
Computing and Informatics, Vol. 26, 2007, 33–43

EVOLVING GENERALIZED EUCLIDEAN DISTANCES
FOR TRAINING RBNN

José M. Valls, Ricardo Aler, Oscar Fernández

Avenida de la Universidad
30. 28911 Leganés (Madrid), Spain
e-mail: jvalls@inf.uc3m.es, ricardo.aler@uc3m.es

Manuscript received 23 March 2006; revised 5 September 2006

Communicated by Vladimı́r Kvasnička

Abstract. In Radial Basis Neural Networks (RBNN), the activation of each neu-
ron depends on the Euclidean distance between a pattern and the neuron cen-
ter. Such a symmetrical activation assumes that all attributes are equally relevant,
which might not be true. Non-symmetrical distances like Mahalanobis can be used.
However, this distance is computed directly from the data covariance matrix and
therefore the accuracy of the learning algorithm is not taken into account. In this
paper, we propose to use a Genetic Algorithm to search for a generalized Euclidean
distance matrix, that minimizes the error produced by a RBNN.

Keywords: Generalized distances, evolving distances, radial basis neural networks,
genetic algorithms

1 INTRODUCTION

Radial Basis Neural Networks (RBNN) [1, 2] are originated from the use of radial
basis functions, in the solution of the real multivariate interpolation problem [3, 4].
As the Multilayer Perceptron (MLP) they can approximate any regular function [5].
Due to its local behavior and to the linear nature of its output layer, their training
is faster than MLP training [5] and this fact makes them useful for a wide variety of
applications. The most used radial basis functions are Gaussian functions, defined
by Equation (1).



34 J.M. Valls, R. Aler, O. Fernández

φm(xk) = e
−

‖cm−x
k
‖2

2σ2
m (1)

where φm(xk) represents the activation function for neuron m when an input pat-
tern xk is presented. The vector cm is the center of the neuron m, and σm is its
deviation or width.

One of the problems of RBNN is the symmetrical nature of their activation
function, making that the activation of a neuron when a pattern is presented, only
depends on the Euclidean distance from this pattern to the neuron center. This
implies that all attributes have the same relevance for the learning task. This could
be solved by altering the metric used in the activation function, so that, for instance,
differences between values of relevant attributes are given more importance than
less relevant ones. The use of non-Euclidean metrics in the context of RBNN was
suggested by [6, 7, 8].

The Mahalanobis distance addresses this problem. It is a metric used in statistics
in order to normalize different attributes and take into account the correlations
among them. This distance is computed according to Equation (2).

dij =
[

(xi − xj)
TS−1(xi − xj)

]

1/2
=
[

(xi − xj)
TMTM(xi − xj)

]

1/2
(2)

where dij is the Mahalanobis distance between vectors xi and xj , S is the variance-
covariance matrix of all vectors in the data set and M is the so-called Mahalanobis
matrix [9, 10, 11]. This distance has been used to improve prediction accuracy
in learning systems that use distances [12]. However, the Mahalanobis distance is
independent of the learning system used and of the error produced on the training
data, because it is computed from the points in the dataset only (more specifically,
it is computed from the variance-covariance matrix of the dataset).

To see this more clearly, Equation (3) displays the Mahalanobis distance between
two vectors (x1, y1) and (x2, y2) in two-dimensional space.

d2
12

=
1

(1− r2)

[

(x1 − x2)
2

σ2
1

+
(y1 − y2)

2

σ2
2

− 2r
(x1 − x2)(y1 − y2)

σ2σ2

]

(3)

where r is Pearson’s linear correlation coefficient and σ1 and σ2 are the respective
standard deviations. In the simplest case where r = 0 (no correlation between
the attributes), the Mahalanobis distance simply normalizes attributes x and y by
dividing by their respective variance. Now, let us suppose that attribute x is highly
correlated with the class to be predicted (i.e. very relevant for learning) whereas
attribute y is not. This implies that attribute x should have a stronger weight in
the distance function. But, clearly, the Mahalanobis distance does not take this into
account, because neither the class nor the error are considered in the Mahalanobis
matrix.

[13] used Euclidean weighted norms (diagonal matrices) that were computed
during the training process. That is, unlike the Mahalanobis distance, the training
error was considered for computing the weights. Similar techniques were reviewed



Evolving Generalized Euclidean Distances for Training RBNN 35

for other lazy techniques in [14]. However, only diagonal matrices (attribute weight-
ing) were used. [15] presents some preliminary work about using full generalized
Euclidean distances, which involve symmetrical matrices (non-diagonal matrices).

In this paper we extend previous work. We address the problem of finding the
generalized Euclidean distance that minimizes the error of a RBNN for classifica-
tion and regression tasks. We propose to use a generalized Euclidean distance in
the activation function of the RBNN, so that, for instance, different attributes are
treated differently according to their relevance. This will be achieved by a genetic
algorithm [16] whose individuals are generalized Euclidean distance matrices and
whose fitness function depends on the prediction accuracy attained by the network
using the matrix.

2 DESCRIPTION OF THE METHOD

In this paper we use a standard Genetic Algorithm (GA) [16] to evolve distance
matrices. A GA is a kind of heuristic search. The algorithm maintains a set of
candidate solutions (or population of individuals) and applies the search operators
on them (also called genetic operators: mutation and crossover). The search is
guided by a heuristic (or fitness) function. We have used a standard generational
GA with elitism and tournament selection. Matrices in the individuals are coded
by representing each of their components in binary format. The fitness function
is computed by training a RBNN on a set of training data and determining the
training error. Training a RBNN involves to determine the centers, the widths, and
the weights. We have chosen the usual hybrid approach [1]. Thus, the centers are
calculated in an unsupervised way using the K-means algorithm, which is randomly
initialized, to classify the input space. The neurons widths are obtained as the
geometric mean of the distances from each neuron center to its two nearest centers.
Finally, the weights are estimated in a supervised way to minimize the mean square
error measured over the training set.

Thus, the GA tries to find the distance matrix that minimizes the RBNN training
error. The number of hidden neurons is fixed from the start.

In particular, we wish to evolve matrix M to compute a generalized Euclidean
distance between vectors xi and xj , according to Equation (4).

dij = [(xi − xj)
TMTM(xi − xj)]

1/2. (4)

In order to determine the appropriate M matrix by using GA, individuals must
be properly encoded. In order to reduce the number of components of M to be
evolved, we have chosen matrix M to be either diagonal or symmetrical. In that
case, only the diagonal and the upper half of the matrix coefficients must be encoded
to a binary representation in order to build the chromosome of the individual. The
diagonal case corresponds to a diagonally weighted Euclidean distance, and it is
equivalent to have every attribute weighted by a factor (see Equation (5)). The
second case (the symmetrical matrix) is a fully weighted Euclidean distance.



36 J.M. Valls, R. Aler, O. Fernández

d(A,B) =

√

√

√

√(
i=d
∑

i=1

mii ∗ (Ai − Bi)2) (5)

Each matrix element is a real number that must be encoded to a binary rep-
resentation with a fixed number of bits, following a fixed-point representation with
a single bit for the sign. Hence, the chromosome is a string of bits formed by the
binary representation of each matrix element belonging to the diagonal or the upper
half of the matrix; i.e., if the matrix is

M =













m11 m12 . . . m1d

m21 m22 . . . m2d
...

...
...

...
md1 md2 . . . mdd













the corresponding string chromosome will be

{B(m11), B(m12), . . . , B(m1d), B(m22), B(m23), . . . , B(mdd)}

where B(mij) is the binary representation of mij

Each individual represents a matrixM that will determine the distance function
to be used for the neurons activation (see Equation (2)). The goal of this work
consists of improving the accuracy or the RBNN; hence, if the network error is
small it means that the corresponding distance function is good; thus, the individual
representing of the M matrix must have a big fitness value. The fitness function
chosen in this work is given in Equation (6).

fitness = − log2E (6)

where E is the mean squared error committed by the network on the training data.
It has been chosen so that fitness increases when error decreases. This function also
manages to amplify differences between individuals whose error is close to zero. This
is important to increase evolutionary pressure in the latest stages of GA-evolution,
when all individuals are very good.

In the following, the sequential structure of the proposed method is summarized.

1. Create the initial population. A set of random chromosomes is generated. These
chromosomes represent different distance functions to be used in the Radial Basis
Functions of the networks.

2. Evaluate the fitness of each element of the current population. In order to perform this
point, RBNN with a fixed number of hidden neurons are trained using the distance
function determined by each individual of the population. Training errors of these
networks are used to calculate the fitness of each individual.

3. Apply genetic operators to the population in order to create the next generation.



Evolving Generalized Euclidean Distances for Training RBNN 37

4. If the number of generations is lower than the maximum, go to step 2.

5. Return the highest fitness matrix.

3 EMPIRICAL RESULTS

The purpose of this section is to validate empirically our approach. Four sets of
experiments will be carried out. First, a synthetic domain, where the solution is
known, will be posed to the system. Next, three more domains will be tested: the
Mackey-Glass and the Venice Lagoon time series, and a classification problem, the
Ripley data set.

3.1 Synthetic Domain

This domain follows a bi-variate Gaussian shape (µ = (0.5, 0.5), σ2 = 0.002). How-
ever, instead of the Euclidean distance, a generalized Euclidean distance with a sym-
metrical matrix M will be used instead (see Equation (2) and matrix (7)). In Eu-
clidean space, the result is a rotated and stretched gaussian (i.e. non-symmetrical).
In short, the goal is to approximate the function given by Equation (8), where M

is given by Equation (7).

M =

(

0.2 0.75
0.75 1.0

)

(7)

e−
(x−0.5)T M

T
M(x−0.5)

2∗0.002 (8)

Obviously, a standard RBNN with a single neuron centered on (0.5, 0.5) will
not be able to correctly learn this function, because the standard activation function
uses a Euclidean distance which is symmetrical. However, our GA should be able to
learn the matrix M used to generate the domain. In order to get a proof-of-concept
using this simple problem, we trained our system using a single neuron centered on
(0.5, 0.5) with a σ2 = 0.008 (four times the σ2 used to generate the domain). The
GA was run using the parameters shown in Table 1.

Generations 30
Tournament size 2
Population size 20
Elitism 1
Crossover probability 0.6
Mutation probability 0.03

Table 1. Parameters of the genetic Algorithm for the Gaussian domain

In addition, 3 bits were used for the integer part, and 5 bits for the fractionary
part. Only symmetrical matrices were allowed. After 30 generations, the following



38 J.M. Valls, R. Aler, O. Fernández

matrix was obtained (see Equation (9)), which approached the function very well
(it achieved a 5.867x10−5 error).

M =

(

0.46875 1.50000
1.50000 2.00000

)

(9)

Matrix 9 does not match matrix 7 (the one used to generate the domain), al-
though it can be seen that their components approximately double the ones in the
domain matrix. In any case, it is the activation functions that must be the same, in
order for the 1 neuron RBNN to approximate perfectly the function. That is, the
following equality has to be satisfied (see Equation 10):

(1/σ2

1
)[MT

1
M1] = (1/σ2

2
)[MT

2
M2] (10)

where σ2

1
and M1 refer to the parameters used to generate the domain, σ2

2
is the

variance of the neuron, and M2 is the matrix obtained by the genetic algorithm.
This equality is almost satisfied, as Equation (11) shows.

(

301.25 450
450 781.25

)

∼

(

283.2 421.8
421.8 757.8

)

(11)

It is interesting to remark that even though the σ2 of the neuron (0.008) was not
the same than the one used to generate the domain (σ2 = 0.002), the GA managed
to fit the domain function by appropriately escalating the components of the evolved
matrix.

3.2 The Mackey-Glass Domain

The Mackey-Glass time series is widely regarded as a benchmark for comparing the
generalization ability of RBNN [17, 18, 19]. The task for the RBNN is to predict
the value of the time series at point x[t+ 50] from the earlier points (x[t], x[t− 6],
x[t− 12], x[t− 18]). It is a chaotic time series created by Equation (12):

dx(t)

dt
= −bx(t) + a

x(t− τ)

1 + x(t− τ)10
(12)

1 474 patterns were generated for the Mackey-glass series, and values were nor-
malized in (0, 1). First, we ran some preliminary experiments in order to determine
the number of neurons required. The minimum error was obtained with about 25
neurons. Also, these preliminary tests showed that 400 learning cycles and a 0.002
learning rate were reasonable values in this domain.

We tested two configurations of the system: allowing only diagonal matrices,
and allowing general symmetrical matrices. Table 2 summarizes the parameters
used. Two bits were used for the integer part, and three for the fractionary part.

Table 3 displays the results comparing the performance of a RBNN using a stan-
dard Euclidean distance and evolved distances. 5-fold crossvalidation results are



Evolving Generalized Euclidean Distances for Training RBNN 39

Generations 50
Tournament size 2
Population size 15
Elitism 1
Crossover probability 0.7

Mutation probability 0.01

Table 2. Parameters of the genetic algorithm for the Mackey-Glass problem

shown for both a diagonal matrix and a general symmetrical matrix. Improvements
of 32.3% and 6.4% (respectively) can be observed. In this domain, using a diagonal
matrix seems to be better than using a symmetrical matrix. In order to get a better
understanding of results in this domain, we observed the values of the components
of the matrices evolved by the GA. As we used a 5-fold crossvalidation procedure,
5 matrices were evolved. We observed that none of the components outside the di-
agonal are significantly different than 0 (taking into account the 5-folds, the median
for these components is very close to 0). This means that for this domain, a symmet-
rical matrix does not give any advantage over a diagonal matrix. As a symmetrical
matrix has many more parameters to be adjusted, it is more difficult for the GA to
get the correct result.

Distance used Test Error Improvement (%)

RBNN Euclidean 0.015116

RBNN GA diagonal 0.010237 32.3%

RBNN GA symmetrical 0.014145 6.4%

Table 3. Comparison of results between Euclidean and evolved distances (5-fold crossvali-
dation)

3.3 The Venice Lagoon Time Series Domain

This real world time series represents the behavior of the water level at Venice
lagoon. Unusual high tides result from a combination of chaotic climatic elements
with the more normal, periodic, tidal systems associated with a particular area.
The prediction of high tides has always been the subject of intense interest, not only
from a human point of view, but also from an economic one, and the water level of
Venice Lagoon is a clear example of these events [20, 21].

The goal in this work is to predict only the next sampling time and a nonlinear
model using the six previous sampling times, i.e. data of the six previous hours, may
be appropriate. Thus, the function to be learned is:

x(t) = f(x(t− 1), x(t− 2), x(t− 3), x(t− 4), x(t− 5), x(t− 6)) (13)

A data set of 4 000 points corresponding to the water level measured each hour
has been extracted from available data (water level of Venice Lagoon between 1 980



40 J.M. Valls, R. Aler, O. Fernández

and 1 994 sampled every hour). This set has been chosen in such a way that both
stable situations and high water situations appear represented in the set. High-
water situations are considered when the level of water is not lower than 110 cm.
Values are normalized in (0, 1). As in the previous domain, we ran some preliminary
experiments in order to determine the number of neurons required, corresponding
to the minimum error to RBNN with 25 neurons. Also, the same learning rate and
number of cycles were used. The GA parameters and the number of bits used for
the binary representation are the same that in the previous domain (see Table 1).

Both configurations of the system are tested, using a 5-fold crossvalidation pro-
cedure, corresponding to the diagonal and the symmetrical matrices, and their per-
formance is compared with standard RBNN, when only Euclidean distances are
used. Table 4 shows the results. Significant improvements for both configurations
can be observed. When diagonal matrices are evolved, the RBNN performance im-
proves a 44.5% with respect to RBNN with Euclidean activation functions. The
improvement reaches a 51% when symmetrical matrices are used instead.

Distance used Test Error Improvement (%)

RBNN Euclidean 0.056584

RBNN GA diagonal 0.031407 44.5%
RBNN GA symmetrical 0.027726 51.0%

Table 4. Comparison of results between Euclidean and evolved distances for the Venice
Lagoon time series (5-fold crossvalidation)

3.4 The Ripley Data Domain

This artificially generated dataset has been used in [25]. Each pattern has two
real-valued coordinates and a class which can be 0 or 1. Each class corresponds to
a bimodal distribution that is a balanced composition of two normal distributions.
Covariance matrices are identical for all the distributions and the centers are differ-
ent. One of the issues that make this domain interesting is the big overlap existing
between both classes. Due to this strong overlap, RBNN usually obtain poor results
with this domain. Here, we are interested in improving the performance of classical
RBNN using generalized Euclidean distances.

As in the previous domains, we ran some preliminary experiments in order to
determine the number of neurons required, corresponding the minimum error to
RBNN with 10 neurons. Also, the same learning rate and number of cycles were
used. The GA parameters and number of bits used in the binary representation are
also identical (see Table 1).

Table 5 shows the classification rates achieved by the different kinds of RBNN.
It is possible to observe that the results corresponding to RBNN using both the
diagonal matrix and the general one are better that the ones obtained when a purely
Euclidean distance is used.



Evolving Generalized Euclidean Distances for Training RBNN 41

Distance used Classif. Rate

RBNN Euclidean 73.6%
RBNN GA diagonal 75.6%

RBNN GA symmetrical 76.0%

Table 5. Comparison of results between Euclidean and evolved distances for the Ripley
data set (5-fold crossvalidation)

4 CONCLUSIONS

One of the problems of RBNN is the symmetrical nature of their activation function:
the activation of a neuron only depends on the Euclidean distance from the input
pattern to the neuron center, without taking into account the importance of differ-
ent attributes; and, in general, there is no guarantee that the Euclidean distance is
the best suited for a particular classification or regression problem. This issue can
be approached by altering the metric used in the activation function. The learning
method presented in this work uses a generalized Euclidean distance function which
is determined in such a way that it minimizes the error of the network. This is
achieved by a genetic algorithm whose individuals are generalized distance matri-
ces and whose fitness function depends on the prediction accuracy attained by the
network.

Our GA approach has been tested on four domains. The first one is a simple
synthetic domain that helps understand the system. The rest of the domains are:
the Mackey-Glass and the Venice Lagoon time series and a classification problem,
the Ripley data set. It has been shown that using both diagonal and symmetrical
evolved matrices improves prediction accuracy over a purely Euclidean distance.

Although RBNN have been used as the learning element in this paper, our GA-
based method is relevant for any other machine learning technique where distances
are involved. For instance, the family of nearest neighbor algorithms, support vector
machines, or locally weighted regression methods would be clear candidates for our
approach.

REFERENCES

[1] Moody, J. E.—Darken, C.: Fast Learning in Networks of Locally Tuned Process-
ing Units. Neural Computation, Vol. 1, 1989, pp. 281–294.

[2] Ghosh, J.—Nag, A.: An Overview of Radial Basis Function Networks.
R. J. Howlett and L.C. Jain (Eds.), Physica Verlag, 2000.

[3] Broomhead, D. S.—Lowe, D.: Multivariable Functional Interpolation and Adap-
tative Networks. Complex Systems, Vol. 2, 1988, pp. 321–355.

[4] Powell, M.: The Theory of Radial Basis Function Approximation in 1990. Advances
in Numerical Analysis, Vol. 3, 1992, pp. 105–210.



42 J.M. Valls, R. Aler, O. Fernández

[5] Park, J.—Sandberg, I.W.: Universal Approximation and Radial-Basis-Function

Networks. Neural Computation, Vol. 5, 1993, pp. 305–316.

[6] Musavi, M.T.—Ahmed, W.—Chan, K.H.—Faris, K.B.—Hummels, D.M.:
On the Training of Radial Basis Function Classifiers. Neural Networks, Vol. 5, 1992,
pp. 595–603.

[7] Poggio, T.—Girosi, F.: Regularization Algorithms for Learning That Are Equi-
valent to Multilayer Networks. Science, Vol. 247, 1990, pp. 978–982.

[8] Poggio, T.—Girosi, F.: Networks for Approximation and Learning. Proceedings
of the IEEE 1990, Vol. 78, 1990, No. 9, pp. 1481–1497.

[9] Atkenson, C.G.—Moore, A.W.—Schaal, S.: Locally Weighted Learning. Ar-
tificial Intelligence Review, Vol. 11, 1997, pp. 11–73.

[10] Tou, J. T.—Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley,
1974.

[11] Weisberg, S.: Applied Linear Regression. New York: John Wiley and Sons, 1985.

[12] Babiloni, F.—Bianchi, L.—Semeraro, F.—del R-Millan, J.—Mourino,

J.—Cattini, A.—Salinari, S.—Marciani, M.G.—Cincotti, F.: Mahalanobis

Distance-Based Classifiers Are Able to Recognize EEG Patterns by Using Few EEG
Electrodes. In Engineering in Medicine and Biology Society, 2001, Proceedings of
the 23rd Annual International Conference of the IEEE, Vol. 1, pp. 651–654.

[13] Randolph-Gips, M.M.—Karayiannis, N.B.: Reformulated Radial Basis Func-

tion Neural Networks With Adjustable Weighted Norms. International Journal of
Intelligent Systems, Vol. 18, 2003, pp. 1065–1085, Wiley Periodicals Inc.

[14] Wettschereck, D.—Aha, D.W.—Mohri, T.: A Review and Empirical Evalua-
tion of Feature Weighting Methods for a Class of Lazy Learning Algorithms. Artificial
Intelligence Review, Vol. 11, 1997, Nos. 1–5, pp. 273–314.

[15] Valls, J.M.—Aler, R.—Fernández, O.: Using a Mahalanobis-Like Distance to
Train Radial Basis Neural Networks. IWANN 2005, Lecture Notes in Computer Scien-
ce 3512, Proceedings of the 8th International Work-Conference on Artificial Neural
Networks IWANN 2005, pp. 257–263, 2005.

[16] Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

[17] Leonardis, A.—Bischof, H.: An Efficient MDL-Based Construction of RBF Net-
works. Neural Networks, Vol. 11, 1998, pp. 963–973.

[18] Orr, M. J. L.: Introduction to Radial Basis Neural Networks. Technical Report,
Centre for Cognitive Science, University of Edinburgh, 1996.

[19] Yingwei, L.—Sundararajan, N.—Saratchandran, P.: A Sequential Learning
Scheme for Function Approximation Using Minimal Radial Basis Function Neural
Networks. Neural Computation, Vol. 9, 1997, pp. 461–478.

[20] Moretti, E.—Tomasin, A.: Un Contributo Matematico All-Elaborazione Previ-
sionale dei Dati di Marea a Venecia. Boll. Ocean. Teor. Appl., Vol. 1, 1984, pp. 45–61.

[21] Michelato, A.—Mosetti, R.—Viezzoli, D.: Statistical Forecasting of Strong
Surges and Aplication to the Lagoon of Venice. Boll. Ocean. Teor. Appl., Vol. 1,
1983, pp. 67–83.



Evolving Generalized Euclidean Distances for Training RBNN 43

[22] Tomasin, A.: A Computer Simulation of the Adriatic Sea for the Study of Its

Dynamics and for the Forecasting of Floods in the Town of Venice. Comp. Phys.
Comm., Vol. 5, 1973, p. 51.

[23] Vittori, G.: On the Chaotic Features of Tide Elevation in the Lagoon Venice. Proc.

of the ICCE-92, 23rd International Coference on Coastal Engineering, pp. 4–9, 1992.

[24] Zaldvar, J.M.—Gutiérrez, E.—Galván, I.M.—Strozzi, F.—Tomasin, A.:
Forecasting High Waters at Venice Lagoon Using Chaotic Time Series Analysis and

Nonlinear Neural Networks. Journal of Hydroinformatics, Vol. 2, 2000, pp. 61–84.

[25] Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge: Cambridge
University Press, 1996.

José M. Valls received his Ph.D. in computer science at Uni-

versidad Carlos III of Madrid (Spain) in 2004. He joined the
Computer Science Department at the same university in 1998,
being Associate Professor since 2004. He is enrolled in the Neu-
ral Networks and Evolutionary Computation Laboratory of this
university. His current research focuses on the application of
neural networks, evolutionary computation and other soft com-
puting techniques to engineering problems.

Ricardo Aler is Associate Professor at Universidad Carlos III

Computer Science Department. He has researched in several
areas, including automatic control knowledge learning, genetic
programming, and machine learning. He has also participated
in international projects about automatic machine translation
and optimising industry processes. He holds a Ph.D. in com-
puter science from Universidad Politécnica de Madrid (Spain)
and a M. Sc. in decision support systems for industry from Sun-
derland University (UK). He graduated in computer science at
Universidad Politécnica de Madrid.

Oscar Fern�andez graduated in computer science and statistics
at Universidad Carlos III of Madrid (Spain). He has worked
in several companies as consultant and systems engineer. His
research interest is mainly focused at data mining, data analysis
and its integration in corporative systems.


