Computing and Informatics, Vol. 35, 2016, 55-83

HIERARCHICAL COMMUNICATION DIAGRAMS

Marcin SZPYRKA, Piotr MATYASIK, Jerzy BIERNACKI
Agnieszka BIERNACKA, Michal WyPYCH, Leszek KOTULSKI

Department of Applied Computer Science

AGH University of Science and Technology

Mickiewicza 30, 30-059 Krakow, Poland

e-mail: {mszpyrka, ptm, jbiernac, abiernac, mwypych,
kotulski}@agh.edu.pl

Abstract. Formal modelling languages range from strictly textual ones like pro-
cess algebra scripts to visual modelling languages based on hierarchical graphs like
coloured Petri nets. Approaches equipped with visual modelling capabilities make
developing process easier and help users to cope with more complex systems. Alvis
is a modelling language that combines possibilities of formal models verification with
flexibility and simplicity of practical programming languages. The paper deals with
hierarchical communication diagrams — the visual layer of the Alvis modelling lan-
guage. It provides all necessary information to model system structure with Alvis, to
manipulate a model hierarchy and to understand a model semantics. All considered
concepts are discussed using illustrative examples.

Keywords: Alvis language, hierarchical communication diagrams, flat representa-
tion, analysis operation, synthesis operation

1 INTRODUCTION

Research on formal methods are particularly intense in the last 20 years. These
resulted in formulation of a number of formalisms and verification methods, as well
as tools for their practical application. The continuous progress of the computa-
tional capabilities allows these tools to verify increasingly more complex systems.
Therefore, the field of potential applications of formal methods is quickly expanding.
Unfortunately, there is a gap between the formal mathematical modelling languages
and languages used in everyday engineering practice. The most popular formal

56 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

methods currently include Petri nets, process algebra and timed automata. Most
model checkers accept only models represented in these formalisms. A problem with
their use is that the practice of modelling systems uses them in a significantly dif-
ferent way from the software development practice. For this reason, many software
engineers are reluctant to use these formalisms.

Alvis [27, 28] is a formal modelling language being developed at AGH-UST in
Krakow, Department of Applied Computer Science. The main motivation behind
the creation and development of Alvis language was to make the modelling and ver-
ification process more simple and accessible to software developers. In the proposed
approach, the heavy mathematical foundations are hidden from the user without
compromising the capabilities and expressive power of the formalism. Model de-
scription language is also very similar to the popular programming languages which
further increases the convenience of its usage for developers. Alvis actually com-
bines the advantages of formal methods and practical modelling languages. Main
differences between Alvis and more classical formal methods, like Petri nets and
process algebras, include the syntax that is more user-friendly from engineers’ point
of view, and the visual modelling language (communication diagrams) that is used
to define communication among distinguished parts of a model called agents. The
main difference between Alvis and industry programming languages is a possibility
of formal verification of Alvis models using model checking techniques [2].

Alvis has its origins in the CCS process algebra [23, 1], the XCCS language [3, 26]
and the Ada programming language [4]. The main result of this fact is the concept
of agent borrowed from CCS. Agent denotes any distinguished part of the system
under consideration with defined identity persisting in time. In contrast to process
algebras, Alvis uses a high level programming language to define behaviour of agents
instead of algebraic equations. Moreover, the communication mechanisms used in
Alvis are similar to the Ada rendez-vous mechanism and calling entries of Ada
protected objects.

The concept of the communication diagram is a successor of the XCCS language
diagram |3, 26]. The main differences are: generalized ports, double direction com-
munication channels, passive agents, and hierarchical structure of diagrams. A com-
munication diagram takes the form of a directed graph with agents represented by
nodes and communication channels represented by arcs — a two-way connection
should be treated as a pair of arcs. To introduce hierarchical dependencies into
communication diagrams we adopted the concept of substitution transitions from
coloured Petri nets [16, 25]. A part of a communication diagram can be placed
at separate page and represented at the higher level by the so-called hierarchical
agent. In other words, a hierarchical agent represents a subsystem (module) of the
considered system and the (sub)page attached to this agent describes the subsys-
tem in details. Of course such subpage may contain another hierarchical agents etc.
Moreover, the same page may be attached to more than one hierarchical agent, so
a designer may reuse some parts of the model.

The paper deals with theoretical and practical aspects of Alvis communication
diagrams. It provides information necessary to understand semantics of diagrams

Hierarchical Communication Diagrams 57

and equips a user with techniques necessary to construct and manipulate models hie-
rarchy. The paper is organised as follows. Section 2 provides a short introduction
to the Alvis language and the process of modelling and verification of concurrent
systems with Alvis. Section 3 contains a formal definition of non-hierarchical com-
munication diagrams, while Section 4 provides a formal definition of hierarchical
communication diagrams. Transformations of hierarchical diagrams are described
in Section 5. Advantages of using hierarchy in Alvis are presented in Section 6.
Section 7 provides an Alvis communication diagram example used to illustrate use-
fulness of the hierarchy. A short summary is given in the final section.

2 ALVIS LANGUAGE AT A GLANCE

An Alvis model is a system of agents that usually run concurrently, communicate
one with another, compete for shared resources, etc. Agents are divided into active
and passive ones. Active agents perform some activities and each of them can be
treated as a thread of control in a concurrent or distributed system. Passive agents
do not perform any individual activity, but provide a mechanism for the mutual
exclusion and data synchronization.

Agents Communication channels Code statements
® exec x = expression;
active agent e exit;
TN e in p x;
e in (t) p x;
A e in (t) p x {
success {...}
\ J/ fail {...} }
® jump label;
passive agent e loop (g) {...}
e loop {...}
e null;
B e out p x;
e out (t) p x;
e out (t) p x {

success {...}
fail {.. }

hierarchical agent .}
proc (9) p {...}

0\ .
e select {
¢ alt (g1) {...}
output procedure call alt (g2) {...} ...}
N TttTTTTTs e start A;

Figure 1. Elements of Alvis modelling language

An agent can communicate with other agents through ports. To make commu-
nication available to two agents a communication channel between their ports must
be defined in the graphical layer. Some ports of passive agents represent procedures
(services) used to access shared data stored by the agents. Communication with
a procedural port is treated as a procedure call. From the point of view of the con-
trol and data flow, the Alvis model structure is represented as a directed graph where
nodes may represent both kinds of agents (active or passive) and parts of the model

58 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

from the lower level. Such a graph is called a communication diagram. To cope
with complex systems, parts of a communication diagram can be distributed across
multiple subdiagrams called pages. Each such subdiagram is represented by a hierar-
chical agent. A communication diagram with at least one hierarchical agent is called
hierarchical communication diagram. Behaviour of each active and passive agent is
defined in the code layer. Alvis uses statements typical for high level programming
languages and some elements of the Haskell functional programming language [24].
A survey of Alvis graphical items and code statements is given in Figure 1. For
more details see [27] and the project website http://alvis.kis.agh.edu.pl.

From the user’s point of view, only graphical and code layers must be designed.
A complete model contains also a system layer. The layer is strictly connected with
the system architecture. For modelling concurrent systems, the a® system layer is
used. The layer is based on the assumption that each active agent has access to its
own processor and performs its statements in parallel with other agents.

! Model design !

| Design of |

i communication i

! diagram ' Alvis

! > ! Editor

! ™ !

| |

| Implementation |

| of code layer |

| |

i 5 . 1 Alvis

! translation ! Compiler
S [—

! Specification Specification bl i !

! of requirements of requirements fngl) 01-11f011tat'1on !

! (LTL, CTL) (1 calculus) of filter functions !

editor | " editor

1 LTS graph 1

i generation i
Alvis2nuXmv | Y . GHC

| Verification with |

| filter functions |

| |
,,,,,,,,,, 3 [

nuXmu ! Model checking | - Model checking ' CADP
I I

Figure 2. Modelling and verification process with Alvis

The scheme of the modelling and verification process with Alvis is shown in
Figure 2. From a user’s perspective, it starts from designing a model using prototype
modelling environment called Alvis Editor. The designed model is stored using XML
file format. Then Alvis Compiler is used to translate it into Haskell source code and

Hierarchical Communication Diagrams 59

its Haskell representation is used to generate the LTS graph (labelled transition
system). We use Haskell as a middle-stage representation of an Alvis model in
similar way as CPN Tools uses SML to generate reachability graphs for coloured
Petri nets [16]. The main difference between these approaches is that Alvis users
have access to the generated Haskell source files and may include some extra Haskell
code into them.

model’s agents

active agent passive agent

((am‘lapcla Cll7pv1)7 LR} (am,j,pc,;, C’thvi)v EE) (am’j7pcj7 CZj>pvj)7 crey (amﬂn/vpcn-, CZ,,,,p’U,,,/))
_ - So_-7 sTm -
.- L N o=l % AT
agent mode - J T DN \ ~~--__ agent mode
| — init program , -7 AN //* Sl ‘\ W - waiting
F — finished counter ,_-" \ s SO \ T - taken
W — waiting current - context N S~_ \ parameters
X — running statement information A ~~ ! values
order number extra information current values
about state of agent’s
e.g. called procedures parameters

Figure 3. Representation of an Alvis model state

An Alvis model semantics finds expression in an LTS graph. Execution of any
language statement is expressed as a transition between formally defined states of
such a model [28]. A state of an Alvis model is represented as a sequence of agents’
states. To describe the current state of an agent we use a four-tuple containing:
agent’s mode, its program counter, context information list and values of its param-
eters (see Figure 3). An LTS graph is an ordered graph with nodes representing
states of the considered system and edges representing transitions among states.
The edges are labelled with names of executed statements.

Alvis LTS graphs can be verified using the CADP toolbox [12]. Tt offers a wide
set of functionalities, ranging from step-by-step simulation to massively parallel
model-checking. Alvis Compiler provides a possibility to export an LTS graph into
CADP Aldebaran format. We use the CADP evaluator tool to check whether an
LTS graph satisfies requirements given as p-calculus formulae [10, 19, 22]. It should
be emphasized that this is an action based approach. A pu-calculus formula con-
cerns actions labels while states of the considered model are represented using their
numbers only.

Furthermore, the so-called filtering functions can be used to verify Alvis models.
The internal representation of an LTS graph is a Haskell [24] list of model states.
User-defined Haskell functions (called filtering functions) that search an LTS graph
for some states or parts of the graph that meet given requirements can be included
into the model. Moreover, the Haskell approach can be used to implement user
defined verification algorithms that search for some specified parts of an LTS graph
and are not provided by verification toolboxes.

A state-oriented approach is also provided by the nuXmv model checker [6] (the
previous version known as NuSMV). The Alvis2nuXmuv translator provides auto-

60 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

matic translation of an Alvis LTS graph into an equivalent nuXmv state machine.
The nuXmv tool enables automatic verification if formulae specified in a temporal
logic (LTL, CTL or RTCTL) is satisfied by the model [2, 9].

3 NON-HIERARCHICAL COMMUNICATION DIAGRAMS

Let P(X) denote the set of ports of an agent X. We can distinguish the following
subsets of P(X):

o Pin(X) (Pout(X)) denotes the set of input (output) ports of X. An input (out-
put) port is a port with at least one one-way connection leading to (from) the
port or with at least one two-way connection.

® Punc(X) =P(X)\ (Pin(X) U Pou(X)) denotes the set of unconnected ports.

® Puroc(X) denotes the set of procedural ports of passive agent X i.e. ports with
defined the proc statement.

For a set of agents W we define: P(W) = Uxew P(X), Pin(W) = Uxew
Pin(X), ete. Moreover, let P denote the set of all model ports, P;, denote the set
of all model input ports, etc. We use two notations for ports. A single lower-case
letter e.g. p denotes a port p of an agent. If it is necessary to point out the agent,
the dot notation is used e.g. X.p. Let N (Y) denote the set of port names of ports
belonging to set Y. For example, if a diagram contains only agents: X; with port p
and X, also with port p, then P = {X;.p, X5.p}, and N (P) = {p}.

Definition 1. A non-hierarchical communication diagram is a triple D = (A,C, o),
where: A = {X,...,X,,} is the set of agents consisting of two disjoint sets, A4,
Ap such that A = A4 U Ap, containing active and passive agents respectively;
C C P x P is the communication relation, such that:

Vxea(P(X) x P(X))NC =0,
Poroc N Pin N Pour = 0,
(P,q) € (P(Aa) x P(Ap)) NC = q € Pproc,
(p,q) € (P(Ap) X P(A4)) NC = p € Pproc,
(p.q) € (P(Ap) x P(Ap)) NC = (p € Pproc A4 & Pproc)
V(¢ € Pproc AP & Pproc), (5)

—~ o~~~
W~ [\
D = —

and o: As — {False, True} is the start function that points out initially activated
agents.

Each element belonging to C is called a connection or a communication channel.
The restrictions from Definition 1 have the following meaning. (1) — A connection
cannot be defined between ports of the same agent. (2) — Procedural ports are either
input or output ones. (3), (4) — A connection between an active and a passive agent
must be a procedure call. From conditions (2)-(4) it follows that any connection

Hierarchical Communication Diagrams 61

with a passive agent must be an one-way connection. (5) — A connection between
two passive agents must be a procedure call from a non-procedural port. If (p, q) € C
then p is an output port and ¢ is an input port of the (p,q) connection. The start
function ¢ makes possible delaying activation of some agents. Names of agents that
are initially activated are underlined in a communication diagram.

Figure 4. Communication diagram for model of dining philosophers

Let us consider the well-known problem of dining philosophers. Five philoso-
phers sit around a circular table. They spend their life alternately thinking and
eating. There is a large bowl of spaghetti in the centre of the table. There are also
five plates and five forks set between them. Eating the spaghetti requires the use
of two forks. Each philosopher thinks. When he gets hungry, he picks up the two
forks closest to him. If a philosopher can pick up both forks, he eats for a while,
then he puts down the forks and starts thinking. The communication diagram for
the considered model is shown in Figure 4. It contains 5 active and 5 passive agents
that represent philosophers and forks respectively. For a given philosopher, ports
right and left are used to take up and put back his right and left fork respectively.
On the other hand, ports get and put represent possible fork’s procedures.

62 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

4 HIERARCHICAL COMMUNICATION DIAGRAMS

A communication diagram can be treated as a module and represented by a single
hierarchical agent at the higher level. Hierarchical agents are not defined in the code
layer. We divide ports of hierarchical agents into three subsets based on the con-
nections defined in the model: Py, (X), Pout(X), and Pyne(X). Ports of hierarchical
agents cannot be defined as procedural ones.

Definition 2. A page (number 7) in a hierarchical communication diagram is a trip-
le D' = (A%, C?, 0"), where:
o A'={Xi, ... X!} is the set of agents with subsets of active agents A’y, passive
agents Alp, and hierarchical agents Ay, such that A* = A4 UApUAY,, and A’y
v, Al are pairwise disjoint.
¢ C'C P x P (P =Uyeuw P(X)), is the communication relation, such that:

Vxea(P(X) x P(X))NC" = 0, (6)

Prroc VPin N Py = 0, (7)

Prroc NP(Ay) = 0, (8)

(p,q) € (P(AY) x P(AR) NC" = q € Py,)

(p,q) € (P(Ap) x P(AL))NC" = p € Py, (10)
(p,9) € (P(Ap) X P(Ap)) NC' = (P € Phroc A ¢ Prroe)

V(¢ € Phroe NP & Pproc)s (11)

() € (P(Ap) x P(A})) N C" = (g,p) ¢ C", (12)

(p,q) € (P(A}y) x P(Ap))NC" = (¢,p) ¢ C". (13)

o ot Ay — {Fulse, True} is the start function.

The restrictions from Definition 2 have similar meaning as the ones from Def-
inition 1. Moreover, (8) — Hierarchical agents cannot have procedural ports. (12),
(13) — A connection between a hierarchical and a passive agent must be a one-way
connection.

The above definition treats hierarchical agents almost like active ones. However,
connections with ports of hierarchical agents can make some substitutions illegal,
i.e. after the transformation of a hierarchical diagram into the equivalent flat one,
all connections must satisfy the conditions (1)—(5). _

Let a hierarchical agent X’ € Aj; be given and let P, (D7) denote the set of
all join ports of the page D’ with respect to X, i.e.:

Proin(D)) ={Y7pe P(D’): pe N(P(X))}. (14)

join

In other words, P (D7) is the set of all ports from the page D’ which names

join *~ -
are the same as those of X*. An attempt to assign a page D’ to a hierarchical agent

Hierarchical Communication Diagrams 63
X results in the following set of hierarchical communication channels:
Cg(i ={(Z'p,Yq): (Z'p,X".q) € CYU{(Y?.q,Z"p): (X".q, Z".p) €C'}. (15)

Definition 3. Let a hierarchical agent X' € A% and a page DV = (A’,C7,07) be
given. Agent X? and page D7 satisfy the simple substitution requirements, iff

card(P(X")) = card(Pjg;n(Dj)), (16)
N(P(X") = N (P, (D)), (17)
Pioin(D’) = Pipe, (18)

and the page D' = (A',C’,0”), where

A = AU AN\ {XT, (19)
C'=CuC Ui \{(p.g): peP(X')VgePX)} (20)
v [(Y)Y e A
U(Y)_{ O'j(Y)ZYEAa ’ (21)

satisfies all conditions from Definition 2. If instead of the condition (16), it holds:

card(P(X")) < card(P,, (D?)), (22)

join
we say that agent X' and page D’ satisfy the eztended substitution requirements.

The idea of simple substitution is illustrated by Figure 5, while the idea of
extended substitution is illustrated by Figure 6.

Definition 4. A labelled directed graph is a triple G = (V, E, L), where V is the set
of nodes, L is the set of labels of arcs, and E C V x L x V is the set of arcs.

Definition 5. A hierarchical communication diagram is a pair H = (D,), where
D = {D',..., D"} is the set of pages, such that sets of agents A" (i = 1,...,k)

function, such that:
1. = is an injection.
2. Forany X € Ay, X and v(X) satisfy the requirements of the simple or extended
substitution.
3. Graph G = (D, E, Ay) where (D, X!, D7) € E iff v(X') = D’ is a tree or
a forest.

The labelled directed graph defined above is called a page hierarchy graph. Nodes
of such a graph represent pages, while edges represent the substitution function -.
Each edge represents the page to which belongs the hierarchical agent and the sub-
page associated with the agent. Formally pages from the set D\ y(Apy) are called

64 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

d3

d3

Figure 6. Extended substitution

Hierarchical Communication Diagrams 65

primary pages, They are roots of trees that constitute the page hierarchy graph.
Following symbols are valid for hierarchical communication diagrams:

Av= U A A= U A A= AiUARUA, (23)
i=1,....k i=1,..k

o Aa — {False, True} and Vi—1,_j Vxica,0(X") = o' (X, (24)

c=J cu U cl. (25)
i=1,...k XeAyny(X)=Di

5 HIERARCHY ELIMINATION

In this section we introduce the flat (non-hierarchical) abstraction of a system rep-
resented by its hierarchical communication diagram. In this representation we will
use only agents and connections among them inherited from the hierarchical com-
munication diagram.

Definition 6. Let X* € Ay and a page D’ such that y(X') = D’ be given. For
any agent Y7 € A we say that X is directly hierarchically dependent on Y9 and
denote it as X* = Y7,

For any two agents X € Ay and Y € A, X is said to be hierarchically dependent
onY,denoted as X = Y, it X =Y, = ... = Y, =Y for some Y7,...,Y;, € A.
Moreover, it is assumed that for any agent X € A\ Ay, X = X.

Definition 7. A flat representation of a communication diagram H = (D,) is the
triple (F,C’,¢") such that:

Vxyerca X #Y = X £, (26)
Vxeaaydver Y = X, (27)

C'= {(Xp,Y.q) €C: X,Y € F}, (28)
o' = o|anF- (29)

It is easy to check that the set of primary pages is a flat representation of
a system represented by a hierarchical communication diagram. We can move from
one flat representation to another, more detailed one, using the analysis operation.

Definition 8. Let H be a hierarchical communication diagram, (F,C’, ¢’) be a flat
representation of H, X € Ay NF and v(X) = D! = (A", C%,0"). Analysis of the flat
representation (F,C',0') of the hierarchical diagram H in context of X is the flat
representation (F*,C*,¢*) (denoted AN(H,F, X)), such that:

Fr=F\{X}Uu A, (
C*={(Yp,Zq)eC:Y,Z e F*}, (

*

o = U‘AAI"I]:*' (

w W
—_ O
NED N

w
[\
—

66 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

Definition 9. Let H be a hierarchical communication diagram, (F,C’, o) be a flat
representation of H, Y € F and there exists X € Ay such that X = Y and
Y(X) = D' = (A}, C!,0%). Synthesis of the flat representation (F,C',0’) of the
hierarchical diagram H in context of Y is the flat representation (F*,C*, 0*) (denoted
as SN(H, F,Y)) such that:

Fr=F\AU{X}, (33)
C*={(Yp Zq eC:Y,ZeF}, (34)
0% = 0ol anFe- (35)

Definition 10. A flat representation (F,C’,¢’) is called the maximal flat represen-
tation iff VXEA 3Y€]: X t Y.

Such a maximal flat representation does not contain hierarchical agents.

Figure 8. Result of analysis operation for model from Figure 6

Let us consider the hierarchical model H presented in Figure 5. The primary
page D' (composed of agents A, B, C' and D) is a flat representation of the model.

Hierarchical Communication Diagrams 67

The flat representation generated by AN(H, D!, D) is given in Figure 7 (let us denote
the page by D?). On the other hand, any of the synthesis operations SN(H, D3, E),
SN(H, D3, F), SN(H, D3 H), SN(H, D3, G) gives back the flat representation with
page D!'. Similarly, the flat representation generated by AN(H, D', D) for model
from Figure 6 is given in Figure 8.

6 HIERARCHICAL COMMUNICATION DIAGRAMS IN PRACTICE

One of the main motivations behind formulating the Alvis language was to make
the formal verification more intelligible and easy to use for the average engineer.
The graphical layer of the Alvis model was expected to be both easy to model and
to understand. This section is introducing standard situations in which hierarchy
usage is greatly improving the readability of the model.

6.1 Modules

Figure 9. Original communication diagram

Splitting the system into smaller parts is one of the most basic concepts in
software engineering. Its fundamental purpose it to avoid situations in which having
everything in one module, class or file one have to worry about everything at once
when expanding the existing solution. Although this practice may work for small
systems, for big ones it quickly becomes next to impossible. To solve this problem,
fragments of functionality are split into their own modules which encapsulate the
separated pieces of logic. Then, when working on a particular module, one does not
have to directly consider the implications of the work on other parts of the system.
This is invaluable for working efficiently. There are many other benefits to breaking
system into modules, e.g. the model is more maintainable, testable and reusable.
Moreover, such a module can be used as a reusable component.

Breaking the system into modules is the most common and general application of
hierarchy. Modelling in Alvis language incorporates this practice. Figure 9 presents
an example of a communication diagram. Supposing its logic can be divided and

68 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

' p Module2
v

Modulel p .
v
a)

Figure 10. a) Hierarchical agents for two modules; b) subpage for agent Modulel; ¢) sub-
page for agent Module2

encapsulated into two separate modules, the analysis operation can be used. Its
result is presented in Figure 10. There is a hierarchical diagram containing two
hierarchical agents on the primary page a) and two subpages with agents belonging
to the corresponding modules (b) and c)).

6.2 Removing Multiple Connections

Figure 11. Original communication diagram

Creating even a moderately complex model can lead to situations in which the
communication diagram becomes difficult to read due to the increasing amount of

Hierarchical Communication Diagrams 69

Module

0

Figure 12. a) Inserted hierarchical agent Module; b) subpage for agent Module

connections between the agents. The warning signal is definitely the moment in
which some of the connections are intersecting each other. A simple model with
4 agents and 7 connections between their ports is shown in Figure 11. Although this
diagram is readable, it is mostly so because of its small size. It is not difficult to
notice that agent D is connected to every other agent in the diagram. Adding more
agents connected to it will result in progressing obscuration of the model. However,
a smart use of an analysis operation can reduce the amount of visible connections.
Figure 12 presents the same model with all the agents communicating with agent D
grouped and brought to a subpage. The total amount of connections between the
agents is reduced to 5 and the legibility of the model is definitely increased.

6.3 Replacing Multiple Agent’s Instances with a Single Representation

Figure 13. Original communication diagram

70 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

a) b)

Figure 14. a) Inserted hierarchical agent B; b) subpage for agent B

Another condition for using hierarchy is when the model contains multiple in-
stances of the same agent. This is actually a very common scenario in real-time
systems. Elements such as sensors, indicators, displays and other subdevices are
often repeated in the scope of a single system. Each of them can be on some level
of abstraction represented by a separate agent. Therefore the communication dia-
gram can quickly become crowded with the great amount of reoccurring instances
of specific agents. Utilising hierarchy in such case enables the possibility of replac-
ing all these instances with a single hierarchical agent. An example is shown in
Figure 13. The original diagram contains 3 instances of the same agent (B1-B3).
These instances can be easily replaced by a single hierarchical agent B and placed
on one subpage (Figure 14). This operation has one more great advantage. When
new instances are added, it is enough to add them to the defined subpage. One does
not have to worry about drawing connections with other agents. This also applies
to the removal of unwanted instances.

6.4 Grouping Repeating Fragments of a Model

In extensive systems, repeating fragments of the model can often occur. Each of
these excerpts represents similar functionality but is placed in a different part of
the system and is connected to different agents. Such a model is therefore poten-
tially easy to disrupt. Assuming that these fragments need some kind of a change,
one would have to find all of these fragments and update them one by one. The
solution to this problem is once again in hierarchy. Figure 15 contains a sim-
ple example of a model with repeating fragments. In the example these frag-
ments are placed in the same place and are easy to identify. In model of a real
system it may not be so. Therefore, placing them on a single subpage may be
very useful. In the Figure 16 these excerpts are represented by a single hierarchi-
cal agent and moved to the lower level. This way, any changes to be made are

Hierarchical Communication Diagrams 71

el

e2

el

e2

a) b)

Figure 16. a) Inserted hierarchical agents DE; b) subpage for agent DE

less prone to cause mistakes because all repeated fragments are gathered in one
place.

7 CASE STUDY

A model of a fire alarm control panel (FACP) is used to illustrate the usefulness of
hierarchy in modelling of complex systems in Alvis language. Fire alarm system is an
excellent example of a safety critical system. Its failures always cause major losses.
If it raises the alarm too late, many people may die or become seriously injured.
Yet false alarms result in high costs due to, inter alia, the stoppage of technological
processes or activation of automatic extinguishing system. Hence, comprehensive
formal verification of such systems is crucial.

According to the SITP (Polish Association of Fire Engineers and Technicians)
alarm variants usage is a common practice in construction of fire alarm control
panels [8]. This method aims at the reduction of false fire alarms. Its most popular
variant is two-stage alarming which scheme is presented in Figure 17. It is a scheme
of an actual solution designed by the SITP association.

72 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

h
SMOKE DETECTION
NO CONFIRMATION
(0] T
EMPLOYEE EMPLOYEE CONFIRMATION
CONFIRMATION OF EXTERNAL ALARM
NORMAL ALARM
(QUISCENT CONDITION) CANCELLATION FIRE-FIGHTING

Figure 17. Fire alarm control panel scheme [8]

When one of the smoke detectors detects the fire, the internal alarm is raised.
Personnel have only a limited amount of time for reaction before the external alarm
is being raised. This period of time is here denoted by the T1 variable. If one of the
employees confirms the alarm he has another specified amount of time to assess the
threat and take an action. Again, if he fails to react in time, the external alarm is
raised. This amount of time is denoted as T2. There are 4 possible scenarios of what
can happen in that time. The first possibility is that an employee will find that the
alarm is false e.g. one of the smoke detectors is broken down. In this case an employee
can simply turn off the alarm. The second scenario is that a fire actually broke out
but is small enough for the personnel to handle it by themselves. In this case they
must cancel the alarm before the T2 time runs out. If they fail, the external alarm
is being raised, which is the third scenario. The last one is when the fire threat is
overwhelming and employees turn on the external alarm right away, without waiting
for the T2 to run out. External alarm means that the internal extinguishing systems
are activated and the fire brigade is automatically called. The last enhancement,
not depictured explicitely in the scheme, is a coincidence detection system. Its basic
behaviour is as follows: if only one smoke detector detects the fire, only the internal
alarm is raised. However, when a specified number of detectors detect the fire at
the same time, the external fire alarm is called right away, no matter in which state
the system is at the moment.

Non-hierarchical communication diagram of the described FACP system is pre-
sented in Figure 18. It depictures quite basic version of the system, with only
2 smoke detectors, 2 manual call points and 2 sprinklers per every of 3 floors of
a building. Analysing this diagram one great advantage of Alvis should be noted —

73

Hierarchical Communication Diagrams

N

7 21 1epjundsaily

Japjuudsias
Y

T g1 sepjundsaily

J9pjuudsias

S

Z 17 49pjundsaiy

Japjuudsias
Y

T 17 Jepjundsaily

J9pjuudsias A

—

2707 Jepjuidsaily

J9pjuudsias

S

T 07 Jepjundsaily

J9puudsias A)

[epou esrydreIaly-uou [oued [0IYU0D WLIR[R I ‘T oINSI]

s e

2 z13ulodiied T Z73ui0died

|leubisuuele |eubisuLuieje

19]|013U0DSSD0.Id|ed160]0uUY 3L

S1eI5WIRNIRE . 2 113ul0died T T13ulodied

|leubisuueje |eubiswuiele
Z 073ut0d1IeD T073ui0dIIeD

|leubisuuele |eubisuuieje

l1edAouabiswg

sje35WIR Y16 . . 3je3suLe|yIab

sreIsuuely

ajeISULRYIDS .

|eubisuiele

3)eISWLIR|YIdS
ajeisuue|yab

w1sAsBulysinBunxIdNeWOoINY Jawi dols . . Jawiidoys

13pjuudsias J9jj013u0)doey

sreissawnet () () aesiowinet 21835510109390396

)

,w:mnﬂ

uozwiele

yoTuuee

|suedjonuod

&

21e35510102320396

21e35510109319a

3je1838s

|eubisuLieje

. BEISEN

19]|013U0D510329320

Y

2 7 J0p23eaows

|eubisuuieje

Y

1 Z7 J0d@19gadows

|eubisuuiele

Y

Z 17 J01d219a9%0Ws

Jeubiswuieje

Y

T 17 Jo1d219aaMows

|eubisuuieje

Y

7707 J0d@19aa¥0Ws

|eubisuuiele

Y

107 J01d219aa%0Ws

|eubisuuieje

setState ‘ setState

DetectorsController DetectorsState

alarmsignal getDetectorsState

&

getDetectorsState getTimerstate ()

alarmSignal

(O getTimerstate

SmokeDetectors
setSprinkler setSprinkler

v

AutomaticExtinquishinaSystem
panel FacpController Sprinklers

ControlPanel stopTimer

getAlarmState -

stopTimer ..

startTimer startTimer

alarm10ff

alarmsignal setAlarmsState

alarm20n getAlarmState

EmergencyCall

() setalarmstate

alarmSignal AlarmState

CallPoints

getAlarmstate () getAlarmState

TechnologicalProcessController

M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

a)
. > J J
m,m_,_,:wE:m_Nu Qm,m:.:wasm_ 7 m,m::m_m:m_@ alarmsignal &wmﬂmn::zm_‘ &mmﬂmu:;:mﬂ
CallPoint 10 1 CallPoint 10 2 sne e 18] SmokeDetector L0 2 EireSprinkler L0 1 EireSprinkler 10 2
- G J
- _ J - J G J
(o) s
m,m::m_o:w_Nu Qw,m::m_o:m_ m,m::m_o:w_Nu alarmsignal setSprinkler setSprinkler
CallPoint 12 1 CallPoint L1 2 smokeDetector 11 1 SmokeDetector (1 2 FireSprinkler 11 1 FireSprinkler L1 2
J Y,) J
D N N
larmsi _Nu ﬂw larmSignal e AM ﬂw)
slarmsigna glarmsigna alarmsignal alarmsignal setSprinkler setSprinkler
Callpoint 12 1 Callpoint 12 2 e)
— allboln SmokeDetector 12 1 SmokeDetector 12 2 EireSprinkler 12 1 EireSprinkler 12 2
- G J
- N\ Y - J G J
b) ©) d)

Figure 19. a) Primary page of FACP model (Figure 18) after replacing multiple agent instances; b) CallPoints’ agent subpage;
¢) SmokeDetectors’ subpage; d) Sprinklers’ subpage

Hierarchical Communication Diagrams 75

the compactness of its graphical representation. The same system modelled in any
class of Petri nets would be much more complicated and take at least a couple of
times the space it has taken in this case.

Nonetheless, the first signs of illegibility are visible in the diagram. The point
that draws attention is the repetition of instances of agents representing detectors,
call points and sprinklers. However, these multiple instances can be represented
by hierarchical agents, according to the rule presented in Section 6.3. The results
of performing operation on the initial, non-hierarchical communication diagram are
shown in Figure 19.

SmokeDetectionSystem

getDetectorsState w

e _J
reset getDetectorsState getTimerState getTimerState
confirm .
Timer
() panel FacpController
ControlPanel stopTimer stopTimer
startTimer startTimer
alarm10ff
alarmSignal setAlarmState
))
alarm20n @
alarmSignal setAlarmState
CallPoints AlarmState AlarmReactionSystems
getAlarmState getAlarmState v
a)
setSprinkler . ‘ setSprinkler ExtinguishingSystem
. getAlarmState
AutomaticExtinguishin tem Sprinklers
getAlarmState
getAlarmState
b)

EmergencyCall

setState setState getAlarmState
SmokeDetectors DetectorsController DetectorsState TechnologicalPr ntroller
alarmSignal . . alarmSignal getDetectorsState
v)
N
) d)

Figure 20. a) Primary page of FACP model (Figure 19) after grouping multiple agents
and components with a common interface; b) ExtinguishingSystem’s subpage;
¢) SmokeDetectionSystem’s subpage; d) AlarmReactionSystem’s subpage

76 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

The obtained hierarchical communication diagram is more readable. Moreover,
adding new instances of the moved agents will not affect its readability. Nonetheless,
the model can still be improved. Extinguishing and smoke detection subsystems are
actually independent of the fire alarm control panel. They can be modelled and
verified separately and therefore should be grouped into components (Figure 20).
This would allow to switch between different versions of these subsystems without
the need to change the structure of the base model. For similar reasons, agents
with a common interface and related functionality should be grouped. Figure 20d)
presents page containing ExtinguishingSystem, EmergencyCall and Technological-
ProcessController agents grouped into a single representation.

SmokeDetectionSystem

getDetectorsState w
)

5

_J
reset getDetectorsState

AlarmReactionSystems
reset

etAlarmState etAlarmState
confirm confirm g 9 v

ControlPanel FACP

alarmSignal alarmSignal

alarm10ff alarm10ff CallPoints

A4

alarm20n alarm20n

a)

)
_/
getDetectorsState getTimerState getTimerState
reset
Timer
confirm
EacpController
stopTimer stopTimer
alarm10ff
startTimer startTimer
alarm20n
alarmSignal setAlarmState
M) M)

/

setAlarmState

AlarmState

getAlarmState

b)

Figure 21. a) Primary page of FACP model (Figure 20) after creating a new module en-
capsulating a core of the fire alarm control panel; b) FACP’s subpage

The last is the operation of encapsulation of fire alarm control panel’s core. It
required a small change in the FACPController agent — the panel port had been

Hierarchical Communication Diagrams 7
divided into 4 separate ports with the same labels as the ports it communicates

with. This allowed moving this agent to a lower level. The final result is presented in
Figure 21. The structure of the model (page hierarchy graph) is shown in Figure 22.

SmokeDetectionSystem CallPoints, FACP NlicddiollSystcms

SmokeDetectionSystem ‘ CallPoints ‘ ‘ FACP AlarmReactionSystems
SmokeDetectors ExtinguishingSystem
v v
SmokeDetectors ExtinguishingSystem
Sprinklers
v
Sprinklers

Figure 22. Page hierarchy graph for the final model

When comparing the original non-hierarchical communication diagram to the
one that is obtained after a few operations of analysis, the difference is evident. The
concluding model is certainly more legible and compact. Furthermore, it is much
easier to modify or expand because of its modular structure. Certain components
can be effortlessly replaced and the number of repeating agent instances can be freely
modified. Given that the additional work needed to perform analysis operation in
the Alvis model is minimal, the presented practices are highly recommended when
modelling complex systems.

8 RELATED APPROACHES

As it was already mentioned Alvis LTS graphs may be verified using the CADP
toolbox [12] and the nuXmv (NuSMV) model checker [6]. Developed tools provide
functions to translate an Alvis LTS graph to an SMV finite state machine or the
Aldebaran format automatically. Thus, Alvis may be treated as an input language
for these mainstream model checkers. This section provides a comparison of Alvis
and a few popular formal languages used as input language for tools such as nuXmv,
LTSA, SPIN, Prism or CPN Tools.

78 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

The nuXmv (previously NuSMV) tool [6] is one of the most popular model
checkers for temporal logic. Given a finite state model and a formula, nuXmv
can be used to check automatically whether or not the model satisfies the formula.
Formulae can be treated as a specification of requirements for a given model and can
be expressed using LTL or CTL [9] temporal logics. The nuXmv tool is equipped
with a dedicated modelling language which is used to define finite state transition
systems [7]. The language describes a finite state system as a directed graph with
nodes representing states and arcs representing transitions between states. Each
state is determined by values of the system variables. Most of an SMV code describes
the structure of the graph and values of variables for individual states. Compared to
the SMV language Alvis describes a model at a higher level. The syntax of an Alvis
model is a combination of a high level programming language and visual modelling.
For such a model an LTS graph is generated which is then translated to the NuXmv
representation. The corresponding SMV model preserves the structure of the LTS
graph and uses a set of variables to represent states of Alvis agents.

The LTSA (Labelled Transition System Analyser [21]) is another popular model
checker. A model in LTSA is composed of a set of interacting finite state machines
and the requirements are also given as finite states machines. To avoid explicit
description of an LTS in terms of its states, action labels and transition relation,
LTSA uses a process algebra notation (FSP). The notation is similar to other pro-
cess algebra formalisms like CCS [23] or CSP [13]. As it was already said, Alvis
has its origins in the CCS process algebra. However, from the engineers point of
view, description of a system component behaviour with a high level programming
language is more convenient than using FSP calculus.

PRISM (probabilistic model checker [20]) is fairly well known model checker
for several types of probabilistic models like discrete and continuous-time Markov
chains, Markov decision processes, probabilistic automata and probabilistic time au-
tomata. It provides a simple, state-based language, based on the Reactive Modules
formalism. The fundamental components of the PRISM language are modules and
variables. A model is composed of a number of interacting modules. Every module
holds its local variables which constitute the state of the module. The global state
of the whole model is a sum of the local states. This approach is very similar to the
Alvis one. However, the behaviour of the module is represented by a set of rules
which explicitly introduce probability to the model. PRISM commands take predi-
cate like form where user defines how variables are changing and specifies probability
of such events. Alvis model behaviour is represented by imperative language. It al-
lows user to model indeterminism but was not designed for it. Model composition
and synchronization in PRISM is achieved with CSP like syntax in textual form, in
Alvis it is represented as a graph. PRISM introduces a language for analysing model
properties. It subsumes several temporal logics, including PCTL, CSL, PLTL and
PCTL*. Alvis relays on external tools to verify generated models.

Another well established model checker is SPIN [14]. An input model is specified
in Promela (Process Meta Language). Promela is an imperative language similar to
Alvis. It allows for specification of concurrent processes communicating with each

Hierarchical Communication Diagrams 79

other through channels. Both languages support the rendezvous mechanism and the
asynchronous communication through buffers. The later case has to be explicitly
modelled in Alvis with passive agents. The approach to verify model properties is
similar in both languages. SPIN generates a specialised model checker in the form of
C source code, which after compilation is used to verify model properties. In case of
Alvis a Haskell representation is used to perform on-the-fly verification using Haskell
user-defined function or to generate input models for CADP or nuXmv. SPIN
supports only on-the-fly model checking. On-the-fly model checking has drawback
of recompilation for not only every change in the model but in requirements as well.
On the other hand, the explicit LTS graph representation does not need a recreation
for the new requirements check. Finally, Spin has additional GUI tools like jSpin or
tau, but none of them allows for hierarchical modelling of concurrent systems.

Petri nets is the most popular formalism and coloured Petri nets (CP-nets [16])
are one of the most popular classes of Petri nets. They provide a discrete-event mod-
elling language combining capabilities of Petri nets with the capabilities of a high-
level programming language that gives the primitives for the definition of data types,
variables, expressions for describing data manipulation, etc. CP-nets are supported
by a modelling and verification environment called CPN Tools [17].

One of the main advantages of CP-nets is the possibility of hierarchical mod-
elling. The idea of transitions substitution has been adopted for Alvis communi-
cation diagrams. The main difference between CP-nets and Alvis is the modelling
language and the form of a model states’ representation. A Petri net is a bipartite
graph composed of two disjoint sets: set of places and set of transitions connect-
ing by directed arcs. Places usually represent parts of the modelled system, while
transitions its activities. A distribution of tokens in net places represents the model
state. In case of CP-nets the tokens may belong to different data types. Elements of
the net are labelled by expressions which describe the tokens flow. While designing
a CP-net model user decides how elements of the net are interpreted. Compared
to CP-nets an Alvis model usually resembles the structure of modelled system and
we do not need extra hints to understand it. Moreover, the Alvis method of models
states’ description, which is similar to information provided by software debuggers
and it is easy to understand. Equipped with a time model CP-nets may be used to
model real-time systems [15, 25]. A time version of Alvis is under development [29]
so verification of real-time systems with Alvis will be possible in future.

9 SUMMARY

The issue that currently inhibits the popularisation of formal methods is the fact
that existing formalisms are difficult to understand for an average software engineer.
In most cases, the amount of time and experience required to create a formal model
of even simple system is too high to accept it in the industrial software develop-
ment process. Alvis language, where the fundamental focus is to ease the use and
optimization of time required to create a model, is allowing to bypass this barrier.

80 M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

This paper is focused on hierarchy in Alvis models. A formal definition of
hierarchical communication diagrams and methods of their transformation are in-
troduced. Modelling with Alvis is supported by the Alvis Editor tool. It provides
essential editing features, such as: diagram edition, basic tools for alignment and
colouring, automatic creation and removal (flattening) of hierarchical pages, textual
layer adition with syntax colouring and code folding. Alvis Editor is also integrated
with the Alvis Compiler which allows user to create executable models directly from
the editor. Alvis editor is written in Java language and the Swing graphical library.
For graph rendering and management the jGraph library is used. Textual code edi-
tion is supported by the RichTextEdit library. For documentation purposes, it is
possible to export diagrams into PNG, EPS and SVG formats. More information
about the practical usage of the Alvis language and the tools can be found at the
project web page http://alvis.kis.agh.edu.pl.

As regards directions for future developments, some extensions of the software
are considered. First of all, a compiler for time version of Alvis will be developed.
This task requires also some research on efficient algorithms for generating LTS
graphs for models with time. Moreover, one of our planned future endeavours is
using Alvis to explore the features of agent-based computing, e.g. such as EMAS [5],
both on the algorithmic and implementation level. Some application of the agent
approach can be found in [18] and [11]. In our opinion, formal verification of such
systems with Alvis should provide an essential enhancement to the approach.

REFERENCES

[1] AcETO, L.—INGOFSDOTTIR, A.—LARSEN, K.G.—SRBA, J.: Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, Cambridge,
UK, 2007.

[2] BAIER, C.—KATOEN, J.-P.: Principles of Model Checking. The MIT Press, London,
UK, 2008.

[3] BaLicki, K.—SzPYRKA, M.: Formal Definition of XCCS Modelling Language. Fun-
damenta Informaticae, Vol. 93, 2009, No. 1-3, pp. 1-15.

[4] BUrNS, A.—WELLINGS, A.: Concurrent and Real-Time Programming in Ada 2005.
Cambridge University Press, 2007.

[5] BYRrski, A.: Tuning of Agent-Based Computing. Computer Science, Vol. 14, 2013,
No. 3, pp. 491-512.

[6] Cavapa, R.—CIMATTI, A.—DORIGATTI, M.—GRIGGIO, A.—MARIOTTI, A.—
MicHELI, A.—MOVER, S.—ROVERI, M.—TONETTA, S.: The nuXmv Symbolic
Model Checker. Computer Aided Verification, Springer-Verlag, LNCS, Vol. 8559, 2014,
pp. 334-342.

[7] CimaTTI, A.—CLARKE, E.—GIUNCHIGLIA, F.—ROVERI, M.: NUSMV: A new
Symbolic Model Checker. International Journal on Software Tools for Technology
Transfer, Vol. 2, 2000, No. 4, pp. 410-425.

Hierarchical Communication Diagrams 81

18]
19l

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

Ciszewskl, J.—KUNECKI, K.—MARKOWSKI, W.—SAWICKI, J.—SOBECKI, M.:
SITP Guideline WP-02:2010. Fire Alarm Systems. The design, 2010.

CLARKE, E. M.—GRUMBERG, O.—PELED, D. A.: Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

EMERSON, E. A.: Model Checking and the Mu-Calculus. In: Immerman, N., Ko-
laitis, P. G. (Eds.): Descriptive Complexity and Finite Models, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, American Mathematical
Society, Vol. 31, 1997, pp. 185-214.

FABER, L..: Agent-Based Data Integration Frameworks. Computer Science, Vol. 15,
2014, No. 4, pp. 389-410.

GARAVEL, H.—LANG, F.—MATEESCcU, R.—SERWE, W.: CADP 2006: A Toolbox
for the Construction and Analysis of Distributed Processes. Computer Aided Verifi-
cation, Springer-Verlag, LNCS, Vol. 4590, 2007, pp. 158-163.

HoARE, C. A. R.: Communicating Sequential Processes. Prentice-Hall, 1985.
HorzMANN, G. J.: The Model Checker SPIN. IEEE Transactions on Software Engi-
neering, Vol. 23, 1997, No. 5, pp. 279-295.

JAMRO, M.—RzoNcaA, D.—RzasA, W.: Testing Communication Tasks in Dis-
tributed Control Systems with SysML and Timed Colored Petri Nets Model. Com-
puters in Industry, Vol. 71, 2015, pp. 77-87.

JENSEN, K.—KRISTENSEN, L.: Coloured Petri Nets. Modelling and Validation of
Concurrent Systems. Springer, Heidelberg, 2009.

JENSEN, K.—KRISTENSEN, L.—WELLS, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer, Vol. 9, 2007, No. 3-4, pp. 213-254.
KiSIEL-DOROHINICKI, M.: Evolutionary Multi-Agent Systems in Non-Stationary En-
vironments. Computer Science, Vol. 14, 2013, No. 4, pp. 563-575.

KozeN, D.: Results on the Propositional u-Calculus. Theoretical Computer Science,
Vol. 27, 1983, No. 3, pp. 333-354.

KwIATKOWSKA, M.—NORMAN, G.—PARKER, D.: PRISM 4.0: Verification of
Probabilistic Real-Time Systems. Proceedings of the 23" International Conference
on Computer Aided Verification (CAV '11), Snowbird, USA, 2011, pp. 585-591.
MAGEE, J.—KRAMER, J.: Concurrency: State Models & Java Programs. Wiley,
2006.

MATEESCU, R.—SIGHIREANU, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free p-Calculus. Tech. Rep. No. 3899, INRIA, 2000.

MILNER, R.: Communication and Concurrency. Prentice-Hall, 1989.

O’SULLIVAN, B.—GOERZEN, J.—STEWART, D.: Real World Haskell. O’Reilly Me-
dia, Sebastopol, CA, USA, 2008.

SZPYRKA, M.: Analysis of VME-Bus Communication Protocol — RTCP-Net Ap-
proach. Real-Time Systems, Vol. 35, 2007, No. 1, pp. 91-108.

SZPYRKA, M.—MATYASIK, P.: Formal Modelling and Verification of Concurrent
Systems with XCCS. Proceedings of the 7" International Symposium on Parallel and
Distributed Computing (ISPDC 2008), Krakow, Poland, July 1-5, 2008, pp. 454-458.

82

[27]

28]

[29]

M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, L. Kotulski

SZPYRKA, M.—MATYASIK, P.—MROWKA, R.: Alvis — Modelling Language for Con-
current Systems. In: Bouvry, P., Gonzalez-Velez, H., Kolodziej, J. (Eds.): Intelligent
Decision Systems in Large-Scale Distributed Environments, Studies in Computational
Intelligence, Springer-Verlag, Vol. 362, 2011, pp. 315-341.

SZPYRKA, M.—MATYASIK, P.—MROWKA, R.—KO0OTULSKI, L.: Formal Description
of Alvis Language with a® System Layer. Fundamenta Informaticae, Vol. 129, 2014,
No. 1-2, pp. 161-176.

SZPYRKA, M.—MATYASIK, P.—WyYPYCH, M.: Alvis Language with Time Depen-
dence. Proceedings of the Federated Conference on Computer Science and Information
Systems, Krakow, Poland, 2013, pp. 1607-1612.

Marcin SZPYRKA is Full Professor at AGH University of Scien-
ce and Technology in Krakow, Poland (Department of Applied
Computer Science). He is the author of over 120 publications,
from the domains of formal methods, software engineering and
knowledge engineering. His fields of interest also include theory
of concurrency, systems security and functional programming.
He is the Alvis Project leader. He is a member of the IEEE
Computer Society.

Piotr MATYASIK is Assistant Professor at AGH University of
Science and technology, Department of Applied Computer Scien-
ce. He has M.Sc. in automatics and Ph.D. in computer science.
His interest covers formal methods, robotics, artificial intelligence
and programming languages. Currently he is involved in Alvis
project. He is the author of publications on artificial intelligence,
formal methods, embedded systems and software engineering.

Jerzy BIERNACKI received his Bachelor’s and Master’s degrees
in computer science from the Faculty of Electrical Engineer-
ing, Automatics, Computer Science and Biomedical Engineering,
AGH University of Science and Technology, Poland, in 2013 and
2014, respectively. Currently he is a Ph.D. student at the AGH
UST, Department of Applied Computer Science. His research
focuses on formal methods and model checking.

Hierarchical Communication Diagrams 83

Agnieszka BIERNACKA received her Bachelor’s and Master’s
degrees in computer science from the Faculty of Electrical En-
gineering, Automatics, Computer Science and Biomedical En-
gineering, AGH University of Science and Technology, Poland,
in 2013 and 2014, respectively. She is currently pursuing her
Ph.D. degree at the AGH UST, Department of Applied Com-
puter Science. Her research interests include formal methods
and model checking.

Michal WYPYCH received his Master’s degree in computer
science from the Faculty of Electrical Engineering, Automatics,
Computer Science and Biomedical Engineering, AGH University
of Science and Technology, Poland, in 2012. Currently he is
Ph.D. candidate and assistant at the AGH UST, Department
of Applied Computer Science. His research focuses on formal
methods and model checking. He is the chief developer of Alvis
Compiler project.

Leszek KoTULSKI is Full Professor and Head of Department
of Applied Computer Science at AGH-UST. His interests focus
on distributed computing, graph transformations systems, data
warehouses. He is the author/co-author of over 150 papers in the
above-mentioned areas. He served as co-chair and PC member
of many conferences and workshops worldwide. He is a member
of the IEEE Computer Society, ACM, and FIPA.

