standard FCM algorithm with a penalty term that takes into account
the influence of the neighboring pixels on the centre pixels. The penalty term acts as
a regularizer in this algorithm, which is inspired from the neighborhood expectation
maximization algorithm and is modified in order to satisfy the criterion of the FCM
algorithm. The performance of our algorithm is discussed and compared to those
of many derivatives of FCM algorithm. Experimental results on segmentation of
synthetic and real images demonstrate that the proposed algorithm is effective and
robust.
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1 INTRODUCTION

Image segmentation is an important and challenging problem and a necessary first
step in image analysis as well as in high-level image interpretation and understanding
such as robot vision, object recognition, and medical imaging. The goal of image
segmentation is to partition an image into a set of disjoint regions with uniform and
homogeneous attributes such as intensity, colour, tone or texture, etc. Many different
segmentation techniques have been developed and detailed surveys can be found in
references [1-3]. According to reference [1], the image segmentation approaches can
be divided into four categories: thresholding, clustering, edge detection and region
extraction. In this paper, a clustering based method for image segmentation will be
considered.

Clustering is a process for classifying objects or patterns in such a way that
samples of the same group are more similar to one another than samples belonging
to different groups. Many clustering strategies have been used, such as the hard
clustering scheme and the fuzzy clustering scheme, each of which has its own special
characteristics. The conventional hard clustering method restricts each point of the
data set to exclusively just one cluster. As a consequence, with this approach the
segmentation results are often very crisp, i.e., each pixel of the image belongs to
exactly just one class. However, in many real situations, for images, issues such as
limited spatial resolution, poor contrast, overlapping intensities, noise and inten-
sity inhomogeneities variation make this hard (crisp) segmentation a difficult task.
Thanks to the fuzzy set theory [4] was proposed, which produced the idea of partial
membership of belonging described by a membership function; fuzzy clustering as a
soft segmentation method has been widely studied and successfully applied in image
segmentation [7-14]. Among the fuzzy clustering methods, fuzzy c-means (FCM)
algorithm [5] is the most popular method used in image segmentation because it
has robust characteristics for ambiguity and can retain much more information than
hard segmentation methods [6]. Although the conventional FCM algorithm works
well on most noise-free images, it has a serious limitation: it does not incorporate
any information about spatial context, which cause it to be sensitive to noise and
imaging artifacts.

To compensate for this drawback of FCM, the obvious way is to smooth the
image before segmentation. However, the conventional smoothing filters can result
in loss of important image details, especially image boundaries or edges. More im-
portantly, there is no way to rigorously control the trade-off between the smoothing
and clustering. Other different approaches have been proposed ([8-13]). Tolias
et al. [8] proposed a fuzzy rule-based scheme called the rule-based neighborhood
enhancement system to impose spatial continuity by post-processing on the cluster-
ing results obtained using FCM algorithm. In their another approach [9], spatial
constraint is imposed in fuzzy clustering by incorporating the multi-resolution in-
formation. Noordam et al. [10] proposed a Geometrically Guided FCM (GG-FCM)
algorithm based on a semi-supervised FCM technique for multivariate image segmen-
tation. In their work, the condition of each pixel is determined by the membership



Image Segmentation by FCM Clustering Algorithm 19

values of surrounding neighboring pixels and then is either added to or subtracted
from the cluster. Recently, some approaches ([11-13]) were proposed for increas-
ing the robustness of FCM to noise by directly modifying the objective function.
In [11], a regularization term was introduced into the standard FCM to impose the
neighborhood effect. Later, Zhang et al. [12] incorporated this regularization term
into a kernel-based fuzzy clustering algorithm. More recently, Li et al. [13] incor-
porated this regularization term into the adaptive FCM (AFCM) algorithm [14] to
overcome the noise sensitivity of AFCM algorithm. Although the latter two me-
thods are claimed to be more robust to noise, they show considerable computational
complexity.

In this paper, a novel extended FCM clustering method, called penalized FCM
(PFCM) algorithm is presented for image segmentation. The penalty term takes
the spatial dependence of the objects into consideration, which is inspired by the
Neighborhood EM (NEM) algorithm [15] and is modified according to the FCM
criterion. Minimizing this new objective function according to the zero gradient
condition, the PFCM algorithm is then proposed which can handle both the feature
space information and spatial information during segmentation. The advantage of
this algorithm is that it can handle small and large amounts of noise by adjusting a
penalty coefficient. In addition, in this algorithm the membership is changed while
the centroid computations are the same as in the standard FCM algorithm. Hence, it
is easy to implement. Experimental results and comparisons with many derivatives
of FCM algorithm on a variety of images show the proposed algorithm is effective
and robust.

The rest of this paper is organized as follows. Section 2 briefly describes the
theory of FCM and NEM algorithms. The PFCM algorithm is presented in Sec-
tion 3. Experimental results and comparisons are given in Section 4. Finally, some
conclusions are drawn in Section 5.

2 REVIEW OF RELATED THEORY
2.1 Fuzzy C-Means Clustering Algorithm

The Fuzzy C-Means (FCM) clustering algorithm was first introduced by Dunn [16]
and later was extended by Bezdek [5]. The algorithm is an iterative clustering
method that produces an optimal ¢ partition by minimizing the weighted within
group sum of squared error objective function Jroys [5):

Jrom = Z Z (uir)? d* (21, v;) (1)

k=1 i=1

where X = {x1,29, -+ ,2,} C RP is the data set in the p-dimensional vector space,
n is the number of data items, ¢ is the number of clusters with 2 < ¢ < n, u is the
degree of membership of z, in the i*® cluster, ¢ is a weighting exponent on each fuzzy

membership, v; is the prototype of the centre of cluster 4, d? (zy,v;) is a distance
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measure between object x; and cluster centre v;. A solution of the object function
Jreu can be obtained via an iterative process, which is carried out as follows:

. Set values for ¢, g and e.

. Initialize the fuzzy partition matrix U = [u).

1

2

3. Set the loop counter b = 0.

4. Calculate the c cluster centers {v,i(b)} with U®):

SO
> (ul) o
o) = (2)

> (u)’
=1\

5. Calculate the membership U®tY). For k = 1 to n, calculate the following:
I, = {il1<i<cdy = |lzpg —vi]| =0}, /; for the k" column of the matrix,
compute new membership values:

(a) if I = ¢, then
1
- - (3)

(
Uy
ZC dik (g—1)
J=1 \ dji

(b) else ugiﬂ) =0foralli¢g I and ), uP = 1: next k.

i€l ik

6. If HU(Z’) — U(b“)H < €, stop; otherwise, set b = b+ 1 and go to step 4.

2.2 Neighborhood EM Algorithm

In order to incorporate the spatial dependence into the objects, a modified version of
the conventional expectation maximization (EM) [17] algorithm has been proposed
in [15]. In this approach, the maximum likelihood criterion is penalized by a term
that quantifies the degree of spatial contiguity of the pixels supporting the respective
components of the probability density function (pdf) model. The spatial structure
of a given data set is defined by using matrix W = (wj;):

{1 if x; and ), are neighbors and j # k,

wj = . (4)

0 otherwise.

The following term is then used for regularizing the maximum likelihood criterion

G(c) = % Z Z Z CijCik Wik, (5)

j=1 k=1 i=1
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where c is the number of classes and ¢;; is the probability that z; belongs to class i.
This term characterizes the homogeneity level of the partition. The more the classes
contain adjacent elements, the greater this term is. The new criterion of the NEM
algorithm is obtained by optimizing the weighted sum of two terms

Ule,¢) =D (c,¢) +5G (c), (6)

where D (¢, ¢) is the log-likelihood function of EM algorithm, 8 > 0 is a fixed
coefficient. Details about NEM can be found in [15]. This algorithm is maximized to
get the optimum results just as the same structure as the PersonNameProductIDEM
algorithm. SuccessfulEM algorithm. Successful results have been reported for image
segmentation using this algorithm.

3 PENALIZED FCM ALGORITHM

It is noted from (1) that the objective function of the traditional FCM algorithm does
not take any spatial information into account; this means the clustering process is
related only to gray levels independently of pixels of the image in segmentation. This
limitation makes FCM very noise-sensitive. The general principle of the technique
presented in this paper is to incorporate the neighborhood information into the FCM
algorithm during classification. In order to incorporate the spatial context into FCM
algorithm, the objective function of (1) is penalized by a regularization term, which
is inspired by the above NEM algorithm and modified based on the FCM algorithm
criterion. The new objective function of the PFCM is defined as follows

Jprom = Y Z (i) " d® (g, 0) + 7> Z (wie)? (1 = wig)twyy, — (7)

k=1 i=1 k=1 j=1 i=1

where wy; is defined as (4). The parameter v (> 0) controls the effect of the penalty
term. The relative importance of the regularizing term is inversely proportional to
the signal-to-noise (SNR) of the image. placeLower SNR would require a higher
value of the parameter 7, and vice versa. When v = 0, Jppcy equals to Jpeop. The
major difference between NEM algorithm and PFCM algorithm is that the penalty
term in the NEM is maximized to get the solutions while in the PFCM it should be
minimized in order to satisfy the principle of FCM algorithm. Besides, the penalty
term in the PFCM algorithm has the weighting exponent ¢ to control the degree
of fuzziness in the resulting membership function contrary to the penalty term in
the NEM algorithm that is crisp. This new penalty term is minimized when the
membership value for a particular class is large and the membership values for the
same class at neighboring pixels is also large, and vice versa. In other words, it
constrains the pixel’s membership value of a class to be correlated with those of the
neighboring pixels.

The objective function Jppcps can be minimized in a fashion similar to the
standard FCM algorithm. An iterative algorithm for minimizing (7) can be derived
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by evaluating the centroids and membership functions that satisfy a zero gradient
condition. The constrained optimization in (7) will be solved using one Lagrange
multiplier:

=3 Z (1) (1,0 +7 D Z () (1 — gy + A <1 - Zuk> .
=1 i=1 k=1 j=1 i=1 i=1 (8)

Taking the partial derivate of (8) with respect to u;; and setting the result to
zero yields

an, _ e
au; =4q (uik)q L (kain) +7q (uik)q ! ; (1 - uij)qwkj - )\1 =0. (9)
Uik =),

Solving for u,, we have

q (dg (hy v3) + 5 2052y (1 — uj)" wkj) o
S .

(10)

* _
Ui =

Since Y ;_, wy, = 1, Vk, this constraint equation is then employed, yielding

=1
c (q (d2 (@i, o) + 7 205y (1 — ) wkj) o

> S =1 (11)

=1

Solving A from (11), we have

q

1 q—1"
ZC 1 (¢—1)
=1\ @2 (apv)+y i (1*71/1_7’)(171%]‘

Combining (12) and (10), the zero-gradient condition for the membership esti-
mator can be written as

A\ =

(12)

R 1
uh, = —. (13)

ZC d2(ack,v,;)+'yZ;L:I(lfuij)qwkj a-1
=1\ @2 (o) +y Sy (1—uiy) Twng
Similarly, taking the equation (8) with respect to v; and setting the result to
zero, we have

o _ 2k (k) @y (14)
' > (uaw)”

which is identical to that of FCM because in fact the penalty function in (7) does
not depend upon v;. Thus, the PFCM algorithm is given as follows:

(%
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PFCM algorithm

Step 1: Set the cluster centroids v;, fuzzification parameter g, the values of ¢ and e.
Step 2: Calculate membership values using (13).
Step 3: Compute the cluster centroids using (14).

Step 4: Go to step 2 and repeat until convergence.

When the algorithm has converged, a defuzzification process takes place then
in order to convert the fuzzy partition matrix U to a crisp partition. A number
of methods have been developed to defuzzify the partition matrix U, among which
the maximum membership procedure is the most important. The procedure assigns
object k to the class C' with the highest membership:

Cy = arg; {max (u)},i=1,2,...,c. (15)

With this procedure, the fuzzy images are then converted to crisp image that is
segmentation.

4 EXPERIMENTAL RESULTS

In this section, the application results of the PFCM algorithm are presented. The
performance of the proposed method is compared with those of standard FCM
algorithm [5], spatial FCM (SFCM) algorithm [11], and kernel-based fuzzy cluster-
ing with spatial constraints (SKFC) technique [12]. For all cases, unless otherwise
stated, the weighting exponent ¢ = 2.0, ¢ = 0.000 1 and v = 400, where the para-
meter v is selected experimentally in order to give appropriate results. If the image
is more noisy, a larger parameter 7 is needed. A 3 x 3 window of image pixels is
considered in this paper, thus the spatial influence on the centre pixel is through
its 8-neighborhood pixels. For the sake of simplicity, in all the examples, the pa-
rameter o in SFCM is set to be 0.8 and the parameters in SKFC are set as follows:
a =3, 0 = 150. All the algorithms are coded in Microsoft Visual C++ Version 6.0
and are run on a 1.7 GHz Pentium IV personal computer with a memory of 256 MB.

To evaluate the performance of the proposed approach, tests were first realized
on two synthetic images. First, we generate a simple two-class synthetic image,
whose intensity values are 100 and 60, respectively, and the image size is 256 x 256.
The image is then corrupted by 5% Gaussian noise, which is shown in Figure 1a).
Figure 1e) shows the result of the PFCM algorithm. The results for comparison
of FCM, SFCM and SKFC are given in Figure 1b), ¢) and d), respectively. As
can be seen, without spatial information constraints FCM algorithm can not even
separate the two classes. Although the SFCM algorithm can segment the image
into two parts, many noises still exist in both regions. Our PFCM approach can get
comparable result as SKFC algorithm and outperforms the conventional FCM and
SFCM algorithms in the noisy situation. The number of misclassified pixels and the
consuming time for different methods are counted during the experiments and listed
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in Table 1. It can be seen from Table 1 that the total number of the misclassification
pixels for the PFCM algorithm is the least in the four methods, and the misclassified
number for FCM algorithm is about 452 times that of the proposed method. Also,
it is important to be noted from Table 1 that the consuming time for SKFC is the
longest in the four algorithms, and PFCM and SFCM algorithms cost almost the
same time after convergence.

Segmentation method | FCM | SFCM | SKFC | PFCM ‘
Misclassified number 4520 386 17 10 ‘
Consuming time 1s 2s 12s 2s ‘

Table 1. Number of misclassified pixels and consuming time with different methods for
Figure 1a)

d) e)

Fig. 1. Comparison of segmentation results on a two-class synthetic image corrupted by
5% Gaussian noise: a) The original image, b) FCM result, ¢) SFCM result, d) SKFC
result, ) PFCM result

Second, a multiple-class synthetic image has been created, in which the intensity
values are 0, 255, and 128 respectively, and the image size is 256 x 256. Additive
10 % Gaussian noise was then added to the image. To get a better insight, the
image is segmented by the four algorithms into three corresponding classes with
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intensity values 255, 0, and 128 representing class 1, class 2 and class 3, respectively.
Figure 2a) shows the test degraded noisy images. The results of FCM, SFCM,
SKFC and PFCM algorithms are shown in Figures 2b), ¢), d) and e), respectively.
We observed that the three regions are well brought out by these four algorithms.
However, with the FCM algorithm, the segmentation result still has many noises,
especially in class 1 and class 3, while the result obtained by PFCM algorithm is
less speckled and smoother; this is almost identical to those of the SFCM and SKFC
algorithms. Again, the number of misclassified pixels and the consuming time for
different methods are counted during the experiments and listed in Table 2. It can
be seen from Table 2 that the total number of misclassification pixels for the FCM
algorithm is nearly 63 times that of the proposed method. Both these two syn-
thetic examples can demonstrate that the incorporation of the spatial neighborhood
constraints into the FCM algorithm can significantly improve the segmented result
when noise is present. Although the SKFC algorithm can get nearly the same results
as the proposed PFCM algorithm, it consumes more computational time.

d) e)

Fig. 2. Comparison of segmentation results on a three-class synthetic image corrupted by
10 % Gaussian noise: a) The original image, b) FCM result, ¢) SFCM result, d) SKFC
result, e) PFCM result

We take a set of values for v to test its effect on the performance of PFCM
algorithm. Figure 3 shows the classifications errors under different values of v on
a synthetic image corrupted by Gaussian noise. It is noted from Figure 3 that, as
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Segmentation method | FCM | SFCM | SKFC | PFCM ‘
Class 1 185 9 2 1
Class 2 42 14 1 1
Class 3 337 4 5 7
Total 564 27 8 9
Consuming time 2s 4s 30s 2s

Table 2. Number of misclassified pixels and consuming time with different methods for
Figure 2a)

~ increases, the number of misclassified pixels of the algorithm reduces and there
are no apparent changes after v = 400. In fact, these algorithms can reach minima
and the performance is stable between v = 400 and ~ = 500.

5000
4500

A
4000 .\
3500 |- \
3000
2500 \‘
2000 | \
1500
1000
500 |

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Value of gama

—a&— PFCM algorithm '7

Number of misclassified pixels

Fig. 3. Comparison of classification errors under different value of v of PFCM algorithm

The second type example is a simulated magnetic resonance (MR) brain image
obtained from the BrainWeb Simulated Brain Database [18]. This brain image
was simulated with TI1-weighted contrast, 1-mm cubic voxels, 7% noise and no
intensity inhomogeneity. Before segmentation, the non-brain parts of the image
such as the bone, cortex and fat tissues have been removed firstly. The class number
of the image was assumed to be four, corresponding to gray matter (GM), white
matter (WM), cerebrospinal fluid (CSF) and background (BKG). The parameter + is
set to be metricconverterProductID500 in500 in this experiment. Figure 4 a) shows
a slice from the simulated data set, Figures 4b)—e) show the segmentation results
obtained by applying FCM, SFCM, SKFC and PFCM algorithms, respectively; the
ground truth is given in Figure 4f). Tt is clearly seen that the proposed method
performs the best in the four algorithms and its result is much closer to the ground
truth. The result of PFCM is more homogeneous and smoother than other three
algorithms especially in the region of WM, which again indicates our method is
effective and robust to noise. To measure the segmentation accuracy, we also apply
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the quantitative evaluation of performance by using the overlap metric criteria [19].
The overlap metric is a measure for comparing two segmentations that is defined
for a given class assignment as the sum of the number of pixels that both have the
class assignment in each segmentation divided by the sum of pixels where either
segmentation has the class assignment. “Larger metric” means “more similar for
results”. The overlap metrics of WM, GM, CSF and BKG are given in Table 3.
As can be seen from Table 3, with spatial constraints, SFCM, SKFC and PFCM
algorithms can achieve much better performance than standard FCM algorithm.
However, utilized by the PFCM algorithm, the overlap metrics of WM and GM have
been increased more greatly compared to other three algorithms. In this example,
the consuming time for FCM is 2, for SFCM and PFCM is 7s, while for SKFC it
is 45s.

To test the performance of the four algorithms under other level of noises on
the Simulated Brain Database [18], we do the following comparison experiments.
Figure 5 shows the segmentation accuracy of applying these algorithms to the images
with different level of noises. The segmentation accuracy (SA) is defined as follows:

A — Number of correctly Class.iﬁed pixels < 100. (16)
Total number of pixels

Obviously, with noise level increase the segmentation result of FCM degrades
rapidly, while the fuzzy clustering algorithms with spatial constraints such as SFCM,
SKFC and PFCM can overcome the problem caused by noise. Generally, the PFCM
and SKFC algorithms produce comparable results, which are a little better than
those of the SFCM algorithm. However, it should be noted that the SKFC algorithm
usually consumes much more computational time than PFCM algorithm.

Segmentation method | WM GM | CSF | BKG
FCM 0.896 | 0.868 | 0.876 | 0.989
SFCM 0.942 | 0.897 | 0.916 | 0.990
SKFC 0.938 | 0.900 | 0.912 | 0.991
PFCM 0.977 | 0.931 | 0.894 | 0.991

Table 3. Overlap metrics with different methods for Figure 4 a)

In the last examples, there are two groups of real standard test images named
placeLena and Cameraman without adding any type of noise. In both experiments,
the class number c¢ is set to 2. The original images are shown in Figure 6 a), where the
top is placeLena and the bottom is Cameraman. Due to the results of SFCM, SKFC
are almost similar to that of the PFCM algorithm; they are not given here again.
The results of the FCM and PFCM algorithms are presented in Figures 6 b) and ¢),
respectively. As can be seen, both FCM and PFCM algorithms can well extract
the object from the background in each image. However, it is important to note
the proposed method performs better for the segmentation with more homogeneous
regions such as the face, the shoulder and the cap of placeLena, and with least
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Fig. 4. Comparison of segmentation results on a MR phantom corrupted by 7% Gaus-
sian noise and no intensity inhomogeneity: a) The original images, b) FCM results,
¢) SFCM result, d) SKFC result, e) PECM results, f) Ground truth

spurious components and noises particularly in the grass ground area of Cameraman.
The results presented here can prove that our method is capable of coping with not
only noises but also artifacts in the image.

100 —e—FCM
S e —8— SFCM
S o5t g2 om s
) s = —&—SKFC
3 907 PFCM
% g |
S
&
£ w0 s
% 754

70 : | :
3 5 7 9

Noiselevel (%)

Fig. 5. Comparison of segmentation accuracy of different methods on simulated brain MR
images under different level of noises
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Fig. 6. Comparison of segmentation results on real standard images named placeLena and
cameraman, a) The original images, b) FCM results, ¢) PFCM results

5 CONCLUSIONS

We have presented a novel extended FCM algorithm, PFCM algorithm that is able to
incorporate both local spatial contextual information and feature space information
into the image segmentation. The algorithm is formulated by incorporating the
spatial neighborhood information into the original FCM algorithm with a penalty
term, which is inspired by the NEM algorithm and is modified in order to satisfy the
criterion of the FCM algorithm. A variety of images, including synthetic, simulated
and real images were used to compare the performance of FCM, SFCM, SKFC and
PFCM algorithms. Experimental results show that the proposed method is effective
and more robust to Gaussian noise and other artifacts than the conventional FCM
algorithm in image segmentation. Future work will focus on adaptively deciding
the penalized parameter of this algorithm as well as compensating for the intensity
inhomogeneity while segmenting the image data.
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